第16章《二次根式》检测题

合集下载

八年级下第16章二次根式测试题含答案1

八年级下第16章二次根式测试题含答案1

八年级第十六章《二次根式》测试题班别: 姓名:__________一、选择题(每小题3分,共30分)1. 若A ==( ) A. 24a + B. 22a + C. ()222a + D. ()224a +2. 若1a ≤ )A. (1a -B. (1a -C. (1a -D. (1a -3. 的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a -4. 下列二次根式中,最简二次根式是( )A .23aB .31 C .5.2 D .22b a -5. 若12x -<< )A. 21x -B. 21x -+C. 3D. -36. 10=,则x 的值等于( ) A. 4 B. 4± C. 2 D. 2±7. x ,小数部分为y y -的值是( )A. 38. 下列运算正确的是( )=a b =-C. (a b =-22==9=成立的x 的取值范围是( ) A .2x ≠ B .2x > C .2x ≥ D . 0x ≥10n 的最小值是( )A.7B.6C.5D. 4二、填空题(每小题3分,共24分).11. 当__________x .12. 已知x =,则21________x +=.13. 把的根号外的因式移到根号内等于 .14. _____,______m n ==.15. 是同类二次根式的是 .16. ,则它的周长是 cm.17. 已知x y =33_________x y xy +=.18. 在实数范围内分解因式:429__________,6__________x x -=-+=.三、解答题(共52分)19. (6分)当a 1取值最小,并求出这个最小值.20. (6分)已知,a b (10b -=,求20152016ab -的值.21. 计算:(每题4分,共16分)()1(2(231⎛+ ⎝(3((((22221111(4)22. (6分)已知:11a a -=+21()a a +的值.23. (6分)已知:,x y 为实数,且3y ,化简:3y -.24. (6分)03x =+,的值.答案:一、选择题1A 2B 3D 4D 5C 6C 7C 8C 9B 10B二、填空题11. 12≤; 12. 2-; 13.14. 1、2;15.; 16. (; 17. 10;18.()((23;(x x x x x ++- 三、解答题19. 12a =-,最小值为1; 20. -221. ()1.6,;()()()232,4.4;22. 解:22222111()24(14a a a a a a ⎛⎫+=++=-+=++= ⎪⎝⎭15+;23.解:由已知有:1010x x -≥⎧⎨-≥⎩由此得1x = ,所以33y <=所以33(4)y y y -=---=-1;24.解:290x -=且3x ≠- ,由此得3,1x y ==,==。

人教版初中数学八年级下册《第十六章 二次根式》单元测试题(含答案

人教版初中数学八年级下册《第十六章 二次根式》单元测试题(含答案

《第十六章二次根式》单元测试题一、选择题(本大题共10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一项符合题意)1.要使代数式x +1x -1有意义,则x 的取值范围是( ) A .x ≥-1且x ≠1 B .x ≠1C .x >-1且x ≠1 D .x ≥-1 2.下列各等式成立的是( )A .(-3)2=-3 B.2-2=-2C .(5 3)2=15 D.(-3)2=33.下列运算正确的是( )A.2+3=6B.3×2=6C.()3-12=3-1 D.52-32=5-3 4.计算412+3 13-8的结果是( ) A.3+2B.3C.33D.3- 2 5.若a =2 2+3,b =2 2-3,则下列等式成立的是( ) A .ab =1 B .ab =-1C .a =b D .a =-b6.已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n7.实数a ,b 在数轴上对应点的位置如图1所示,且|a |>|b |,则化简a 2-|a +b |的结果为( )图1A .2a +bB .-2a +bC .2a -bD .b 8.若y =x -2+2-x3-3,则(x +y )x 的值为( )A .2B .-3C .7-4 3D .7+4 39.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定10.按图2所示的程序计算,若开始输入的x 值为2,则最后输出的结果是( )图2A .14B .16C .8+5 2D .14+ 2二、填空题(本大题共7小题,每小题3分,共21分)11.若最简二次根式a 与-32a -5能够合并,则a =________. 12.若整数x 满足|x |≤3,则使7-x 为整数的x 的值为________. 13.计算:8-2(3-2)0+⎝⎛⎭⎫12-1=_________.14.当a =15时,代数式2a -3-5a +7a +3的值为________. 15.计算:(54-1496)÷27=________.16.已知x =3+1,y =3-1,则x 2+2xy +y 2=________. 17.若a =2+1,则a 3-5a +2019=________. 三、解答题(本大题共5小题,共49分) 18.(9分)计算: (1)20+55-13×12; (2)512÷1550×1532;(3)(3 2-1)(1+3 2)-(3 2-1)2.19.(8分)已知a =2-2,b =2+2,求a 3b +a 2b 2a 2+2ab +b 2÷a 2-aba 2-b 2的值.20.(10分)已知x =7+4 3,y =-7+4 3,求下列各式的值. (1)1x +1y ;(2)x y +y x .21.(10分)若无理数A 的整数部分是a ,则它的小数部分可表示为A -a .例如:π的整数部分是3,因此其小数部分可表示为π-3.若x 表示47的整数部分,y 表示它的小数部分,求代数式(47+x )y 的值.22.(12分)一个三角形三边的长分别为a ,b ,c ,设p =12(a +b +c ),根据海伦公式S =p (p -a )(p -b )(p -c )可以求出这个三角形的面积.若a =2,b =3,c =2 2,求: (1)三角形的面积S ; (2)长为c 的边上的高h .详解详析1.[解析] A 要使代数式有意义,应满足⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1且x ≠1.2.[解析] D 选项A 的被开方数为负数,无意义;2-2=122=⎝⎛⎭⎫122=12;()5 32=52×()32=25×3=75;()-32=|-3|=3.3.[解析] B A 项,2+3已是最简形式,不能再合并,故错误; B 项,3×2=6,故正确;C 项,()3-12=(3)2-2×3×1+1=3-2 3+1=4-2 3,故错误; D 项,52-32=16=42=4,故错误.故选B. 4.[解析] B 412+3 13-8=4×22+3×33-2 2= 3. 5.[解析] B ab =(2 2+3)(2 2-3)=(2 2)2-32=8-9=-1. 故选B. 6.[解析] D135=k 15=15×9=3 15,所以k =3;450=15m =15×15×2=15 2,所以m =2;180=6n =36×5=6 5,所以n =5.所以m <k <n .7.[答案] D8.[解析] C 由二次根式有意义的条件,得⎩⎪⎨⎪⎧x -2≥0,2-x ≥0,解得x =2.于是y =- 3.所以(x+y )x =(2-3)2=7-4 3.故选C.9.[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,5 3=75,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.10.[解析] C 将2代入x (x +1)运算:2(2+1)=2+ 2.∵2+2<15,∴将2+2再次代入x (x +1)运算:(2+2)(2+2+1)=(2+2)(3+2)=8+5 2.∵8+5 2>15,∴将8+5 2输出.故选C.11.[答案] 5[解析] 由题意,知a 与-3 2a -5的被开方数相同,所以a =2a -5,解得a =5.12.[答案] -2或3[解析] 当x 取-2或3时,原式的值为整数,分别等于3或2. 13.[答案] 2+2[解析] 先把零指数幂和负整数指数幂按公式a 0=1(a ≠0),a -p =1a p (a ≠0)化简,8-2(3-2)0+⎝⎛⎭⎫12-1=2 2-2+2=2+2.14.[答案] 4 3[解析] 将a =15代入代数式得27-75+108,化简结果为4 3. 15.[答案]2 23[解析] 原式=(3 6-14×4 6)÷3 3=2 6÷3 3=2 23.16.[答案] 12[解析] 由x =3+1,y =3-1,得x +y =2 3,∴x 2+2xy +y 2=(x +y )2=(2 3)2=4×3=12.17.[答案] 2021[解析] ∵a 2=(2+1)2=3+2 2,∴原式=a (a 2-5)+2019=(2+1)(3+2 2-5)+2019=2(2+1)(2-1)+2019=2+2019=2021.18.解:(1)原式=2 5+55-33×2 3=3-2 =1.(2)原式=⎝⎛⎭⎫5×5×1512×150×32=5 36100=3.(3)方法一:原式=(3 2)2-12-[(3 2)2-2×3 2+12] =(3 2)2-1-(3 2)2+6 2-1 =6 2-2.方法二:原式=(3 2-1)[(1+3 2)-(3 2-1)] =(3 2-1)×2 =6 2-2.19.解:a 3b +a 2b 2a 2+2ab +b 2÷a 2-ab a 2-b 2=a 2b (a +b )(a +b )2·(a +b )(a -b )a (a -b )=ab ,当a =2-2,b =2+2时, 原式=(2-2)(2+2)=2.20.解:∵x =7+4 3,y =-7+4 3, ∴x +y =(7+4 3)+(-7+4 3) =7+4 3-7+4 3=8 3, xy =(7+4 3)(-7+4 3) =(4 3)2-72=48-49=-1. (1)1x +1y =x +y xy =8 3-1=-8 3. (2)x y +y x =x 2+y 2xy =(x +y )2-2xy xy=(8 3)2-2×(-1)-1=-194.21.[解析] 解决该问题的关键在于确定出47的整数部分,然后再表示出它的小数部分,最后代入代数式求值.解:∵6<47<7, ∴47的整数部分为6, 即x =6,则47的小数部分y =47-6,∴(47+x )y =(47+6)(47-6)=(47)2-62=47-36=11. 22.解:(1)p =12(2+3+2 2)=32(2+1),p -a =3+22,p -b =32(2-1),p -c =3-22,S =p (p -a )(p -b )(p -c )=32(2+1)×3+22×32(2-1)×3-22=347.(2)∵S =12ch ,∴h =2S c =327÷2 2=3814.。

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)总分150分时间120分钟一、选择题(本大题共10小题每小题3分共30分)1.下列的式子一定是二次根式的是()A.√−x−2B.√x C.√x2+2D.√x2−2思路引领:根据二次根式的被开方数是非负数对每个选项做判断即可.解:A、当x=0时﹣x﹣2<0 √−x−2无意义故本选项错误;B、当x=﹣1时√x无意义;故本选项错误;C、∵x2+2≥2 ∴√x2+2符合二次根式的定义;故本选项正确;D、当x=±1时x2﹣2=﹣1<0 √x2−2无意义;故本选项错误;故选:C.总结提升:本题考查了二次根式的定义.一般形如√a(a≥0)的代数式叫做二次根式.当a≥0时√a表示a的算术平方根.2.若√48n是正整数最小的正整数n是()A.6B.3C.48D.2思路引领:先将所给二次根式化为最简二次根式然后再判断n的最小正整数值.解:√48n=4√3n由于√48n是正整数所以n的最小正整数值是3故选:B.总结提升:此题考查二次根式的定义解答此题的关键是能够正确的对二次根式进行化简.3.如果√x(x−6)=√x⋅√x−6那么()A.x≥0B.x≥6C.0≤x≤6D.x为一切实数思路引领:根据二次根式的性质√ab=√a×√b(a≥0 b≥0)得出x≥0且x﹣6≥0 求出组成的不等式组的解集即可.解:∵√x(x−6)=√x⋅√x−6∴x≥0且x﹣6≥0∴x≥6故选:B.总结提升:本题考查了二次根式的乘除法的应用注意:要使√ab=√a×√b成立必须a≥0 b≥0.4.若式子√m+1|m−3|有意义 则实数m 的取值范围是( ) A .m ≥﹣1 B .m >﹣1 C .m >﹣1且m ≠3 D .m ≥﹣1且m ≠3思路引领:根据二次根式有意义的条件和分式有意义的条件列出不等式组 通过解不等式组即可求出答案.解:依题意得:{m +1≥0m −3≠0. 解得 m ≥﹣1且m ≠3.故选:D .总结提升:本题考查二次根式有意义的条件 分式有意义的条件 解题的关键是熟练运用二次根式的条件 本题属于基础题型.5.若x ﹣y =√2−1 xy =√2 则代数式(x ﹣1)(y +1)的值等于( )A .2√2+2B .2√2−2C .2√2D .2思路引领:将所求代数式展开 然后将(x ﹣y )和xy 的值整体代入求解.解:原式=(x ﹣1)(y +1)=xy +x ﹣y ﹣1=√2+√2−1﹣1=2√2−2;故选:B .总结提升:此题主要考查了整体代入在代数求值中的应用.6.实数a 、b 在数轴上的位置如图所示 且|a |>|b | 则化简√a 2−|a +b|的结果为( )A .2a +bB .﹣2a +bC .bD .2a ﹣b思路引领:现根据数轴可知a <0 b >0 而|a |>|b | 那么可知a +b <0 再结合二次根式的性质、绝对值的计算进行化简计算即可.解:根据数轴可知 a <0 b >0:|a |>|b |则a +b <0原式=﹣a ﹣[﹣(a +b )]=﹣a +a +b =b .故选:C .总结提升:本题考查了二次根式的化简和性质、实数与数轴 解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.7.下列各数中与2+√3的积是有理数的是( )A .2+√3B .2C .√3D .2−√3思路引领:利用平方差公式可知与2+√3的积是有理数的为2−√3.解:(2+√3)(2−√3)=4﹣3=1;故选:D.总结提升:本题考查二次根式的混合运算;熟练掌握运算规律是解题的关键.8.如图正方形ABCD被分成两个小正方形和两个长方形如果两小正方形的面积分别是2和5 那么两个长方形的面积和为()A.√7B.2√10C.7D.√10思路引领:先根据两个小正方形的面积求出两个小正方形的边长从而可求大正方形的边长可得大正方形的面积再用大正方形的面积减去两个小正方形的面积即可得出两个长方形的面积和.解:∵两小正方形的面积分别是2和5∴两小正方形的边长分别是√2和√5∴大正方形的边长为(√2+√5)则大正方形的面积为(√2+√5)2=2+2√10+5=7+2√10∴两个长方形的面积和为7+2√10−2﹣5=2√10.故选:B.总结提升:本题考查完全平方公式以及二次根式解题时注意运用数形结合的思想.9.下列各式是最简二次根式的是()A.√13B.√12C.√a3(a≥0)D.√5 3思路引领:根据最简二次根式的定义判断即可.解:A、√13是最简二次根式故A符合题意;B、√12=2√3不是最简二次根式故B不符合题意;C、√a3=a√a(a≥0)不是最简二次根式故C不符合题意;D、√53=√153不是最简二次根式故D不符合题意;故选:A.总结提升:本题考查了最简二次根式熟练掌握最简二次根式的定义是解题的关键.10.若等腰三角形的两边长分别为√32和√50则这个三角形的周长为()A.9√2B.8√2或10√2C.13√2或14√2D.14√2思路引领:分腰长为√32和√50两种情况可求得三角形的三边再利用三角形的三边关系进行验证可求得其周长.解:当腰长为√32时则三角形的三边长分别为√32√32√50满足三角形的三边关系此时周长为13√2;当腰长为√50时则三角形的三边长分别为√32√50√50满足三角形的三边关系此时周长为14√2.综上可知三角形的周长为13√2或14√2.故选:C.总结提升:本题主要考查等腰三角形的性质掌握等腰三角形的两腰相等是解题的关键注意利用三角形的三边关系进行验证.二、填空题(本大题共8小题第11~12题每题3分第13~18题每题4分共30分.)11.比较大小:3√2>√17.(选填“>”、“=”或“<”)思路引领:求出3√2=√18再比较即可.解:3√2=√18>√17故答案为:>.总结提升:本题考查了实数的大小比较能选择适当的方法比较两个数的大小是解此题的关键.12.化简√(π−3)2=.思路引领:根据二次根式的性质解答.解:∵π>3∴π﹣3>0;∴√(π−3)2=π﹣3.总结提升:解答此题要弄清性质:√a2=|a| 去绝对值的法则.13.按如图所示的程序计算若开始输入的n值为√2则最后输出的结果是.思路引领:将n=√2代入n(n+1)比较>15还是≤15 若>15输出结果;若≤15 再输入直到结果大于15是输出结果即可.解:将n =√2代入n (n +1)得√2(√2+1)=2+√2<15∴将n =2+√2代入n (n +1)得(2+√2)(3+√2)=6+5√2+2=8+5√2>15故答案为8+5√2.总结提升:本题考查了实数的运算 找出运算的公式是解题的关键.14.已知a 、b 满足√(2−a)2=a +3,且√a −b +1=a ﹣b +1 则ab 的值为 .思路引领:直接利用二次根式性质进而分析得出a b 的值 进而得出答案.解:∵√(2−a)2=a +3若a ≥2 则a ﹣2=a +3 不成立故a <2∴2﹣a =a +3∴a =−12∵√a −b +1=a ﹣b +1∴a ﹣b +1=1或0∴b =−12或12 ∴ab =±14. 故答案为:±14. 总结提升:此题主要考查了二次根式的性质与化简 正确得出a 的值是解题关键.15.若x =√5−3 则√x 2+6x +5的值为 .思路引领:先将被开方数分解因式 再把x 代入二次根式 运用平方差公式进行计算.解:∵x =√5−3∴√x 2+6x +5=√(x +1)(x +5)=√(√5−2)(√5+2)=√1=1.总结提升:主要考查了二次根式的化简和因式分解以及平方差公式的运用.注意最简二次根式的条件是:①被开方数的因数是整数 因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备的二次根式叫最简二次根式.16.若√11−x +√6−x =7 则√11−x −√6−x 的值是 .思路引领:先变形得到√6−x =7−√11−x 两边平方后得到√11−x =277 则√6−x =227 然后计算√11−x −√6−x .解:∵√11−x +√6−x =7∴√6−x =7−√11−x两边平方得6﹣x =49﹣14√11−x +11﹣x∴√11−x =277∴√6−x =7−277=227∴√11−x −√6−x =277−227=57.故答案为:57. 总结提升:本题考查了二次根式的化简求值 利用整体的数学思想解决问题.17.对于实数p q 我们用符号min {p q }表示p q 两数中较小的数.例如:min {1 2}=1.因此 min {−√2,−√3}= −√3 ;若min {(x ﹣1)2 x 2}=1 则x = ﹣1或2 .思路引领:通过比较−√2与−√3的大小填空;通过先比较(x ﹣1)2与x 2的大小 然后根据新定义运算法则得到方程并解答.解:∵−√3<−√2∴min {−√2 −√3}=−√3;∵min {(x ﹣1)2 x 2}=1∵(x ﹣1)2﹣x 2=x 2﹣2x +1﹣x 2=1﹣2x∴当x <12时 则x 2=1∴x =﹣1或1(舍)当x >12时 则(x ﹣1)2=1解得:x =2或0(舍)综上所述:x 的值为﹣1或2.故答案为:−√3;﹣1或2.总结提升:此题主要考查了实数的比较大小新定义关键是正确理解题意和分情况讨论.18.小明做数学题时发现√1−12=√12;√2−25=2√25;√3−310=3√310;√4−417=4√417;…;按此规律若√a−8b=a√8b(a b为正整数)则a+b=73.思路引领:找出一系列等式的规律为√n−nn2+1=n√nn2+1(n≥1的正整数)令n=8求出a与b的值即可确定出a+b的值.解:根据题中的规律得:a=8 b=82+1=65则a+b=8+65=73.故答案为:73.总结提升:此题考查了二次根式的性质及化简找出题中的规律是解本题的关键.三、解答题(本大题共8小题共90分请在答题卡指定区域内作答解答时应写出文字说明、证明过程或演算步骤)19.(20分)计算:(1)2√8+13√18−34√32;(2)(−12)﹣1−√12+(1−√2)0﹣|√3−2|;(3)√48÷√3−√12×√12+√24;(4)(3+√5)(3−√5)﹣(√3−1)2.思路引领:(1)先把二次根式化为最简二次根式然后合并即可;(2)利用负整数指数幂、零指数幂和绝对值的意义计算;(3)利用二次根式的乘除法则运算;(4)利用平方差公式和完全平方公式计算.解:(1)原式=4√2+13×3√2−34×4√2=4√2+√2−3√2=2√2;(2)原式=﹣2﹣2√3+1﹣(2−√3)=﹣2﹣2√3+1﹣2+√3=﹣3−√3;(3)原式=√16−√6+2√6=4−√6+2√6=4+√6;(4)原式=32﹣(√5)2﹣(3﹣2√3+1)=9﹣5﹣(4﹣2√3)=4﹣4+2√3=2√3.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.20.(10分)(1)已知y=√2x−1−√1−2x+8x求√4x+5y−6的平方根;(2)当﹣4<x<1时化简√x2+8x+16−2√x2−2x+1.思路引领:(1)根据二次根式有意义的条件求出x的值进而得到y的值代入代数式求出代数式的值最后求平方根即可;(2)根据完全平方公式对原式进行变形根据二次根式的性质化简即可.解:(1)∵2x﹣1≥0 1﹣2x≥0∴2x﹣1=0解得x=1 2∴y=4∴原式=√4×12+5×4−6=4∴4的平方根是±2;故原式的平方根是±2;(2)∵﹣4<x<1∴原式=√(x+4)2−2√(x−1)2=|x+4|﹣2|x﹣1|=x+4+2(x﹣1)=x+4+2x﹣2=3x+2.总结提升:本题考查了二次根式有意义的条件平方根掌握二次根式有意义的条件:被开方数是非负数是解题的关键.21.(10分)已知x=1√5−2y=1√5+2.(1)求x2+xy+y2.(2)若x的小数部分为a y的整数部分为b求ax+by的平方根.思路引领:(1)先分母有理化求出x、y的值再求出x+y和xy的值最后根据完全平方公式进行变形代入求出即可;(2)先求出x、y的范围再求出a、b的值最后代入求出即可.解:(1)x=√5−2=√5+2)(√5−2)×(√5+2)=√5+2 y=√5+2=√5−2x+y=(√5+2)+(√5−2)=2√5xy=(√5+2)×(√5−2)=5﹣4=1x2+xy+y2=(x+y)2﹣xy=(2√5)2﹣1=19;(2)∵2<√5<3∴4<√5+2<5 0<√5−2<1∴a=√5+2﹣4=√5−2 b=0∴ax+by=(√5−2)(√5+2)+(√5−2)×0=5﹣4=1∴ax+by的平方根是±√1=±1.总结提升:本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点能求出x+y和xy的值是解(1)的关键能估算出x、y的范围是解(2)的关键.22.(12分)观察、思考、解答:(√2−1)2=(√2)2﹣2×1×√2+12=2﹣2√2+1=3﹣2√2反之3﹣2√2=2﹣2√2+1=(√2−1)2∴3﹣2√2=(√2−1)2∴√3−2√2=√2−1(1)仿上例化简:√6−2√5;(2)若√a+2√b=√m+√n则m、n与a、b的关系是什么?并说明理由;(3)已知x=√4−√12求(1x−2+1x+2)•x2−42(x−1)的值(结果保留根号)思路引领:(1)根据题目中的例题可以解答本题;(2)根据题目中的例题可以将√a+2√b=√m+√n变形从而可以得到m、n、a、b的关系;(3)先化简x然后再化简所求的式子再将x的值代入即可解答本题.解:(1)√6−2√5=√5−2√5+1=√(√5−1)2=√5−1;(2)a=m+n b=mn理由:∵√a+2√b=√m+√n∴a+2√b=m+2√mn+n∴a=m+n b=mn;(3)∵x=√4−√12=√3−2√3+1=√(√3−1)2=√3−1∴(1x−2+1x+2)•x2−42(x−1)=x+2+x−2 (x−2)(x+2)⋅(x−2)(x+2)2(x−1)=2x(x−2)(x+2)⋅(x−2)(x+2)2(x−1)=x x−1=√3−1√3−1−1=√3−1√3−2=(√3−1)(√3+2)(√3−2)(√3+2)=﹣1−√3.总结提升:本题考查二次根式的化简求值、分式的混合运算解答本题的关键是明确题意利用题目中的例题解答问题.23.(8分)小莉在如图所示的矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片请你帮她求出图中空白部分的面积.思路引领:根据正方形的面积求出两个正方形的边长 从而求出AB 、BC 再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm 2和12cm 2∴它们的边长分别为√16=4cm √12=2√3cm∴AB =4cm BC =(2√3+4)cm∴空白部分的面积=(2√3+4)×4﹣12﹣16=8√3+16﹣12﹣16=(﹣12+8√3)cm 2.总结提升:本题考查了二次根式的应用 解题的关键在于根据正方形的面积求出两个正方形的边长.24.(10分)一个三角形的三边长分别为5√x 5 12√20x 54x √45x. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 值 使它的周长为整数 并求出此时三角形周长的值.思路引领:(1)根据题目中的数据可以求得该三角形的周长;(2)根据(1)中的结果 选择一个符合题意的x 的值即可解答本题.解:(1)∵一个三角形的三边长分别为5√x 512√20x 54x √45x ∴这个三角形的周长是:5√x 5+12√20x +54x √45x=√5x +√5x +√5x 2=5√5x 2; (2)当x =20时 这个三角形的周长是:5√5x 2=5×√5×202=25. 总结提升:本题考查二次根式的性质与化简 解答本题的关键是明确二次根式的意义.25.(10分)阅读理解题:学习了二次根式后你会发现一些含有根号的式子可以写成另一个式子的平方如3+2√2=(1+√2)2我们来进行以下的探索:设a+b√2=(m+n√2)2(其中a b m n都是正整数)则有a+b√2=m2+2n2+2mn√2∴a=m+2n2b=2mn 这样就得出了把类似a+b√2的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1)当a b m n都为正整数时若a﹣b√5=(m﹣n√5)2用含m n的式子分别表示a b得a=b =;(2)利用上述方法找一组正整数a b m n填空:﹣√5=(﹣√5)2(3)a﹣4√5=(m﹣n√5)2且a m n都为正整数求a的值.思路引领:(1)利用完全平方公式把(m﹣n√5)2展开即可得到用含m n的式子分别表示出a b;(2)利用(1)中的表达式令m=2 n=1 则可计算出对应的a和b的值;(3)利用(1)的结果得到2mn=4 则mn=2 再利用m n都为正整数得到m=2 n=1或m=1 n=2 然后计算对应的a的值即可.解:(1)∵a﹣b√5=(m﹣n√5)2∴a﹣b√5=m2﹣2√5mn+5n2∴a=m2+5n2b=2mn;(2)取m=2 n=1则a=4+5=9 b=4;(3)∵2mn=4∴mn=2而m n都为正整数∴m=2 n=1或m=1 n=2当m=2 n=1时a=9;当m=1 n=2时a=21.即a的值为9或21.故答案为m2+5n2 2mn;9 4 2 1.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后进行二次根式的乘除运算再合并即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.26.(10分)阅读下列解题过程:√2+1=√2−1)(√2+1)×(√2−1)=√2−1(√2)2−12=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√2.请回答下列问题:(1)归纳:观察上面的解题过程请直接写出下列各式的结果.①√7+√6=√7−√6;②√n+√n−1=√n−√n−1;(2)应用:求√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9的值;(3)拓广:√3−1−√5−√3+√7−√5−√9−√7=﹣1.思路引领:(1)①直接利用找出分母有理化因式进而化简求出答案;②直接利用找出分母有理化因式进而化简求出答案;(2)直接利用找出分母有理化因式进而化简求出答案;(3)直接利用找出分母有理化因式进而化简求出答案.解:(1)①√7+√6=√7−√6)(√7+√6)(√7−√6)=√7−√6;②√n+√n−1=√n−√n−1)(√n+√n−1)(√n−√n−1)=√n−√n−1;故答案为:√7−√6;√n−√n−1;(2)√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9=√2−1+√3−√2+√4−√3+⋯+√10−√9 =√10−1;(3)√3−1−√5−√3+√7−√5−√9−√7=√3+1 (√3−1)(√3+1)√5+√3(√5−√3)(√5+√3)√7+√5(√7−√5)(√7+√5)√9+√7(√9−√7)(√9+√7)=√3+12−√5+√32+√7+√52−√9+√72=√3+1−√5−√3+√7+√5−√9−√72=﹣1.故答案为:﹣1.总结提升:此题主要考查了分母有理化正确找出分母有理化因式是解题关键.。

(完整版)第十六章二次根式测试题

(完整版)第十六章二次根式测试题

…○…………○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………学校: 班级: 考号 姓名:第十六章二次根式测试题一、选择题(每题3分,共30分) 1.下列各式成立的是( )A.222-=-)(B.552-=-)( C.x =2x D.662=-)(2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.2a1C.12+aD.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.2aD.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.45.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=38.131x 3+-=+-x xx 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤39.下列各式(1)752=+(2)x x 32x 5=-(3)72542508=+=+ (4)a a a 362733=+ 其中正确的是( )A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )A.-2bB.-2aC.2(b-a)D.0二、填空题(每题4分,共28分)11.当123x -=时,代数式22x 2++x 的值是12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若xx-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是三、解答题(42分)装订线内不许答题 18.计算(1)272833-+- (2)222664÷-)((3)22525522552)())((---+(4)a a aa a 278148a 72+-19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。

16章二次根式全章测试题

16章二次根式全章测试题

第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。

≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。

, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。

;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。

人教版八年级下册《第16章二次根式》单元测试(有答案)

人教版八年级下册《第16章二次根式》单元测试(有答案)

第十六章《二次根式》单兀测试题14. 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( )A. . - X - 2B. 、. XC. X 2D.m-1 ----------------------2. 二次根式3 ^2(m 3)的值是( )A. 3.2B. 2,3C.2.2D. 03. 若,3m -1有意义,则m能取的最小整数值是(A. m= 0B. m= 1C. m= 2D. m = 3X_ X24. 若X < 0,则--一的结果是( )XA. 0B. - 2C. 0 或一2D. 2 15.16.17.18.19.20.21.5.下列二次根式中属于最简二次根式的是A.賦B. J48C. £) D. - 4a 46.如果x ・x - 6 = x(x - 6),那么( )A. X - 0B. x_6C. 0_x_6D. x 为一切实数7.小明的作业本上有以下四题:①』16a4 =4a2;②寸5a 汉』10a = 5V2a :③ a l- = ^/a^— = 7a •,④J3a 2a =V a。

\ a \ a做错的题是(A.①)B.②C.③D.④(118.化简•-V5 6的结果是()A.J1B.30、330C.一330D.30 11 30309.若最简二次根式1a与、4-2a的被开方数相冋, 则a的值为()34a 二1 a = TA. a 二B a =_C D.4310.若■■ 75n是整数, 则正整数n的最小值是()A.2B.3C.4 D.5填空题(本大题共10小题,每小题3分,共30分)11. 若J(3—b)2 =3—b,贝V b的取值范围是____________12. 1(2-丿5)2= ____________ 。

13. 若m < 0,贝U m +Pm2 +Vm3 = _______________ 。

1 一一—一—与43^12的关系是______________.3 - . 2;■' 2若x = •. 5 - 3,则i x 6^ 5的值为右一个长方体的长为2、6 cm,宽为.3 cm,咼为2 cm,则它的体积为_____________若y = J x- 3 +』3- x + 4,贝V x十y = ___________ 。

人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)

人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)

第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。

做错的题是( )A. ①B. ②C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=aB. 34=a C. 1=a D. 1-=a 10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。

12.2)52(-=__________。

13. 若m < 0,则332m m m ++=_______________。

14.231-与23+的关系是____________。

15. 若35-=x ,则562++x x 的值为___________________。

16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。

人教版八年级下册数学第十六章《二次根式》测试题含答案

人教版八年级下册数学第十六章《二次根式》测试题含答案

八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1x 的取值范围是()A .2x >B .x ≥2C .2x <D .x ≤22有意义,则满足条件的a 的个数为()A .1B .2C .3D .43.下列计算正确的是()A =-3B .2=2C =D .+=4.下列计算正确的是()A =B =C .3-=D .8182+=5.估计8×3的运算结果应在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间6.下列式子中,最简二次根式的是()A B C D .7中,最简二次根式是()A .①②B .③④C .①③D .①④8.若式子2−1−1−2+1有意义,则x 的取值范围是()A .x≥0.5B .x≤0.5C .x=0.5D .以上答案都不对9.算式⨯之值为何?()A .B .C .D .10.把()A .B C .D .-111.下列计算正确的是().A =B .÷==C .()(222557-=-=-D .(((226+=-=-12.设++ S 的最大整数[S]等于()A .98B .99C .100D .101评卷人得分二、填空题13x 的取值范围是__.14.计算:+=_________.15.如果最简二次根式3−3和7−2是同类二次根式,那么a 的值是_____________16-(填“>”、“<”或“=”)17.已知x ,y ﹣2)2=0,则x ﹣y=__________.18.若x=2,则x 2﹣4x+8=_____.评卷人得分三、解答题1920÷.21.计算:1324+-+22.计算:212+23.已知:1x =-,1y =2222x y xy x y +--+的值.24.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.25.若a 、b 都是实数,且12++的值.26.已知:,的值.27.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:255;1==+等运算都是分母有理化.根据上述材料,(1(2++(3++ 参考答案1.B【解析】【分析】根据二次根式中的被开方数必须是非负数,即可求解.【详解】根据题意得:x-2≥0,解得:x≥2.故选B .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.2.A【解析】试题分析:根据二次根式有意义的条件和偶次方的非负性,可以得,﹣(1﹣a)2≥0,则(1﹣a)2≤0,又(1﹣a)2≥0,可得(1﹣a)2=0,解得,a=1,故选A.考点:二次根式有意义的条件3.B【解析】【分析】将选项中的各式子计算出正确的结果,然后对照即可解答本题.【详解】解:A.∵3=,故A错误;B.22=,故B正确;C.+=,故C错误;不能合并故错误.D.,,D故选B【点睛】本题考查二次根式的性质、混合运算,解题关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据二次根式加减法则即可判定.【详解】A、不是同类项不能合并,故选项错误;B、+=,故选项正确;C、不是同类项不能合并,故选项错误;D、8182+=22+3252=22,故选项错误.故选B.【点睛】此题主要考查二次根式的加减运算,注意只有同类二次根式才能合并.同类二次根式:①根指数是2,②被开方数相同.二次根式的加减运算,只有同类二次根式才能合并.5.C【解析】【分析】先计算出原式=2+3,再进行估算即可.【详解】8×3=22+3=2+3,3的数值在1-2之间,所以2+3的数值在3-4之间.故选C.6.B【解析】试题解析:3=,故该选项错误;是最简二次根式,故该选项正确;=,故该选项错误;3=,故该选项错误.故选B.考点:最简二次根式.7.C【解析】【分析】直接根据最简二次根式的定义求解即可.【详解】不能化简,是最简二次根式;=55,不是最简二次根式;不能化简,是最简二次根式;,不是最简二次根式,故选C.【点睛】本题考查了最简二次根式:满足①被开方数不含分母;②被开方数中不含开得尽方的因数或因式的二次根式叫最简二次根式.8.C【解析】试题解析:要使二次根式有意义,则2−1≥01−2≥0,解得x=12,故选C.考点:二次根式有意义的条件.9.D【解析】【分析】先算括号内乘法,再合并同类二次根式,最后算括号外乘法即可.【详解】原式=),故选D.【点睛】本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.10.A【解析】【分析】直接利用二次根式的性质得出a的符号进而化简求出答案.【详解】由题意可知a<0,∴故选A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11.D【解析】【分析】根据二次根式的运算法则计算各个选项,再判断.【详解】A、被开方数不同,不能相加,错误;B、原式==,错误;C、应利用完全平方公式计算,错误;D、符合平方差公式,正确.故选D.【点睛】本题考查了二次根式的混合运算.12.B【解析】【分析】1111n n=+-+,代入数值,求出=99+1-1100,由此能求出不大于S的最大整数为99.【详解】=()211n nn n++=+=111+1n n-+,∴S==1111111+11122399100-++-+++-=199+1100-=100-1100,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道1111nn=+-+是解答本题的基础.13.【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,同时结合分式的分母不能为0,即可求x的取值范围.由题意得,解得,故x的取值范围是.考点:本题主要考查了二次根式的意义和性质点评:解答本题的关键是掌握二次根式中的被开方数必须是非负数,分式的分母不能为0,否则二次根式、分式无意义14.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】=2-)2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.15.2【解析】【分析】根据最简二次根式及同类二次根式的定义列方求解.【详解】解:∵最简二次根式3−3与7−2是同类二次根式,∴3−3=7−2,解得:=2.故答案是:2.【点睛】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.16.<【解析】【分析】根据二次根式的加减,可化简二次根式,根据被开方数越大,算术平方根越大,可得答案.【详解】=,故答案为<.【点睛】本题考查了实数比较大小,先化简,再比较大小.17.-3【解析】【分析】根据非负数的性质得到3020x y y -+⎧⎨-⎩==,再利用代入消元法解方程组得到x 和y 的值,然后计算x-y 的值.【详解】根据题意得3020x y y -+⎧⎨-⎩==,解得12x y -⎧⎨⎩==,所以x-y=-1-2=-3.故答案为-3.【点睛】本题考查了解二元一次方程组:利用加减消元法或代入消元法解二元一次方程组.也考查了非负数的性质.18.14.【解析】根据配方法,原式变形为2x 4x 8-+=(x-2)2+4,代入可得(-2)2+4=10+4=14.故答案为14.19.7【解析】【分析】先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【详解】7==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式,再进行二次根式的乘除运算.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.7【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】,,=7.【点睛】在进行二次根式相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.21.27344--【解析】【分析】先把括号内的各二次根式化为最简二次根式,再去括号,合并同类二次根式即可得解.【详解】1324+-,=1324+-+=233293+2244--,=-44-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,再进行去括号,然后进行二次根式的加减运算.22.2【解析】原式=43+23-3=63-43=2323.【解析】试题分析:根据x 、y 的值可以求得x-y 的值和xy 的值,从而可以解答本题.试题解析:∵x =1,y =1+,∴x -y =(1)-(1)=-,xy =(1-)(1)=-1,∴x 2+y 2-xy -2x +2y=(x -y)2-2(x -y)+xy=(-)2-2×(-)+(-1)=7+.24.24-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把x 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()()()x 2x 2x 2x 2x 312x 3x 32x 3x 2x 22x 2-+----÷=⋅=-----+-+.当x 2=时,原式=4==-.25【解析】【分析】先由二次根式的非负性可知,1﹣4a=0,求解出a 值后再代入求解b 值,最后将a 和b 的值代入原式进行求解.【详解】解:∵1﹣4a≥0且4a ﹣1≥0,∴1﹣4a=0,解得a=14,则b=12,所以原式22=-=【点睛】本题考查了利用二次根式的非负性求解参数并进行二次根式运算.26.【解析】【分析】先化简a ,b ,最后代值计算.【详解】∵=(2)2=7﹣)2,∴a+b=14,ab=1,∴a 2+4ab+b 2=(a+b)2+2ab=142+2×1=198,.【点睛】=a(a≥0)27.(1;(2﹣1;(3﹣1.【解析】【分析】(1+,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==+;(2+1...++1=(3+⋯1...+-+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16章《二次根式》检测题
(满分:120分 时间:90分钟)
八年级( )班 学号: 姓名: 得分:
一、选择题(每小题3分,共30分)
1、若式子3-x 有意义,在实数范围内有意义,则x 的取值范围是( )
A 、3≥x
B 、3≤x
C 、 3>x
D 、3<x
2、 下列计算正确的是:( )
A 、13334=-
B 、552=+
C 、 2212=
D 、25223=+
3、一个长方形的长和宽分别是63、32,则它的面积是( )
A 、220
B 、218
C 、 217
D 、216
4、下列各式是最简二次根式的是( )
A 、9
B 、7
C 、
20 D 、3.0
5、若b b -=-3)3(2,则( ) A .b>3 B .b<3 C .b ≥3 D .b ≤3
6、若13-m 有意义,则m 能取的最小整数值是( )
A .m=0
B .m=1
C .m=2
D .m=3
7、若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )
A .43-
=a B .34=a C .a=1 D .a= —1
8、下列计算正确的是( )
A
4+== B
112==
C
、5= D 、
312314=
9、下列各数中,与 )
A 、32+
B 、32-
C 、32+-
D 、3
10、下列根式不能与48 合并的是( ) A 、0.12 B 、18 C 、
113 D 、-75
二、填空题(每小题4分,共40分)
11、使代数式x x --31
2有意义的x 的取值范围是: 。

12、化简:32
= 。

13、计算:6)32(2+-= 。

14、计算:2850-+= 。

15、比较大小:32
13, 215- 21(填“>”或“<” 或“=”) 16、计算:)3223)(3223(-+= 。

17、①=-2)3.0( ; ②
=-2)52( 。

18、二次根式31
-x 有意义的条件是 。

19、若n 20是整数,则正整数n 的最小值是 。

20、计算:()22= = 。

三、解答题(50分)
21、化简:(8分)
(1)
)169()144(-⨯- (2)48
22、计算:(20分)
(1) 2484554+-+
(2) )46)(56(-+
(3) 3222233--+
(4) (548+12-76)÷3
23、已知13+=x ,13-=y ,求下列各式的值:(10分)
(1) 222y xy x ++, (2) 22y x -.
24、当1x =时,求代数式256x x +-的值.(6分)
25、先化简,再求值:244(2)24
x x x x -+⋅+-,其中x =(6分)。

相关文档
最新文档