全状态反馈系统极点配置的数字仿真(终)

合集下载

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法

状态反馈极点配置基本理论与方法IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第2章 状态反馈极点配置设计基本理论引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。

反馈的基本类型包括状态反馈和输出反馈。

其中状态反馈能够提供更加丰富的状态信息。

状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。

图是一个多输入多输出线性时不变系统状态反馈的基本结构:图 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+=由图可知,加入状态反馈后,受控系统的输入为:u Fx v =+其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++=闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。

极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。

(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。

(3)矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ=FX G =(4)特征向量法—先找到特征向量x j (等式中矩阵X 的列向量),然后利用等式求解F 。

方法(1)一般难以应用或者数值不稳定。

方法(3)需要解方程,并且对于系统矩阵A 的特征值不能再分配。

最有效并且数值稳定的方法是方法(2)和方法(4)。

其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。

对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。

本文结合以上方法提出了一种新的设计方法:首先通过酉变换将状态方程化为一种控制规范形,然后利用最小二乘法解方程的得到最佳的状态反馈矩阵。

状态反馈和极点配置

状态反馈和极点配置

为了根据期望的闭环极点位置来设计输出反馈矩阵h的参数,只需将期望的 系统特征多项式与该输出反馈系统特征多项式 hC) 相比较即可。
15
输出反馈到参考输入
设被控对象的状态方程为 x Ax Bu
y Cx
输出量反馈到参考输入时, u=r-hy,则该输出反馈系统的动态
方程为 x (A BhC)x Bv

0 0 1
Q [ B AB A2 B ] 0
1
6
1
6 31
得出detQ = -1。因此,rankQ = 3。因而该系统是状态完全可控的,可任意
配置极点。
下面用两种方法求解。
11
极点配置 例1
方法1:利用刚才介绍的求解步骤,计算系统矩阵A的特征多项式,求特征值。
7
极点配置定理_充分性
a0 k0 a0 a1 k1 a1
an1

kn1

a n1
求解上述方程组,得到 ki 的值,则
K KP1 [k0 k1
kn 1 ]P 1
[ a0 a0 a1 a1
an1 an1 ] P1
如果系统是状态完全可控的,则通过对应于上式所选取的矩阵K,可任意 配置所有的特征值。
充分性得证。
8
极点配置定理_必要性
即已知闭环系统可任意配置极点,证明被控系统状态完全可控。 现利用反证法证明。 先证明如下命题:如果系统不是状态完全可控的,则矩阵A-BK 的特征值不可能由线性状态反馈来控制。 假设原线性系统 x Ax Bu 状态不可控,则其可控性矩阵的 秩小于n,即
rank[ B AB An1B ] q n
◆考察系统的可控性条件。如果系统是状态完全可控的,则可按下列步骤继续。

状态反馈的极点配置

状态反馈的极点配置

东南大学自动化学院实验报告课程名称:自动控制基础实验名称:控制系统极点的任意配置院(系):自动化学院专业:自动化姓名:吴静学号:08008419实验室:实验组别:同组人员:实验时间:2011年4月29日评定成绩:审阅教师:一、实验目的1. 掌握用状态反馈的设计方法实现控制系统极点的任意配置;2. 用电路模拟的方法,研究参数的变化对系统性二、实验原理内容用全状态反馈实现二阶系统极点的任意配置,并用电路模拟的方法予予以实现; 理论证明,通过状态反馈的系统,其动态性能一定会优于只有输出反馈的系统。

设系统受控系统的动态方程为bu Ax x+= cx y =图6-1为其状态变量图。

图6-1 状态变量图令Kx r u -=,其中]...[21n k k k K =,r 为系统的给定量,x 为1⨯n 系统状态变量,u 为11⨯控制量。

则引入状态反馈后系统的状态方程变为bu x bK A x+-=)( 相应的特征多项式为)](det[bK A SI --,调节状态反馈阵K 的元素]...[21n k k k ,就能实现闭环系统极点的任意配置。

图6-2为引入状态反馈后系统的方框图。

图6-2 引入状态变量后系统的方框图实验时,二阶系统方框图如6-3所示。

图6-3 二阶系统的方框图引入状态反馈后系统的方框图如图6-4所示。

根据状态反馈后的性能指标:20.0≤p δ,s 5.0T p ≤,试确定状态反馈系数K1和K2图6-4 引入状态反馈后的二阶系统方框图三、实验步骤1.引入状态反馈前根据图6-3二阶系统的方框图,设计并组建该系统相应的模拟电路,如图6-9所示。

图6-9 引入状态反馈前的二阶系统模拟电路图在系统输入端加单位阶跃信号,用上位机软件观测c(t)输出点并记录相应的实验曲线,测量其超调量和过渡时间。

2.引入状态反馈后请预先根据前面给出的指标计算出状态反馈系数K1、K2。

根据图6-4引入状态反馈后的二阶系统的方框图,设计并组建该系统相应的模拟电路,如图6-10所示。

极点配置法设计状态反馈控制器——自动控制原理理论篇

极点配置法设计状态反馈控制器——自动控制原理理论篇

设计算法--适用于用能控标准形表示的SI系统的算法

a0 f1 0 a1 f 2 1

an1 f n n1
f1 0 a0 f2 1 a1

fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)

0 6
1 0 5x(t) 1u(t)
y(t) 2 1x(t)
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图
举例----求解过程
解: 0
B 1
0 1 0 1 AB 6 51 5
rankS


rankB

AB

0 1
1 5

2
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s


s

0
a0
0 a1
1

0

1



0
f1
f
2

f
n

an1 1
极点配置法设计状态反馈控制器
——《自动控制原理-理论篇》第8.8节

7.4 状态反馈和极点配置

7.4 状态反馈和极点配置
3
可配置条件_极点配置定理
考虑线性定常系统
x Ax Bu
假设控制输入u的幅值是无约束的。如果选取控制规律为
u r Kx
式中K为线性状态反馈矩阵。
定理 (极点配置定理) 线性定常系统可通过线性状态反馈任意地 配置其全部极点的充要条件是,此被控系统状态完全可控。
该定理对多变量系统也成立。
证明 (对单输入单输出系统) 1、充分性 2、必要性
kn 1 ]
由于 u r Kx r KPx ,此时该系统的状态方程为 x ( Ac Bc K ) x Bcr
相应的特征方程为 sI Ac BcK 0
因为非奇异线性变换不改变系统的特征值,当利用 u=r-Kx作为控制输 入时,相应的特征方程与上式相同,均有如下结果。
s
1
0
0
s
0
sI Ac BcK
◆确定将系统状态方程变换为可控标准形的变换矩阵P。若给定的状态方程已是 可控标准形,则P = I。此时无需再写出系统的可控标准形状态方程。非奇异线 性变换矩阵P=QW。
◆利用给定的期望闭环极点,可写出期望的特征多项式为
(s 1() s 2 ) (s n ) sn an1sn1 a1s a0
从而确定出a1* , a2 *,… an *的值。
◆最后得到状态反馈增益矩阵K为
K [ a0 a0 a1 a1
a n1
an1
]
P 1
10
极点配置 例1
【例】 考虑如下线性定常系统
0
1
0
0
x Ax Bu A 0
0
1 , B 0
1 5 6
1
利用状态反馈控制,希望该系统的闭环极点为s = -2±j4和s = -10。试确定状

极点配置法设计状态反馈控制器——自动控制原理理论篇

极点配置法设计状态反馈控制器——自动控制原理理论篇
极点配置法设计状态反馈控制器
——《自动控制原理-理论篇》第8.8节
自动化工程学院自动控制原理课程组制 2015年11月
主要内容
状态反馈控制系统 状态反馈控制器设计条件 用极点配置法设计状态反馈控制器 举例
主要内容
状态反馈控制系统 状态反馈控制器设计条件 用极点配置法设计状态反馈控制器 举例
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s


s

0
a0
0 a1
1

0

1



0
f1
f
2

f
n

an1 1
设计算法--适用于用能控标准形表示的SI系统的算法

a0 f1 0 a1 f 2 1

an1 f n n1
f1 0 a0 f2 1 a1

fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)

0 6
1 0 5x(t) 1u(t)


rankB

AB

0 1
1 5

2
系统能控。
举例求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
1x(t)
F 7 1

线性系统的状态反馈及极点配置

线性系统的状态反馈及极点配置

现代控制理论实验(一)线性系统的状态反馈及极点配置——09级自动化本科一.实验目的1.了解和掌握状态反馈及极点配置的原理。

2.了解和掌握利用矩阵法及传递函数法计算状态反馈及极点配置的原理与方法。

3.掌握在被控系统中如何进行状态反馈及极点配置,构建一个性能满足指标要求的新系统的方法。

二.实验原理及说明一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说,当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。

因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。

若有被控系统如图3-3-61所示,它是一个Ⅰ型二阶闭环系统。

图3-3-61 被控系统如图3-3-61所示的被控系统的传递函数为:12021S 11)1(1)(a S a S b T TS T TS S T S i i i ++=++=++=φ (3-3-51) 采用零极点表达式为:))(()(210λλφ--=S S b S (3-3-52)进行状态反馈后,如图3-3-62所示,图中“输入增益阵”L 是用来满足静态要求。

图3-3-62 状态反馈后被控系统设状态反馈后零极点表达式为:))(()(21**--=λλφS S b S (3-3-53)1.矩阵法计算状态反馈及极点配置1)被控系统被控系统状态系统变量图见图3-3-63。

图3-3-63 被控系统状态系统变量状态反馈后的被控系统状态系统变量图见图3-3-64。

图3-3-64 状态反馈后的被控系统状态系统变量图图3-3-61的被控系统的状态方程和输出方程为:状态方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=+-=••1i 1i 2211X Y u T 1X T 1X X T 1X T 1X (3-3-54)⎪⎩⎪⎨⎧=+==•∑CxY u Ax X B C B A 0),,(式中[]01,T 10B 0T 1T 1T 1A ,i i 21=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=C x x x , 被控系统的特征多项式和传递函数分别为:12010a a b S b )(+++=S S S φB A)C(SI 1--=)(A -SI det a a )(f 0120=++=S S S 可通过如下变换(设P 为能控标准型变换矩阵): —x P X =将∑0C B A ),,(化为能控标准型 ),,(————C B A ∑,即: ⎪⎩⎪⎨⎧=+=•——————x C Y u x A B X 式中 ⎥⎦⎤⎢⎣⎡-==-101a -a 10AP P A — , ⎥⎦⎤⎢⎣⎡==-10B P B 1— , []10b b CP C ==— 2)被控系统针对能控标准型),,(————C B A ∑引入状态反馈:⎥⎦⎤⎢⎣⎡=-=—————式中10k k k xk u ν (3-3-55)可求得对—x 的闭环系统),,—————C B k B A (-∑的状态空间表达式: 仍为能控标准型,即: ⎪⎩⎪⎨⎧=+-=•————————)(x C Y u x B k B A X 式中 ⎥⎦⎤⎢⎣⎡+-+-=-)()(—————1100k a k a 10k B A则闭环系统),,(——————C B k B A -∑的特征多项式和传递函数分别为: )()(—————00112k k a k a k)B (A SI det )(f ++++=⎥⎦⎤⎢⎣⎡--=S S S )k a (k a b S b B )k B A (SI C )(00112011k ———————)(+++++=⎥⎦⎤⎢⎣⎡--=-S S S φ3)被控系统如图3-3-61所示:其中:05.01==T T i则其被控系统的状态方程和输出方程为:[]XY uX X 0110012020=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=期望性能指标为:超调量M P ≤20%;峰值时间t P ≤0.5秒。

综合性实验 极点配置全状态反馈控制指导书

综合性实验  极点配置全状态反馈控制指导书

综合性实验 极点配置全状态反馈控制一、实验目的1.学习并掌握用极点配置方法设计全状态反馈控制系统的方法。

2.用电路模拟与软件仿真方法研究参数对系统性能的影响。

二、实验内容1.设计典型二阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。

2.设计典型三阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。

三、实验前准备工作1 推导图1的数学模型(状态空间表达式),分析系统的能控性。

2 若系统期望的性能指标为:超调量25%p M ≤,峰值时间0.5p t ≤,求出期望的极点值。

根据以上性能指标要求设计出状态反馈控制器。

3 推导图2的数学模型(传递函数),求出其单位阶跃响应的动态性能指标(超调量、调节时间、静态速度误差系数)。

4 推导图4的数学模型(状态空间表达式),分析系统的能控性。

5考虑系统稳定性等要求,选择理想极点为:S 1=-9,S 2 =-2+j2,S 3=-2-j2, 根据以上性能指标要求思考如何设计状态反馈控制器。

6 推导图7的数学模型(传递函数)。

四、实验步骤1.典型二阶系统(1)对一已知二阶系统(见图1)用极点配置方法设计全状态反馈系数。

(2)见图2和图3,利用实验箱上的电路单元U9、U11、U12和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。

(3)改变系统模拟电路接线,使系统恢复到图1所示情况,测取阶跃响应,并与软件仿真结果比较。

(4)对实验结果进行比较、分析,并完成实验报告。

2.典型三阶系统(1)对一已知三阶系统(见图4)用极点配置方法设计全状态反馈系数。

(2)见图5和图7,利用实验箱上的电路单元U9、U11、U12、U15和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。

(3)改变系统模拟电路接线,使系统恢复到图5所示情况,测取阶跃响应,并与软件仿真结果比较。

软件仿真直接在MATLAB 中实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 全状态反馈系统极点配置的数字仿真
一、实验目的
1掌握全状态反馈系统的极点配置方法;
2研究不同极点配置对系统特性的影响。

二、实验原理
闭环系统性能与闭环极点(特征值)密切相关,在状态空间的分析和综合中,除了利用输出反馈以外,主要利用状态反馈来配置极点,它能提供更多的校正信息。

利用状态反馈任意配置闭环极点的充要条件是:受控系统可控。

设SIMO (Single Input-Multi Output )受控系统的动态方程为
u A b x x
+= ,x y C = 状态向量x 通过状态反馈矩阵k ,负反馈至系统参考输入v ,于是有
u v kx =+
这样便构成了状态反馈系统,其结构图如图1-1所示
图1-1 SIMO 状态反馈系统结构图
状态反馈系统动态方程为 x ()A bk x bv =++,x y C = (1-1)
闭环系统特征多项式为
()()f I A bk λλ=-+ (1-2)
设闭环系统的期望极点为1λ,2λ,…,n λ,则系统的期望特征多项式为
)())(()(21*n f λλλλλλλ---= (1-3)
欲使闭环系统的极点取期望值,只需令式(1-2)和式(1-3)相等,即
)()(*λλf f = (1-4)
利用式(1-4)左右两边对应λ的同次项系数相等,可以求出状态反馈矩阵
[]n k k k 21=k
例如SISO (Single Input-Single Output )受控系统的开环传递函数为
3
1)(s s G = 若采用输出单位反馈构成闭环系统,则该系统显然是不稳定的,若按指定的极点配置,采用
全状态反馈构成闭环系统,则可以满足给定的性能要求。

原系统可控标准形形式的状态方程和输出方程为
u x x x u A ⎥⎥⎥⎦

⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=100000100010321b x x []⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡==321001x x x C y x 由于本系统是完全可控的,能够通过反馈向量k 的选择,使闭环系统的极点置于所希望的位置上,以满足系统的性能指标要求。

若根据系统的性能指标,希望配置的极点为31-=p ,2j 23,2±-=p ,则采用状态反馈后系统的特征多项式为
32321()det[I ()]f A bk k k k λλλλλ=-+=---
希望的系统特征多项式为
*32()(3)(2j2)(2j2)72024f λλλλλλλ=++-++=+++
比较上述两个多项式得系统状态反馈向量为
[][]123k 24207k k k ==---
因此,加入状态反馈后,闭环系统的状态方程为
u x x x u A ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+=10072024100010321b x x 其结构图如图1-2所示
图1-2 状态反馈系统结构图
三、实验内容及步骤
实验通过MATLAB 软件实现。

1. 双击MATLAB 图标或单击开始菜单,依次指向“程序”、“MATLAB ”,单击MATLAB ,进入MATLAB 命令窗口。

单击MATLAB 工具条上的Simulink 图标
,运行后出现Simulink 模块库浏览器,并单击其工具条左边的图标,弹出新建模型窗口。

2.在模块库浏览器窗口中的Simulink 下的输入源模块(Sources)、数学运算模块(Math)、连续系统模块(Continuous)、接收模块(Sinks)库中,分别选择阶跃信号(Step)、求和(Sum)、常量增益(Gain)、积分环节(Integrator)、示波器(Scope)模块,建立如图1-3 所示的仿真图。

图1-3 MATLAB 下状态反馈系统仿真图
3.用鼠标左键双击阶跃信号和各比例环节的模型,设置好参数;选择Simulation 菜单中parameters 选项,设置好仿真参数;选择Simulation 菜单中的start 选项,开始仿真;观察并记录下系统的输出。

4.通过状态反馈,将控制系统的闭环极点设置为110p =-,1j 13,2±-=p ,重复3、4步骤。

此时[][]123k 8106k k k ==---
5.通过状态反馈,将控制系统的闭环极点设置为130p =-,2,33j3p =-±,重复3、4步骤。

此时[][]1
23k 6116k k k ==--- 四、实验报告内容
1.理论计算希望配置的极点为41-=p ,1j 13,2±-=p 和11-=p ,22-=p ,33-=p 时的反馈向量[]321k k k =k ;
2.屏幕拷贝下三组极点配置下的系统响应曲线;并根据响应曲线确定s t 、p t 和%σ。

五、实验思考题
1.在状态反馈系统中,极点任意配置的充要条件是什么?2.试比较状态反馈系统与经典控制理论中的输出反馈系统。

3.。

相关文档
最新文档