二次根式培优专题练习

合集下载

数学数学二次根式的专项培优练习题(含答案

数学数学二次根式的专项培优练习题(含答案

一、选择题1. )A B .C .D .2.若 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.下列运算正确的是( )A 2=B 5=-C 2=D 012=4.下列各式中,运算正确的是( )A =﹣2B +C 4D .=25.已知44220,24,180x y x y >+=++=、.则xy=( )A .8B .9C .10D .116.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.下列计算正确的是( )A 6=±B .=C .6=D =(a≥0,b≥0)8.下列计算正确的是( )A =B =C 4=D 3=-9.a 的值是( ) A .2B .-1C .3D .-1或310.下列运算错误的是( )A B2C .D 1=二、填空题11.能力拓展:1A =2A =;3:A =;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空. ()2比较大小1A 和2A∵32+________21+∴32+________21+ ∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --12.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.13.把31a-根号外的因式移入根号内,得________ 14.把1m m-_____________. 15.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行13 154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 16.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______.17.若613x ,小数部分为y ,则(213)x y 的值是___.18.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____.19.n 的最小值为___20.如果0xy >.三、解答题21.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.25.计算②)21-【答案】① 【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.26.计算:(1)11(2【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)-=312==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.观察下列各式.====……根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;n n≥的式子写出你发现的规律;(2)请用含(1)(3)证明(2)中的结论.=+3)见解析【答案】(1=2(n【分析】(1)当n=5==+(2(n(3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.28.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.2.B解析:B【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义的x的取值范围是:x≥3.故选:B.【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;=,故B错误;B5C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.4.C解析:C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断. 【详解】A 、原式=2,故该选项错误;B =,故该选项错误;C 4,故该选项正确;D 故选:C . 【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.5.D解析:D 【分析】利用完全平方公式、平方差公式化简第二个等式即可. 【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+= 22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯= 计算得:11xy = 故选:D. 【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.6.A解析:A 【解析】试题分析:根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A7.D解析:D6=,故A不正确;=,故B不正确;根据二次根式的除法,可直接得到2根据同类二次根式的性质,可知C不正确;=(a≥0,b≥0)可知D正确.故选:D8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.10.D解析:D【分析】根据二次根式的乘法法则对A 进行判断;根据分母有理化对B 进行判断;根据二次根式的加减法对C 进行判断;根据二次根式的性质对D 进行判断.【详解】AB2计算正确,不符合题意;C 、计算正确,不符合题意;D 11=≠符合题意;故选:D .【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.二、填空题11.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式; (2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.12.3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a+b <0,∴原式=|解析:3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b , 故答案为:3b【点睛】a =和绝对值的性质是解题的关键.13.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质解析:a【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.14.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得: ,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.15.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.16.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 17.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a=﹣1时,a+b=﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.5【分析】因为是整数,且,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

(完整word)二次根式培优题

(完整word)二次根式培优题

二次根式培优题1. 若02=+a a ,则a 的取值范围是___________.2. 若代数式1681222+-++-x x x x 的结果是5—2x ,则x 的取值范围是__________.3. 已知ABC ∆的边长为c b a 、、(c b a 、、为整数),且满足04412=+-+-b b a ,求ABC ∆的周长.4. 若x 满足23)31(2x x --=-,则x 的整数解的个数有_____个.5. 在实数范围内分解因式: (1) 32-a ; (2)742-a ; (3))0,0(2>>++y x y xy x 。

6. 已知实数a 满足()a a a =-+-220072006,那么2006-a 的值是_______.7. 若m 满足等式y x y x m y x m y x --⋅+-=-++--+19919932253,试确定m 的值.8. 要使代数式2113----x x 有意义,实数x 的取值范围是_______________。

9. 比较大小:25 , 32 , 23---.10.化简:(1) )0(48342>+-y y y ;(2)()()()0222222>--+ab b a b a(2)161213b -; (4)23322-; (5)b a 3--;(6) )0(12122>>+-b a bab a a ;(7)32416++⨯。

11。

把下列各式中根号外的因式移到根式内:(1) x y xy -; (2)aa --⋅-11)1(。

12。

计算:(1)3232245-;(2)3612-;(3))5131(15-÷(3)()()201220112323-⨯+;(4)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212;(5)()()()()13132131322+--++-(6) ()()632632+--+(7) ba b a aba b a a a +----;(8)()()233623346++++13。

二次根式培优习题

二次根式培优习题

二次根式一.填空题1.下列各式中是二次根式的是 。

①51 ②5- ③-22+x ④4 ⑤231⎪⎭⎫ ⎝⎛ ⑥a -1 ⑦122+-a a 2.要使式子x +3x -1有意义,则x 的取值范围为 . 3.若a 2=3,b =2,且ab <0,则a -b = .4..已知xy >0,化简二次根式x 2xy -的正确结果是 .5.若最简二次根式____,____a b ==6.已知|2018-a|+2019-a =a ,则a-20182的值为 .二.选择题7. 下列根式中,是最简二次根式的是( )8. 若1<x<2 )A. 21x -B. 21x -+C. 3D. -39. 10=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4±10. 的整数部分为x ,小数部分为y y -的值是( )A. 311.已知(4+7)•a=b ,若b 是整数,则a 的值可能是( )A .7B .4+7C .8-27D .2-712使式子1x +3+4-3x 在实数范围内有意义的整数x 有( ) A .5个 B .3个 C .4个 D .2个13.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .2 14.实数a ,b 在数轴上的对应点如图所示,化简(b)2+()2a b --||a 的结果是( )A .2aB .2bC .-2bD .-2a 15.设a=6-2,b=3-1,c=132+,则a 、b 、c 之间的大小关系是( ) A .c >b >a B .a >c >b C .b >a >c D .a >b >c三,计算16.⑴. 11221231548333 ⑵(485423313⎛+ ⎝(3). ((((222212131213+-(4)已知:21211+-=+, 32321+-=+, 43431+-=+,… 利用上面的规律计算:(10分) (211++321++431++…+201720161++201820171+)(1+2018)。

二次根式培优试卷

二次根式培优试卷

第一章二次根式好题精选一.选择题1.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8 B.=4a(a>0)C.=3+4=7 D.=2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确3.设a,b≠0,式子有意义,则该式等于()A.B.C.D.4.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a5.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥36.已知,则的值为()A.1 B.C.D.7.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x8.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间9.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠010.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.二.填空题(共10小题) 11.已知:x =,计算x 2﹣x +1的值是 .12.化简:()()23352325-+-+的结果为____________________13.在正方形ABCD 中,E 是边BC 上一点,如果这个正方形的面积为m ,△ABE 的面积等于正方形面积的四分之一,那么BE 的长用含m 的代数式表示为 . 14.化简:2<x <4时,﹣= .15.已知a ,b 均为正整数,如果0<﹣b <1,我们称b 是的“主要值”,那么的主要值是 .三.解答题(共15小题) 16.计算(1)﹣+(2)()()﹣(﹣)217..18.先化简,再求值 (1)(﹣),其中a =17﹣12,b =3+2(2)(a +)(a ﹣)﹣(﹣a )2,其中a =2﹣1.(3)+,其中x=19.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:(仿照上式写出过程)20.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).21.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.22.已知a=,b=,求a2+3ab+b2﹣a+b的值23.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.参考答案与试题解析一.选择题(共15小题)1.下列计算正确的是()A.=±4 B.2×32=62=36C.(﹣5)÷(﹣2)×(﹣)=﹣5 D.﹣2×+2×(3+)+4=10【分析】根据实数与二次根式的混合运算顺序和运算法则逐一计算可得.【解答】解:A.=4,此选项错误;B.2×32=2×9=18,此选项错误;C.(﹣5)÷(﹣2)×(﹣)=×(﹣)=﹣,此选项错误;D.﹣2×+2×(3+)+4=﹣2+6+2+4=10,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确【分析】分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式,或者运用因式分解和约分.【解答】解:甲的解法:==﹣,利用平方差公式进行分母有理化,正确;乙的解法:==﹣,利用因式分解进行分母有理化,正确;故选:C.【点评】本题主要考查了分母有理化以及二次根式的混合运算,分母有理化是指把分母中的根号化去.3.下列计算正确的是()A.=±15 B.=﹣3 C.=D.=【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=15,故此选项错误;B、=3,故此选项错误;C、=,故此选项错误;D、=,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.设a,b≠0,式子有意义,则该式等于()A.B.C.D.【分析】先根据二次根式的被开方数是非负数列出不等式﹣a3≥0,再根据公式=|a|及有理数的乘法法则得出a、b的取值范围,然后化简即可.【解答】解:由题意,得﹣a3≥0,又∵=b2≥0,b为任意数,∴﹣a3≥0,∴a≤0,∴==•=.故选:D.【点评】本题主要考查了二次根式的性质及二次根式的化简.用到的知识点有:①二次根式的被开方数是非负数;②两个公式:=(a≥0,b≥0),=|a|.5.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.=【分析】根据二次根式的意义、性质逐一判断即可得.【解答】解:A.、没有意义,此选项错误;B.=2a(a>0),此选项错误;C.==5,此选项错误;D.=,此选项正确;故选:D.【点评】本题主要考查二次根式的性质与化简,解题的关键是二次根式的定义和性质.6.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a【分析】首先根据三角形的三边关系得到根号内或绝对值内的式子的符号,再根据二次根式或绝对值的性质化简.【解答】解:∵a、b、c为三角形的三边,∴a+c>b,a+b>c,即a﹣b+c>0,c﹣a﹣b<0;∴﹣2|c﹣a﹣b|=(a﹣b+c)+2(c﹣a﹣b)=﹣a﹣3b+3c.故选:B.【点评】本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0.绝对值的性质:负数的绝对值等于它的相反数;正数的绝对值等于它本身;0的绝对值是0.7.如果f(x)=并且f()表示当x=时的值,即f()==,表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+【分析】认真观察题中式子的特点,找出其中的规律,代入计算即可.【解答】解:代入计算可得,f()+f()=1,f()+f()=1…f()+f()=1,所以,原式=+(n﹣1)=n﹣.故选:A.【点评】解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.8.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥3【分析】等式左边为算术平方根,其结果3﹣a应该为非负数.【解答】解:∵=3﹣a∴3﹣a≥0∴a≤3故选:B.【点评】注意:算术平方根是非负数,这是解答此题的关键.9.已知,则的值为()A.1 B.C.D.【分析】根据,可以求得a、b的值,从而可以求得所求式子的值,本题得以解决.【解答】解:∵,∴a﹣3=0,2﹣b=0,解得,a=3,b=2,∴===,故选:D.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确题意,求出a、b的值.10.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.【点评】根据完全平方公式、绝对值的运算解答此题.11.的整数部分是()A.3 B.4 C.5 D.6【分析】由于=﹣1,=﹣,…,=﹣+,于是可得原式=﹣1+﹣+…﹣+,计算即可.【解答】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=9.【点评】本题考查了二次根式的加减法.解题的关键是对每一个分式分母有理化.12.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】先化成最简二次根式,再合并,最后求出的范围即可.【解答】解:+=+=2=,∵2<<3,∴代数式+的运算结果在2到3之间,故选:B.【点评】本题考查了二次根式的加减法,估算无理数大小的应用,主要考查学生的计算能力.13.已知方程+3=,则此方程的正整数解的组数是()A.1 B.2 C.3 D.4【分析】先把化为最简二次根式,由+3=可知,化为最简根式应与为同类根式,即可得到此方程的正整数解的组数有三组.【解答】解:∵=10,x,y为正整数,∴,化为最简根式应与为同类根式,只能有以下三种情况:+3=+9=4+6=7+3=10.∴,,,共有三组解.故选:C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.14.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠0【分析】先判断结果的情况,再判断ab积的情况.【解答】解:∵=≥0又∵=﹣,∴﹣≥0∴ab≤0且b≠0故选:D.【点评】本题考查了二次根式的性质,解决本题需着眼于整体.本题易忽略b≠0而出错.15.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.【分析】求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可.【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=++••+,=+++…+=1+2+3+…+n=,故选:D.【点评】本题考查了二次根式的性质的应用,注意:1+2+3+…n=.二.填空题(共10小题)16.计算()=.【分析】先计算括号内的加法,再计算除法即可得.【解答】解:原式=÷(+)=÷=×=,故答案为:【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.17.如果(a,b为有理数),则a=6,b=4.【分析】先计算出(2+)2,再根据可得答案.【解答】解:∵(2+)2=4+4+2=6+4,∴a=6、b=4.故答案为:6、4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.18.计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.19.已知:x=,计算x2﹣x+1的值是+4.【分析】先将x的值分母有理化得出x=+1,再代入原式,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x====+1,∴x2﹣x+1=(+1)2﹣(+1)+1=4+2﹣﹣1+1=+4.故答案为:+4.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及分母有理化.20.当x=1﹣时,x2﹣2x+2028=2030.【分析】将x的值代入x2﹣2x+2028=(x﹣1)2+2027,根据二次根式的运算法则计算可得.【解答】解:当x=1﹣时,x2﹣2x+2028=(x﹣1)2+2027=(1﹣﹣1)2+2027=(﹣)2+2027,=3+2027=2030,故答案为:2030.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.21.若x=﹣1,则=2.【分析】将x的值代入原式=,计算可得.【解答】解:当x=﹣1时,原式====2,故答案为:2.【点评】本题主要考查二次根式的性质与化简,解题的关键是熟练掌握完全平方公式和二次根式的性质.22.已知:m+n=10,mn=9,则=±.【分析】先求所求的代数式的完全平方形式,然后直接开平方即可求得的值.【解答】解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.【点评】考查了二次根式的化简求值,需要掌握完全平方公式,属于基础计算题.23.在正方形ABCD中,E是边BC上一点,如果这个正方形的面积为m,△ABE的面积等于正方形面积的四分之一,那么BE的长用含m的代数式表示为.【分析】首先根据正方形的面积,表示出△ABE的面积,然后利用三角形的面积的公式表示出线段BE的长即可.【解答】解:∵正方形的面积为m,△ABE的面积等于正方形面积的四分之一,∴正方形的边长AB=,△ABE的面积为,∵S△ABE=AB•BE=BE=,∴BE=,故答案为:.【点评】本题考查了二次根式的应用,解题的关键是表示出正方形的边长及直角三角形的面积.24.化简:2<x<4时,﹣=2x﹣6.【分析】首先根据x的范围确定x﹣2与x﹣4的符号,然后利用算术平方根的定义,以及绝对值的性质即可化简.【解答】解:∵2<x<4,∴x﹣2>0,x﹣4<0,∴原式=﹣=|x﹣2|﹣|x﹣4|=x﹣2﹣(4﹣x)=x﹣2﹣4+x=2x﹣6.故答案为:2x﹣6.【点评】本题考查了二次根式的化简,正确理解算术平方根的性质是关键.25.已知a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,那么的主要值是4.【分析】根据a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,可以求得的主要值.【解答】解:∵0<﹣4<1,∴的主要值是4,故答案为:4.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,可以估算出处于哪两个整数之间.三.解答题(共15小题)26.计算(1)﹣+(2)()()﹣(﹣)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=﹣2+10=;(2)原式=2﹣6﹣(2﹣2+)=﹣4﹣=﹣4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.27.当t=2时,求二次根式的值.【分析】将t的值代入==|3﹣t|计算可得.【解答】解:当t=2时,==|3﹣t|=|3﹣2|=3﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的基本性质.28.已知a,b,c为△ABC三边,化简+|b﹣a﹣c|.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定a﹣b﹣c以及绝对值里的式子的正负值,然后去绝对值进行计算即可.【解答】解∵a,b,c为△ABC三边,∴原式=|a﹣b﹣c|+|b﹣a﹣c|=b+c﹣a+a+c﹣b=2c.【点评】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.29..【分析】根据二次根式的定义得出x﹣8≥0,8﹣x≥0,求出x,代入求出y,把所求代数式化简后代入求出即可.【解答】解:要使y=++9有意义,必须x﹣8≥0,且8﹣x≥0,解得:x=8,把x=8代入得:y=0+0+9=9,∴=,=+,=+,=.【点评】本题考查了对二次根式有意义的条件,二次根式的化简,分母有理化等知识点的应用,解此题的关键是求出x、y的值,通过做此题培养了学生灵活运用性质进行求值的能力,题目比较典型.30.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.31.化简求值:已知:x=,y=,求(x+3)(y+3)的值.【分析】将x和y的值分母有理化,再代入到原式xy+3x+3y+9=xy+3(x+y)+9计算可得.【解答】解:当x===,y===时,原式=xy+3x+3y+9=xy+3(x+y)+9=×+3×(+)+9=+3×+9=+3+9=+3.【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.32.先化简,再求值:(﹣),其中a=17﹣12,b=3+2【分析】将原式利用二次根式的性质和运算法则化简为,由a=17﹣12=(3﹣2)2、b=3+2=(+1)2,代入计算可得.【解答】解:原式=(﹣)•=[﹣]•=•=,∵a=17﹣12=32﹣2××(2)2=(3﹣2)2,b=3+2=()2+2+1=(+1)2,∴原式====.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质和运算法则.33.先化简,再求值:(a+)(a﹣)﹣(﹣a)2,其中a=2﹣1.【分析】先利用平方差公式和完全平方公式展开,再合并同类项即可化简二次根式,最后将a的值代入计算可得.【解答】解:原式=a2﹣5﹣3﹣a2+2a=2a﹣8.∵a=2﹣1,∴原式=2×(2﹣1)﹣8=4﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和二次根式的性质.34.先化简,再求值:已知x=,求+的值.【分析】先将x的值分母有理化,再根据二次根式的性质和运算法则化简原式,从而得出答案.【解答】解:∵x==3﹣2,∴x﹣2=1﹣2<0,则原式=x﹣1+=x﹣1﹣1=x﹣2=1﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握分母有理化与分式的混合运算顺序与运算法则、二次根式的性质.35.观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=1(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:=1+;(3)利用上述规律计算:(仿照上式写出过程)【分析】(1)根据提供的信息,即可解答;(2)根据规律,写出等式;(3)根据(2)的规律,即可解答.【解答】解:(1)=1=1;故答案为:1;(2)=1+=1+;故答案为:=1+;(3).【点评】本题考查了二次根式的性质与化简,解决本题的关键是关键信息,找到规律.36.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵5+2=3+2+2=()2+()2+2××=(+)2,∴==+;(2)∵7﹣4=4+3﹣4=22+()2﹣2×2×=(2﹣)2,∴==2﹣.【点评】此题主要考查了二次根式的性质与化简,正确应用完全平方公式是解题关键.37.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与3+互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.【分析】(1)根据题意可以得到所求式子的分母有理化因式,并将题目中的二次根式化简;(2)根据分母有理化的方法可以化简题目中的式子;(3)根据题意,对所求式子变形即可求得a、b的值.【解答】解:(1)3﹣与3+互为有理化因式,=,故答案为:3,;(2)=﹣2=2﹣;(3)∵,∴a(﹣1)+b=﹣1+2,∴﹣a+(a+)=﹣1+2,∴﹣a=﹣1,a+=2,解得,a=1,b=2.【点评】本题考查二次根式的混合运算,分母有理化,解答本题的关键是明确二次根式的混合运算的计算方法.38.已知a=,b=,求a2+3ab+b2﹣a+b的值【分析】先由a、b的值计算出a+b、a﹣b、ab的值,再代入到原式=a2+3ab+b2﹣a+b=(a+b)2﹣(a﹣b)+ab.【解答】解:∵a=,b=,∴a+b=2,a﹣b=﹣2,ab=1,∴原式=a2+3ab+b2﹣a+b=a2+2ab+b2﹣a+b+ab,=(a+b)2﹣(a﹣b)+ab=(2)2﹣(﹣2)+1=13+2.【点评】本题考查的是二次根式的化简求值,在解答此题类目时要根据各题的特点灵活解答.39.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.【分析】根据两边之和大于第三边可将各二次根式求出,从而可得出化简后的答案.【解答】解:由三边关系得:a+b+c>0,a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.【点评】本题考查二次根式的化简及三角形的三边关系,掌握三角形两边之和大于第三边是关键.40.现有一组有规律的数:1,﹣1,,﹣,,﹣,1,﹣1,,﹣,,﹣…其中1,﹣1,,﹣,,﹣这六个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加起来,如果和为520,那么一共是多少个数的平方相加?【分析】(1)首先根据这列数的排列规律,可得每6个数一个循环:1,﹣1,,﹣,,﹣,然后用50除以6,根据余数的情况判断出第50个数是什么数即可;(2)首先用2017除以6,求出一共有多少个循环,以及剩下的数是多少;然后用循环的个数乘以1+(﹣1)++(﹣)++(﹣)=0,再加上剩下的数,求出把从第1个数开始的前2015个数相加,结果是多少即可;(3)首先求出1,﹣1,,﹣,,﹣六个数的平方和是多少;然后用520除以六个数的平方和,根据商和余数的情况,判断出一共有多少个数的平方相加即可.【解答】解:(1)这列数每6个数一个循环:1,﹣1,,﹣,,﹣,∴50÷6=8…2,∴第50个数是﹣1.(2)∵2017÷6=336…1,且1+(﹣1)++(﹣)++(﹣)=0,∴从第1个数开始的前2017个数的和是:336×0+1=1.(3)∵12+(﹣1)2+()2+(﹣)2+()2+(﹣)2=12,520÷12=43…4,而且12+(﹣1)2+()2=4,∴43×6+3=261,即共有261个数的平方相加.【点评】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数每6个数一个循环:1,﹣1,,﹣,,﹣,而且每个循环的6个数的和是0.。

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列各式中,正确的是( )A 2=±B =C 3=-D 2=5.下列计算正确的是( )A =B 3=C =D .21= 6.下列式子中,是二次根式的是( )A B CD .x7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.已知a ( )A .0B .3C .D .99.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .912.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.15.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.)230m m --≤,若整数a 满足52m a +=a =__________.18.()()22223310x y x y ++-+=,则222516x y +=______.19.已知4a2(3)|2|a a +--=_____.20.化简:3222=_____.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+(211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子. 试题解析:(1)2211145++=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B.此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B===,故该选项错误;C3D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A是二次根式,符合题意;B是三次根式,不合题意;C、当x<0D、x属于整式,不合题意;故选:A.【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.16.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.18.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。

中考培优专题之二次根式

中考培优专题之二次根式

备战中考之二次根式习题一、单选题(共15题;)1.对于任意的正数m 、n 定义运算※为:m ※n={√m −√n (m ≥n )√m +√n (m <n )),计算(3※2)×(8※12)的结果为( )A. 2﹣4√6B. 2C. 2√5D. 20 2.要使二次根式√3−2x 有意义,则x 的取值范围是( )A. x ⩾32 B. x ⩽32 C. x ⩾23 D. x ⩽23 3.下列各实数中最大的一个是( ) A. 5× √0.039 B.3.141πC.√14+√7D. √0.3 + √0.24.已知x 为实数,化简√−x 3−x√−1x的结果为( )A. (x −1)√−xB. (−1−x )√−xC. (1−x )√−xD. (1+x )√−x 5.若√x −1+√x +y =0 ,则x 2005+y 2005 的值为: ( )A. 0B. 1C. -1D. 26.等式√xx−3=√x√x−3成立的条件是( ) A. x≠3 B. x≥0 C. x≥0且x≠3 D. x>3 7.下列二次根式中,最简二次根式是( ).A. B.C.D.8.已知是正整数,则实数n 的最大值为( )A. 12B. 11C. 8D. 39.如果最简根式 √3a −8 与√17−2a 是同类二次根式,那么使√4a −2x 有意义的x 的取值范围是( ) A. x≤10 B. x≥10 C. x <10 D. x >10 10.已知 y =√4−x +√x −4+3 ,则 yx 的值为( )A. 43 B. −43 C. 34 D. −34 11.若x +y =3+2 √2 ,x ﹣y =3﹣2 √2 ,则 √x 2−y 2 的值为( ) A. 4 √2 B. 1 C. 6 D. 3﹣2 √2 12.函数 y =1x+1−√2−3x 中,自变量 x 的取值范围是( )A. x ≤23 B. x ≥23 C. x <23 且 x ≠−1 D. x ≤23 且 x ≠−113.利用计算器计算时,依次按键下: ,则计算器显示的结果与下列各数中最接近的一个是( )A. 2.5B. 2.6C. 2.8D. 2.914.把代数式(a-1) √11−a的a-1移到根号内,那么这个代数式等于()A. -√1−aB. √a−1C. √1−aD. -√a−115.一个三角形的三边长分别为1,k,4,化简|2k-5|-√k2−12k+36的结果是( )A. 3k-11B. k+1C. 1D. 11-3k二、填空题(共15题;)16.若|1001−a|+√a−1002=a,则a−10012=________.17.观察下列运算过程:1+√2=√2+1=√2(√2+1)(√2−1)=√2(√2)2−12=√2−1√2+√3=√3+√2=√3√2(√3+√2)(√3−√2)=√3√2(√3)2−(√2)2=√3−√2……请运用上面的运算方法计算:1+√3+√3+√5√5+√7⋯+√2015+√2017√2017+√2019=________.18.如图,数轴上点A表示的数为a,化简:a+√a2−4a+4=________19.√12与最简二次根式5 √a+1是同类二次根式,则a=________.20.读取表格中的信息,解决问题.满足n n n√3+√2≥2014×(√3−√2+1)的n可以取得的最小整数是________.21.已知|6﹣3m|+(n﹣5)2=3m﹣6﹣√(m−3)n2,则m﹣n=________22.若m=√2012−1,则m5﹣2m4﹣2011m3的值是________.23.若√20n是整数,则正整数n的最小值为________.24.已知√a(a﹣√3)<0,若b=2﹣a,则b的取值范围是________.25.如果(x﹣√x2−2008)(y﹣√y2−2008)=2008,求3x2﹣2y2+3x﹣3y﹣2007=________.26.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=________.27.若实数x,y,m满足等式√3x+5y−3−m+(2x+3y−m)2=√x+y−2−√2−x−y,则m+4的算术平方根为________.28.若x、y都为实数,且y=2008√x−5+2007√5−x+1,则x2+y=________。

初中数学数学二次根式的专项培优练习题(含答案

初中数学数学二次根式的专项培优练习题(含答案

初中数学数学二次根式的专项培优练习题(含答案一、选择题 1.若a 是最简二次根式,则a 的值可能是( ) A .2- B .2 C .32 D .8 2.下列各式成立的是( )A .2(3)3-=B .633-=C .222()33-=-D .2332-= 3.计算12718483--的结果是( ) A .1 B .﹣1 C .32-- D .23-4.下列各式中,运算正确的是( )A .2(2)-=﹣2B .2+8=10C .2×8=4D .22﹣2=25.下列各式中,正确的是( )A .42=±B .822-=C .()233-=-D .342=6.已知526x =-,则2101x x -+的值为( )A .306-B .106C .1862--D .07.下列二次根式是最简二次根式的是( )A .21a +B .15C .4xD .27 8.当4x =时,22232343124312x x x x x x -+--+++的值为( ) A .1 B .3 C .2 D .39.若ab <0,则代数式可化简为( ) A .a B .a C .﹣a D .﹣a10.若a 3235++,b =610,则a b 的值为( ) A .12 B .14 C .321+ D 610+ 11.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123A .BC .D12.下列二次根式中,最简二次根式是( )ABCD二、填空题13.已知112a b +=,求535a ab b a ab b++=-+_____. 14.已知a ,b是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对. 15.当xx 2﹣4x +2017=________.16.已知:可用含x=_____. 17.. 18.计算:20082009⋅-=_________. 19.有意义,则x 的取值范围是____. 20.能合并成一项,则a =______.三、解答题21.2-+1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】2-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题:(1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===, 则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.23.已知m ,n 满足m 4n=3+. 【答案】12015【解析】【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015. 【点睛】 本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】 (1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++; (31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y x x y+ 【答案】(1)72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xy xy+-,然后利用整体代入的方法计算. 【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+=(x+y )2-3xy,=2132-⨯=72; (2)y x x y +=2212()22812x y xy xy -⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.28.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.29.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2.故选:B .【点睛】 此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.C解析:C【解析】解:原式=故选C.4.C解析:C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C.【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.5.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.6.D解析:D【分析】把x的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D.【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.7.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意B=C、当0x<D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.8.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案. 【详解】 解:原式=2223232323x x x x112323x x将4x =代入得, 原式114234232211131313113133131131=.故选:A. 【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.9.C解析:C 【解析】 【分析】二次根式有意义,就隐含条件b <0,由ab <0,先判断出a 、b 的符号,再进行化简即可. 【详解】解:若ab <0,且代数式有意义;故由b >0,a <0; 则代数式故选:C . 【点睛】本题主要考查二次根式的化简方法与运用:当a >0时,,当a <0时,,当a=0时,.10.B解析:B【解析】【分析】将a 乘以235235+-+-可化简为关于b的式子,从而得到a和b的关系,继而能得出ab的值.【详解】a =3235++•()323523523526+-+-=+-=()2235b44+-=.∴14ab=.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.11.B解析:B【解析】【分析】由图形可知,第n行最后一个数为()11232n nn++++=,据此可得答案.【详解】由图形可知,第n行最后一个数为()1 1232n nn++++=,∴第8行最后一个数为89362⨯==6,则第9行从左至右第5个数是36541+=,故选B.【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为()12n n+.12.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A、原式=;B、是最简二次根式,不能化简;C、原式=;D、原式=.考点:最简二次根式二、填空题13.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 14.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a=135,b=540时,即2=1;⑦当a=540,b=135时,即2=1;故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a,b)共有7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a、b可能的取值.15.2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因. 16.【解析】∵=,∴=== -==﹣x3+x , 故答案为:﹣x3+x.解析:211166x x -+ 【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x ,故答案为:﹣16x 3+116x. 17.【解析】 【详解】根据二次根式的性质和二次根式的化简,可知==. 故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】 【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.18.【解析】原式== 19.x≥0. 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

(完整版)二次根式培优练习题

(完整版)二次根式培优练习题

二次根式培优练习题一.选择题〔共14 小题〕1.使代数式有意义的自变量 x 的取值范围是〔〕A. x≥ 3B. x>3 且 x≠4 C. x≥ 3 且 x≠4 D.x>32.假设=3﹣a,那么 a 与 3 的大小关系是〔〕A. a< 3B. a≤3C.a>3D.a≥33.若是等式〔 x+1〕0=1 和=2﹣3x 同时成立,那么需要的条件是〔〕A. x≠﹣ 1 B. x<且 x≠﹣ 1 C.x≤或 x≠1 D.x≤且 x≠﹣ 14.假设 ab<0,那么代数式可化简为〔〕A. a B.a C.﹣ a D.﹣ a5. xy<0,那么化简后为〔〕A.B.C.D.6.若是实数 a、b 满足,那么点〔 a, b〕在〔〕A.第一象限B.第二象限 C.第二象限或坐标轴上D.第四象限或坐标轴上7.化简二次根式,结果正确的选项是〔〕A.B.C.D.8.假设 a+=0 成立,那么 a 的取值范围是〔〕A.a≥0B.a>0C.a≤0D.a< 09.若是 ab> 0, a+b<0,那么下面各式:①=,②× =1,③÷=﹣b,其中正确的选项是〔〕A.①②B.②③C.①③D.①②③10.以下各式中正确的选项是〔〕A.B.=±3 C.〔﹣〕2=4 D.3﹣ =2 11.在二次根式、、、、中与是同类二次根式的有〔〕A.2 个 B.3 个 C.4 个 D.5 个12.假设是一个实数,那么满足这个条件的 a 的值有〔〕A.0 个 B.1 个 C.3 个 D.无数个13.当 a<0 时,化简的结果是〔〕A.B.C.D.14.以下计算正确的选项是〔〕 A .第1页〔共 4页〕B.C.D.二.填空题〔共13 小题〕15.二次根式与的和是一个二次根式,那么正整数 a 的最小值为;其和为.16. a、b 满足=a﹣b+1,那么 ab 的值为.17. | a﹣2007|+=a,那么 a﹣ 20072的值是.18.若是的值是一个整数,且是大于 1 的数,那么满足条件的最小的整数a=.19. mn=5, m +n =.20. a<0,那么 |﹣ 2a| 可化简为.21.计算:的结果为.22.假设最简二次根式与﹣是同类二次根式,那么x=..假设,那么x=;假设22,那么x=;假设〔 x﹣1〕2,.23x =〔﹣ 3〕=16 x=24.化简 a的最后结果为.25.观察解析,研究出规律,尔后填空:,2,,2,,,,〔第n 个数〕.26.把根号外的因式移到根号内:=﹣27.假设 a是的小数局部,那么 a〔a+6〕=.三.解答题〔共7 小题〕28.阅读以下解题过程:====﹣2;===.请答复以下问题:〔1〕观察上面的解题过程,请直接写出式子=;〔2〕观察上面的解题过程,请直接写出式子=;〔3〕利用上面所供应的解法,央求+++++的值.第2页〔共 4页〕29.一个三角形的三边长分别为、、〔1〕求它的周长〔要求结果化简〕;〔2〕请你给一个合适的x 值,使它的周长为整数,并求出此时三角形周长的值.30.如图,实数 a、b 在数轴上的地址,化简:.31.先阅读以下的解答过程,尔后作答:形如的化简,只要我们找到两个数a、b 使 a+b=m,ab=n,这样〔〕2+〔〕2=m,? =,那么便有== ±〔 a> b〕比方:化简解:第一把化为,这里 m=7, n=12;由于 4+3=7,4×3=12,即〔〕2+〔〕2=7,? =,∴===2+由上述例题的方法化简:〔1〕;〔2〕;〔3〕..x=2﹣,求代数式〔2+〔2+〕x+的值.327+4 〕x33.实数 a、b 在数轴上的地址以以下图,请化简:| a| ﹣﹣.34.观察以下各式:;;,请你猜想:〔1〕=,=.〔2〕计算〔请写出推导过程〕:〔3〕请你将猜想到的规律用含有自然数n〔n≥1〕的代数式表达出来.第3页〔共 4页〕参照答案一.选择题〔共14 小题〕1.C;2.B;3.D;4.C;5.B;6.C;7.D;8.C;9.B;10.A;11.B;12.B;13.A;14.D;二.填空题〔共13 小题〕15.6;﹣;16.±;17.2021;18.1;19.±2;20.﹣3a;21.1;22.0;23.±5;± 3;5 或﹣ 3;24.﹣2;25.2;;26.;27.2;三.解答题〔共7 小题〕28.﹣;﹣;29.;30.;31.;32.;33.;34.5;6;;第4页〔共 4页〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档