生物化学实验报告

合集下载

生物化学实验报告(共2篇)

生物化学实验报告(共2篇)

生物化学实验报告(共2篇)篇一:生物化学实验报告2012年生物化学实验b姓名:学号:实验时间:实验分组:组内成员:任课教师:实验报告xxxx 2012年11月17日摘要1. 实验部分1.1试剂与仪器1.试剂:(2)1 mol/l 醋酸,1 mol/l naoh,硫酸铵。

(3)平衡缓冲液:0.01 mol/l tris-hcl,ph 8.0。

(5)酶的底物溶液:用底物缓冲液配制15×10-3 mol/l 对硝基苯磷酸二钠溶液。

(7)分离胶缓冲液:1.5 mol/l tris-hcl缓冲液,ph 8.8,已加入10% sds。

(8)浓缩胶缓冲液:0.5 mol/l tris-hcl缓冲液,ph 6.8,已加入10% sds。

(13)脱色液:500 ml 10%甲醇和10%冰醋酸的脱色液1000 ml。

匀浆机、eppebdorf5型冷冻离心机、gsy—2型恒温水浴、uv762型紫外可见分光光度计。

1.2 小牛肠碱性磷酸酶提取方法2)将小肠粘膜液集中倒入匀浆机中,加冰冷蒸馏水,高速匀浆,重复多次。

3)缓慢加入冰冷正丁醇高速匀浆重复多次。

在4℃,10000 rpm条件下离心。

4)用滤布过滤去除杂质,倒入分液漏斗中,静止分层,取下层水相,用hac溶液调ph到4.9。

5)得到上清后放入离心管中,用naoh溶液调ph至6.5,称取硫酸铵加到离心管中溶解;再加冰冷丙酮,混匀,4℃静置30 min以上。

6)上清液中加入冰冷丙酮,4℃放置30 min以上。

4℃,10000 rpm,离心。

7)取沉淀溶于平衡缓冲液至全部溶解至冰箱保存待用。

1.3 小牛肠碱性磷酸酶酶活检测方法2)紫外分光光度计检测条件为405 nm波长,测定时间60 s,取值2 s,记录范围0.0-1.5。

上下倒2次,放回分光光度计中,测定酶动力学曲线1.4 聚丙烯凝胶制备分离胶制备(浓度10%,制备量10 ml)试剂用量 h2o30% 丙烯酰胺1.5 mol/l tris-hcl缓冲液ph 8.810% 过硫酸铵temed4.1 ml 3.4 ml 2.4 ml 100 μl 10 μl浓缩胶制备(浓度5%,制备量6 ml)试剂 h2o30% 丙烯酰胺0.5 mol/l tris-hcl缓冲液ph 6.810% 过硫酸铵temed用量3.4 ml 1.0 ml 1.5 ml 60 μl 8 μl1.5 考马斯亮蓝法测定蛋白质含量3)各取100 μl加入到5 ml考马斯亮蓝试管中,混匀,反应5 min以上。

生物化学实验报告格式范文

生物化学实验报告格式范文

生物化学实验报告格式范文
生物化学实验报告格式范文主要包括以下几个部分:实验名称、实验目的、实验原理、实验材料与试剂、实验过程、实验结果与分析、结论。

下面是一个具体的实验报告范例:
实验名称:蛋白质的提取与分离
实验目的:掌握蛋白质的提取与分离方法,了解蛋白质纯化的过程。

实验原理:蛋白质是生物体内重要的功能分子,其提取与分离在生物研究和应用中具有重要意义。

本实验通过盐析、透析等方法对蛋白质进行提取,然后利用凝胶色谱技术对蛋白质进行分离纯化。

实验材料与试剂:蛋白质溶液、盐析剂、透析袋、凝胶色谱柱、缓冲液、标签试剂等。

实验过程:
1.蛋白质的提取:将蛋白质溶液与盐析剂混合,静置后收集上清液,进行透析,得到纯化的蛋白质溶液。

2.蛋白质的分离:将纯化的蛋白质溶液上样到凝胶色谱柱,用缓冲液洗脱,收集目标蛋白质峰。

3.蛋白质的鉴定:对分离得到的蛋白质进行SDS-PAGE电泳,然后转移到膜上进行Western Blot分析,验证蛋白质的分离效果。

实验结果与分析:
1.SDS-PAGE电泳结果显示,提取的蛋白质分子量与理论值相符。

2.Western Blot分析结果显示,分离纯化的蛋白质能够与对应的抗体特异性结合,说明分离效果良好。

结论:通过本实验,我们成功提取并分离了蛋白质,掌握了蛋白质纯化的基本方法。

实验结果表明,盐析、透析和凝胶色谱技术等方法可以有效地用于蛋白质的提取与分离。

生物化学实训课实验报告

生物化学实训课实验报告

一、实验名称:蛋白质分子量测定——凝胶层析法二、实验目的:1. 理解凝胶层析法的原理和操作步骤。

2. 掌握蛋白质分子量测定的方法。

3. 分析实验结果,并探讨影响实验结果的因素。

三、实验原理:凝胶层析法是一种分离和纯化蛋白质的方法,其原理是利用凝胶的分子筛作用,根据蛋白质分子大小不同进行分离。

凝胶是一种多孔材料,其孔径大小与蛋白质分子大小相匹配,使得小分子蛋白质能够进入凝胶内部,而大分子蛋白质则无法进入,从而实现分离。

四、实验材料与试剂:1. 蛋白质样品:如鸡蛋清、血清等。

2. 凝胶:如聚丙烯酰胺凝胶、琼脂糖凝胶等。

3. 电泳缓冲液:如Tris-HCl缓冲液、硼酸缓冲液等。

4. 标准蛋白质分子量对照品:如已知分子量的蛋白质。

5. 电泳仪、电泳槽、紫外灯等。

五、实验步骤:1. 准备凝胶:将凝胶溶解在适当浓度的缓冲液中,倒入模具中,制成凝胶板。

2. 准备样品:将蛋白质样品与适量的电泳缓冲液混合,加入样品缓冲液,制成样品溶液。

3. 制备标准蛋白质分子量对照品:将已知分子量的蛋白质溶解在电泳缓冲液中,制成标准蛋白质溶液。

4. 加样:将样品溶液和标准蛋白质溶液分别加入凝胶板上的孔中。

5. 电泳:将凝胶板放入电泳槽中,加入电泳缓冲液,接通电源,进行电泳。

6. 显色:电泳完成后,将凝胶板取出,放入含有显色剂的溶液中,进行显色。

7. 测量:用紫外灯照射凝胶板,观察蛋白质条带的位置,并记录下蛋白质分子量。

六、实验结果与分析:1. 通过观察电泳图谱,可以清晰地看到蛋白质条带,其中标准蛋白质分子量对照品的条带位置已知,可以用来判断样品蛋白质分子量的大小。

2. 实验结果显示,样品蛋白质分子量分布较广,存在多个分子量大小不同的蛋白质。

3. 通过比较样品蛋白质条带与标准蛋白质条带的位置,可以估算出样品蛋白质的分子量。

4. 影响实验结果的因素包括凝胶的制备、电泳条件、显色剂的选择等。

七、讨论与心得:1. 凝胶层析法是一种常用的蛋白质分离和纯化方法,具有操作简单、分离效果好等优点。

大学生物化学实验报告

大学生物化学实验报告

一、实验名称:蛋白质分子量测定——凝胶层析法二、实验目的:1. 了解凝胶层析法的基本原理和操作步骤。

2. 学习利用凝胶层析法测定蛋白质的分子量。

3. 培养实验操作技能和数据处理能力。

三、实验原理:凝胶层析法是一种利用凝胶作为固定相,通过分子大小不同的物质在凝胶孔径中的移动速度差异来实现分离的方法。

在凝胶层析中,大分子物质不能进入凝胶内部的孔径,而小分子物质可以进入孔径,从而在洗脱过程中,大分子物质先流出,小分子物质后流出。

通过测量不同分子量蛋白质的洗脱体积,可以计算出其分子量。

四、实验材料与试剂:1. 凝胶层析柱(直径1.5cm,长30cm)2. 凝胶(聚丙烯酰胺凝胶)3. 蛋白质样品(已知分子量)4. 标准样品(已知分子量)5. 洗脱液(Tris-HCl缓冲液)6. 显色剂(考马斯亮蓝G-250)7. 移液器8. 旋转混匀器9. 分光光度计五、实验步骤:1. 准备凝胶层析柱:将凝胶倒入层析柱中,用洗脱液充分浸泡凝胶,直至凝胶膨胀并固定在层析柱中。

2. 准备样品:将蛋白质样品和标准样品分别稀释至适当浓度。

3. 加样:将蛋白质样品和标准样品分别加入凝胶层析柱中,用洗脱液洗脱,收集不同洗脱体积的洗脱液。

4. 显色:将收集到的洗脱液加入考马斯亮蓝G-250显色剂,室温下显色10分钟。

5. 测量:用分光光度计测定显色液在595nm处的吸光度值。

6. 数据处理:以标准样品的分子量为横坐标,吸光度值为纵坐标,绘制标准曲线。

根据蛋白质样品的吸光度值,从标准曲线上查得蛋白质的分子量。

六、实验结果:(此处插入实验数据表格,包括标准样品和蛋白质样品的分子量、洗脱体积、吸光度值等)七、实验分析:通过凝胶层析法,成功分离了蛋白质样品,并测定了其分子量。

实验结果表明,蛋白质样品的分子量与标准样品的分子量相符,说明实验操作正确。

八、讨论与心得:1. 凝胶层析法是一种简单、有效的蛋白质分离方法,可用于测定蛋白质的分子量。

2. 在实验过程中,要注意凝胶层析柱的制备、样品的加入和洗脱液的收集等操作步骤,以保证实验结果的准确性。

生物化学实验报告

生物化学实验报告

实验名称:蛋白质分子量测定——凝胶层析法实验日期:2023年10月26日实验目的:1. 理解凝胶层析法的原理和操作步骤。

2. 通过凝胶层析法测定蛋白质的分子量。

3. 掌握蛋白质分离和鉴定技术。

实验原理:凝胶层析法,也称为分子筛层析法或排阻层析法,是一种基于分子大小差异进行分离的方法。

凝胶是一种多孔材料,其孔径大小不一,能够根据分子的大小将混合物中的不同组分分离。

在凝胶层析中,大分子蛋白质不能进入凝胶内部的孔洞,因此沿着凝胶颗粒间的缝隙快速移动,而小分子蛋白质则可以进入凝胶内部,移动速度较慢。

通过比较不同蛋白质在凝胶层析中的迁移距离,可以推断其分子量。

实验器材与试剂:- 凝胶层析柱- 凝胶- 蛋白质样品- 标准蛋白质分子量对照品- 缓冲液(pH 7.4)- 标记笔- 移液器- 洗脱液- 紫外线检测仪实验步骤:1. 准备凝胶层析柱,用标记笔标记起始线。

2. 将凝胶加入层析柱中,使其填充均匀,注意避免气泡。

3. 准备蛋白质样品和标准蛋白质对照品,用缓冲液稀释至适当浓度。

4. 用移液器将蛋白质样品和标准蛋白质对照品分别加入层析柱的起始线处。

5. 加入洗脱液,调节流速,保持洗脱液面始终高于凝胶表面。

6. 收集洗脱液,每隔一定时间取样,用紫外线检测仪检测蛋白质的吸收峰。

7. 根据标准蛋白质对照品的分子量和迁移距离,绘制标准曲线。

8. 根据样品的迁移距离和标准曲线,计算样品的分子量。

实验结果:- 蛋白质样品和标准蛋白质对照品在凝胶层析中的迁移距离分别为:样品A 2.5 cm,样品B 3.0 cm;标准蛋白质对照品1 2.0 cm,标准蛋白质对照品2 3.5 cm。

- 根据标准曲线,样品A的分子量为 10 kDa,样品B的分子量为 15 kDa。

讨论与分析:本实验成功地将蛋白质样品与标准蛋白质对照品分离,并测定了样品的分子量。

凝胶层析法是一种简单、有效的蛋白质分离和鉴定技术,广泛应用于生物化学和分子生物学研究中。

生物化学实验报告

生物化学实验报告

生物化学实验报告一、实验目的本实验的目的是通过比较原淀粉、糖粉、滑石粉及无机盐等对酶水解作用的影响,了解和掌握酶的底物特异性、温度敏感性及pH敏感性。

二、实验原理酶是一类具有催化功能的特殊蛋白质,可以在生物体内加速对物质的转化过程。

酶的活性受到多种因素的影响,如底物特异性、温度、pH值等。

本实验中,选取了α-淀粉酶作为模型酶,通过观察其对不同底物的水解作用,以及在不同温度和pH值下的活性变化情况,来分析上述因素对酶活性的影响。

三、实验步骤1. 准备四个试管,分别加入原淀粉溶液、糖粉溶液、滑石粉溶液及无机盐溶液。

2. 在每个试管中加入适量的α-淀粉酶溶液,混匀后放置于恒温水浴中反应一段时间。

3. 分别取出各试管,加入碘液进行显色反应,观察溶液颜色的变化,并记录结果。

四、实验结果与分析经过实验观察发现,原淀粉溶液和滑石粉溶液没有出现颜色变化,说明α-淀粉酶对它们没有水解作用;而糖粉溶液和无机盐溶液出现了蓝黑色,说明α-淀粉酶对它们有水解作用。

这说明α-淀粉酶对底物的水解具有一定的特异性。

此外,实验还发现α-淀粉酶的活性受到温度和pH值的影响。

在不同温度下,α-淀粉酶的活性变化情况如下:当温度较低时,酶的活性较低,水解作用较慢;当温度逐渐升高时,酶的活性逐渐增强,水解作用加快;当温度超过一定范围后,酶的活性开始下降,甚至完全失活。

这表明酶的活性受到温度的限制,存在一个较适宜的工作温度范围。

同样地,在不同pH值下,α-淀粉酶的活性也有所变化。

实验结果显示,当pH值在酶的最适范围内时,酶的活性最高,水解作用最强;当pH值偏离最适范围时,酶的活性下降,水解作用减弱。

这说明酶的活性也受到环境的静电作用的影响,存在一个较适宜的pH值范围。

五、实验总结通过本次实验,我们进一步了解了酶的特性和具体影响因素。

酶的底物特异性以及温度和pH值对酶活性的影响是使用酶进行实验和应用的重要参考因素。

此外,本实验还展示了酶与底物之间的相互作用和调控机制,在理解酶的功能和应用方面具有重要意义。

生物化学实验报告参考模板

生物化学实验报告参考模板

实验一考马斯亮蓝G-250染色法测定蛋白质的含量(p24)一、目的要求掌握考马斯亮蓝(Coomassie Brilliant Blue)法测定蛋白质含量原理和方法。

二、实验原理考马斯亮蓝法测定蛋白质浓度,是利用蛋白质─染料结合的原理,定量的测定微量蛋白浓度的快速、灵敏的方法。

这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。

这一方法是目前灵敏度最高的蛋白质测定法。

考马斯亮兰G-250染料在酸性溶液中为棕红色,当它与蛋白质通过范德华键结合后,变为蓝色。

在酸性溶液中与蛋白质结合,使染料的最大吸收峰(lmax)的位置,由465nm变为595nm。

且在蛋白质一定浓度范围内符合比尔定律,通过测定595nm处光吸收的增加量可知与其结合蛋白质的量。

研究发现,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。

考马斯亮蓝染色法的突出优点是:(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。

这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大的多。

(2)测定快速、简便,只需加一种试剂。

完成一个样品的测定,只需要5分钟左右。

由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。

因而完全不用像Lowry法那样费时和严格地控制时间。

(3)干扰物质少。

如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。

此法的缺点是:(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用g—球蛋白为标准蛋白质,以减少这方面的偏差。

(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、Triton X-100、十二烷基硫酸钠(SDS)等。

生物质化学实验报告(3篇)

生物质化学实验报告(3篇)

第1篇一、实验目的1. 了解生物质化学的基本概念和实验方法。

2. 掌握生物质化学实验的基本操作技巧。

3. 通过实验,加深对生物质化学原理的理解。

二、实验原理生物质化学是研究生物质中化学组成、结构和性质的一门学科。

生物质包括植物、动物、微生物等,其化学组成主要包括碳水化合物、蛋白质、脂质、核酸等。

生物质化学实验主要包括生物质提取、分离、鉴定和测定等。

三、实验材料与仪器1. 实验材料- 生物质样品(如玉米秸秆、小麦秸秆等)- 酶(如纤维素酶、淀粉酶等)- 酸、碱等化学试剂- 乙醇、丙酮等有机溶剂2. 实验仪器- 研钵- 烧杯- 试剂瓶- 电子天平- 离心机- 恒温水浴锅- 显微镜- 紫外可见分光光度计1. 生物质提取(1)称取一定量的生物质样品,置于研钵中,加入适量的水,研磨成浆状。

(2)将浆状物过滤,收集滤液。

2. 生物质分离(1)取一定量的滤液,加入适量的酶,在恒温水浴锅中反应一定时间。

(2)反应结束后,加入适量的丙酮,使蛋白质沉淀。

(3)离心分离,收集沉淀物。

3. 生物质鉴定(1)取一定量的沉淀物,加入适量的双缩脲试剂,观察颜色变化。

(2)取一定量的沉淀物,加入适量的苏丹Ⅲ试剂,观察颜色变化。

4. 生物质测定(1)取一定量的沉淀物,加入适量的葡萄糖标准溶液,用紫外可见分光光度计测定吸光度。

(2)根据吸光度计算生物质中葡萄糖的含量。

五、实验结果与分析1. 生物质提取实验成功提取了生物质中的可溶性成分。

2. 生物质分离实验成功分离了生物质中的蛋白质和脂质。

3. 生物质鉴定实验结果表明,生物质中主要含有蛋白质和脂质。

4. 生物质测定实验结果表明,生物质中葡萄糖的含量为X g/g。

1. 生物质提取过程中,研磨时间和水量对提取效果有较大影响。

适当增加研磨时间和水量可以提高提取效果。

2. 生物质分离过程中,酶的种类和反应时间对分离效果有较大影响。

选择合适的酶和反应时间可以提高分离效果。

3. 生物质鉴定过程中,试剂的种类和用量对鉴定结果有较大影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学实验报告动物营养研究所张树润2015.10.12猪血中超氧化物歧化酶(SOD)的分离纯化及活性测定一.实验目地1.通过实验了解活性物质的分离提取。

2.了解超氧化物歧化酶的基本功能与应用。

二.实验原理超氧化物歧化酶是一种酸性蛋白,是唯一以自由基为底物的酶,具有清除自由基的功能酶,在酶分子上共价连接金属辅基,因此它对热、PH、以及某些理化性质表现出异常的稳定性。

该酶首次从牛红细胞中分离得到,是一种蓝色含铜蛋白,之后,研究发现该蛋白酶具有催化氧发生歧化反应的能力,因此将其命名为超氧化物歧化酶1-2。

超氧化物歧化酶是一种能专一地清除超氧离子自由基(O2-)的金属酶,它具有抗衰老、抗辐射、抗炎抗癌等作用,因而在医药(如关节炎、红斑狼疮等疾病的治疗3)、化妆品(有防晒抗炎效果4)、食品工业(SOD灵芝菌5等)等方面具有了广泛的应用前景。

超氧化物歧化酶是广泛存在于生物体内的一种金属酶, 可催化超氧阴离子自由基(O2-)与H+发生歧化反应, 生成H2O2和O2。

SOD催化下述反应:2H++2O2-→H2O2+O2。

超氧化物歧化酶按照它所含金属离子的不同,可分为Cu-Zn-SOD、Mn-SOD、Fe-SOD等三种。

Cu-Zn-SOD为二聚体,呈蓝绿色;Mn-SOD呈紫红色;Fe-SOD呈黄褐色。

SOD提取、纯化制备方法各异, 常用方法有经典的溶剂沉淀法、盐析法、超滤法和层析法等6-7。

本实验采用有机溶剂沉淀法8以新鲜猪血为原料,从中提取SOD并进行纯化。

酶活力测定可用以下方法:邻苯三酚自氧化法9、黄嘌呤氧化酶法、NBT光还原法、化学发光法、肾上腺素自氧化法、亚硝酸法等。

该实验SOD酶活性采用邻苯三酚自氧化法测定,酶活性单位定义为:每毫升反应液中,每分钟抑制邻苯三酚自氧化速率达50%的酶量定义为一个酶单位。

样品中蛋白质含量用考马斯亮蓝G-250法测定。

考马斯亮蓝G-250在游离状态下呈红色,与蛋白质结合呈现蓝色。

在一定范围内,溶液在595nm波长下的光密度与蛋白质含量成正比,可用比色法测定,测定范围1-1000μg。

三.实验试剂与器材1.实验试剂ACD抗凝剂、0.9%Nacl、丙酮、95%乙醇、氯仿、考马斯亮蓝G-250、50mmol/L pH8.3磷酸缓冲液、10mmol/L EDTA钠盐溶液、3mmol/L邻苯三酚溶液等2.实验器材紫外光分光光度计、可见光分光光度计、分析天平、具塞试管、刻度吸管、离心机、烧杯、移液枪、试管架、EP管等。

四.实验方法1.SOD的提取[1]取新鲜猪血20ml于50ml离心管,4000r/min,10min离心,去上层血浆,取下层红血球粘稠液量其体积,然后加入2倍体积的0.9%NaCl溶液清洗,4000r/min,10min离心,弃上层清液,再加入2倍体积的0.9%NaCl溶液重复清洗一次,4000r/min,10min离心,得洗净的红血球粘稠液。

[2]向洗净的红血球中加入等体积的蒸馏水,剧烈搅拌30min,使其充分溶血。

再向溶血液中缓慢加入预冷的0.35倍体积的95%乙醇溶液和0.15倍体积的氯仿,匀浆呈暗红色,再继续搅拌15min,4000r/min,10min离心,去变性蛋白沉淀物,得上层液,量其体积即为除血蛋白上清体积,留样500ul(样1)。

将上层液用2层纱布进行过滤除去脂肪物质,然后将清液在65-70℃恒温水浴中进行热处理,15min后取出迅速冷却到室温,4000r/min,5min离心除去沉淀,得浅黄色粗酶液,量其体积即为热变性后上清体积,留样200ul(样2)。

[3]向粗酶液中加入等体积的丙酮溶液,冰箱静置4小时,4000r/min,10min,弃上清液,得沉淀。

将沉淀物用等体积预冷的丙酮溶液清洗两次,离心收集沉淀,自然干燥即得淡绿色成品,按1mg/ml溶于蒸馏水,为丙酮沉淀后体积,备用(样3)。

2.SOD活力测定[1] 邻苯三酚自氧化率的测定取4.5 ml 50 mmol/L pH8.3的磷酸缓冲液,4.2 ml蒸馏水和1 ml 10 mmol/LEDTA-Na2溶液,混匀后在25℃水浴保温20 min,取出后立即加入25℃预热过的邻苯三酚溶液0.3 ml,迅速摇匀,倒入光径1 cm的比色杯内,用10 mmol/L HCl作空白,325 nm 波长下每隔30 s记录光吸收值一次,整个操作在4 min内完成,计算出每分钟A325的增值,此即为邻苯三酚自氧化率。

要求自氧化速率引起的吸光值变化控制在0.070/min左右。

[2] 酶活力测定样1、样2及样3中SOD酶活力测定操作与[1]基本一致,加入邻苯三酚前,先加入20µl SOD样液,蒸馏水则减少相应的体积,同理测其光吸收值,计算加酶后邻苯三酚自氧化率。

[3]酶活性单位计算根据酶活性单位的定义,按下列公式计算酶活性:单位活性(U/ml)= ×反应液总体积数×其中,A o为邻苯三酚自氧化率;A m加酶后邻苯三酚自氧化率。

总活性(U)=单位活性×酶原液总体积[4]蛋白质含量测定(考马斯亮蓝G-250法)⑴标准曲线的制作:取6支具塞试管,编号,按下表加入试剂:试剂管号1 2 3 4 5 6 蛋白质标准液(ml)0 0.2 0.4 0.6 0.8 1 蒸馏水(ml) 1 0.8 0.6 0.4 0.2 0 考马斯亮蓝G-250(ml) 5 5 5 5 5 5 蛋白质含量(µg) 0 20 40 60 80 100盖上塞子,摇匀。

注意各管振荡程度尽量一致。

在595nm波长下比色测定光吸收值,比色应在1小时内完成。

以牛血清白蛋白含量(ug)为横座标,光吸收值为纵坐标,绘出标准曲线。

⑵样品中蛋白含量的测定将待测的SOD溶解并稀释到一定浓度,取3支试管,分别加入20μl、50μl、100μl的样1、样2和样3,再分别加入980μl、950μl和900μl蒸馏水,3支试管中都加入5ml考马斯亮蓝G-250试剂,其余操作与标准曲线制作相同。

⑶蛋白质含量计算根据所测样品提取液的光吸收值,在标准曲线上查得相应的蛋白质含量(µg),计算其浓度。

[5] 结果处理利用考马斯亮蓝G-250法测定每毫升酶原液蛋白质毫克数。

比活力(U/mg)=单位活力(U/ml)/单位蛋白质浓度(mg/ml)=总活力(U)/总蛋白质(mg)将测得的数据或计算结果填入下表:酶液总体蛋白质酶活性总活性比活性回收率积除血蛋白上清热变性后上清丙酮沉淀后体积五.实验结果1.SOD活力测定将含有SOD的样1、样2、样3加入含邻苯三酚的反应液中,记录加样体积及每30秒的吸光度值,与邻苯三酚的自氧化率记录如下表:吸光度值A325计时(秒)邻苯三酚自氧化加邻苯三酚后自氧化样1样2样330 0.119 0.026 0.015 0.01860 0.145 0.04 0.028 0.0490 0.179 0.056 0.045 0.065120 0.211 0.072 0.061 0.088 150 0.245 0.09 0.078 0.122样1、样2、样3分别为除血蛋白上清、热变性后上清、丙酮沉淀后溶于蒸馏水的溶液,加样体积均为20μl。

邻苯三酚自氧化率:A0=[(0.179-0.119)+(0.211-0.145)+(0.245-0.179)] /3=0.064/min加入样1、样2、样3后邻苯三酚自氧化率分别为:A1=0.032/minA2=0.032/minA3=0.047/min邻苯三酚自氧化加邻苯三酚后的自氧化率min-1样1样2样30.064 0.032 0.032 0.047反应液总体积都为10ml,样1、样2、样3均未稀释,即稀释倍数为1,因此,样1、样2、样3SOD的单位活性根据公式:单位活性(U/ml)= ×反应液总体积数×b1=[(0.064/min-0.032/min)/0.064/min×100%]/50%×10×1/20=500 U/mlb2=[(0.064/min-0.032/min)/0.064/min×100%]/50%×10×1/20=500 U/mlb3=[(0.064/min-0.047/min)/0.064/min×100%]/50%×10×1/20=266U/ml样1、样2、样3酶液总体积分别为v1 =3 ml 、v2 =1.1 ml 、v3=1 ml,故其酶总活性分别为:c1= b1 v1=500 U/ml×3 ml=1500Uc2= b2 v2=500 U/ml×1.1 ml=550Uc3= b3 v3=266U/ml×1 ml=266U以除去血蛋白上清液(样1)中的SOD回收率为k1=100%,按酶总活性大小计算各过程中SOD回收率,则样2、样3的回收率分别为:k2= c2/ c1=550U/1500U=36.67%k3= c3/ c1=266U/1500U=17.73%酶活性总活性回收率U/ml U % 样1500 1500 100样2500 550 36.67样3266 266 17.73 2.蛋白质含量测定蛋白质含量与吸光度值A595的标准曲线测定值如下表:吸光度值A5950 0.131 0.253 0.315 0.432 0.508 蛋白质含量(μg) 0 20 40 60 80 100所绘制的标准曲线如下图:y=185.1852x样1、样2、样3的加样量及吸光度值如下表:样品号加样量吸光度值样120 0.317样250 0.106样3100 0.056因此,样1、样2、样3中的蛋白质含量分别为:d1=0.317×185.1852μg/20μl=2.94mg/mld2=0.106×185.1852μg/50μl=0.39mg/mld3=0.056×185.1852μg/100μl=0.10mg/ml所以,样1、样2、样3的比活力分别为:e1=b1/d1=500 U/ml /2.94 mg/ml=170.07 U/mge2= b2/d2=500 U/ml /0.39mg/ml=1282.05U/mge3= b3/d3=266 U/ml /0.10mg/ml=2660U/mg以除血蛋白上清(样1)得到的SOD的纯化倍数n1=1,以各样的比活力计算纯化倍数,则样2、样3的纯化倍数分别为:n2= e2/ e1=1282.05U/mg/170.07 U/mg=7.54n3= e3/ e1=2660U/mg/170.07 U/mg=15.64酶活力测定的结果汇总于下表:酶液总体积蛋白质酶活性总活性比活性回收率提纯步骤ml mg/ml U/ml U U/mg % 纯化倍数除血蛋白上清 3 2.94 500 1500 170.07 100 1热变性后上清 1.1 0.39 500 550 1282.05 36.67 7.54 丙酮沉淀后体积 1 0.10 266 266 2660 17.73 15.64六.讨论分析SOD的制备方法较多, 不同的方法制备的SOD 产品在收率、纯度、比活等方面有较大差别, 各有其优缺点。

相关文档
最新文档