不等式的解集(概念定义课)

合集下载

2.3不等式的解集

2.3不等式的解集

既然不等式的解集在通常情况下有很多符合条件的解,那么我们可以用一
种直观的方法利用数轴把不等式的解集表示出来。
22:40 18
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 (1)请写出下列不等式的解集,并说出它的解集所表示的意思。 x-5≤-1 解: x≤4 x2>25 解: x<-5或x>5 正方向
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
在数轴上表示-3和3的点的位置上画空心圆圈,表示-3和3不在这个 解集内。
22:40 22
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 【归纳总结】 在数轴上表示 不等式的解集 注意 指示线方向:“>”向右,“<”向左 步骤:画数轴→定界点→走方向 界点:有“=”用实心点,没有“=”用空心圈
22:40 26
界点:有“=”用实心点,没有“=”用空心圈
x 10 > 0.02 100 4
(4)根据实际情况,解不等式,写出符合条件的解
22:40 8ຫໍສະໝຸດ .3不等式的解集二、探究新知
1.创设情境 燃放某种烟花时,为了确保安全,燃放者在点燃引火线后要在燃放 前转移到10m以外的安全区域。已知引火线的燃烧速度为0.02m/s, 燃放者离开的速度为4m/s,那么引火线的长度应为多少厘米?
解:设引火线的长度为xcm,根据题意得
x 10 > 0.02 100 4 根据不等式的基本性质,得
x>5 所以,引火线的长度应大于5cm.
22:40 9
2.3不等式的解集
二、探究新知
2.不等式的解、解集以及解不等式的概念 (1)不等式的解 ①x=5,6,8能使不等式x>5成立吗? ②你还能找出几个使不等式x>5成立的x的值吗?

第 九章 不等式9.1.1不等式及其解集

第 九章 不等式9.1.1不等式及其解集
(1)x的一半不小于-1 (1) 0.5x≥-1.如 x=-1,1.
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.

不等式的取值范围与解集求解

不等式的取值范围与解集求解

不等式的取值范围与解集求解不等式是数学中常见的一种关系式,它描述了数之间的大小关系。

在解不等式时,我们需要确定不等式的取值范围,并找出满足不等式条件的解集。

本文将介绍不等式的基本概念、解法以及一些常见的不等式类型。

一、不等式的基本概念不等式是由不等号连接的两个数或表达式所构成的关系式。

常见的不等号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。

例如,x > 3表示x大于3,x + 2 ≤ 5表示x + 2小于等于5。

二、不等式的解集与取值范围解不等式的过程就是确定不等式的取值范围,并找出满足不等式条件的数的集合,这个集合被称为解集。

解集可以用不等号表示,也可以用集合符号表示。

1. 不等式的解集表示解集可以用不等号表示,例如x > 3的解集可以表示为{x | x > 3},读作“x的取值范围是大于3的数”。

解集也可以用集合符号表示,例如x > 3的解集可以表示为{x ∈ℝ | x > 3},其中ℝ表示实数集。

2. 不等式的取值范围表示不等式的取值范围表示了满足不等式条件的数的范围。

例如x > 3的取值范围是大于3的数,可以表示为(3, +∞),其中+∞表示正无穷大。

三、不等式的求解方法解不等式的方法与解方程类似,但在某些情况下需要注意一些特殊的性质。

下面介绍一些常见的不等式类型及其求解方法。

1. 一元一次不等式一元一次不等式是形如ax + b > 0的不等式,其中a和b是已知实数,且a≠0。

解一元一次不等式的步骤如下:(1)将不等式转化为等式,得到ax + b = 0;(2)求得等式的解x0;(3)根据a的正负确定不等式的解集。

2. 一元二次不等式一元二次不等式是形如ax^2 + bx + c > 0的不等式,其中a、b和c是已知实数,且a≠0。

解一元二次不等式的步骤如下:(1)将不等式转化为等式,得到ax^2 + bx + c = 0;(2)求得等式的解集{x1, x2};(3)根据a的正负和二次函数的凹凸性确定不等式的解集。

人教版数学下册.1不等式及其解集 (共20张PPT)教育课件

人教版数学下册.1不等式及其解集 (共20张PPT)教育课件

D.18≤t≤27
2.无论x取什么数,下列不等式总成立的是(D )
A.x+5>0
B.x+5<0
C.x2<0 D.x2≥0
随堂检测
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( B )
A.每100克内含钙150毫克 B.每100克内含钙不低于150毫克 C.每100克内含钙高于150毫克 D.每100克内含钙不超过150毫克
• • 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。
2.若m是非负数,则用不等式表示正确的是( D )
A.m<0 B.m>0 C.m≤0
D.m≥0
预习反馈
3.用不等号“>、<、≥、≤”填空:a2+1 > 0.
4.“a<b”的反面是( C )
A.a≠b B.a>b
C.a≥b
D.a=b
课堂探究
问题
一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车 速应满足什么条件?
的解吗?x=75呢?x=72呢?
解:当x=75时,2 x=50 , 3
不等式不成立,
所以 x=75不是不等式 2 x 50 的 3

课堂探究
思考: x=78是不等式 2 x 50 的解吗?x=75呢?x=72呢? 3

第二章 2.2.2 不等式的解集

第二章 2.2.2 不等式的解集

x>2.由题意x>2,的解集为(2,+∞),即(2,+∞)∩(m, x>m
+∞)=(2,+∞),
∴(2,+∞) (m,+∞),∴m≤2.
答案 D
3.三角形三边长为4,1-2a,7,则a的取值范围是________. 解析 由题意得14- +27a>>1- 0,2a,解得-5<a<-1. 4+1-2a>7,
提示 当m≤0时,不正确.
[微训练]
1.平流层是指地球表面以上10 km到50 km的区域,下述不等式中,x能表示平流
层高度的是( )
A.|x+10|<50
B.|x-10|<50
C.|x+30|<20
D.|x-30|<20
解析 由题意知10<x<50,故选D.
答案 D
2.不等式组-22xx--35≥2≥0,0 的解集为________. 解析 由-2x-5≥0 得 x≤-52, 由 2x-3 2≥0 得 x≥3,
(2)由3x-14≥16解得
x≥54,由
2x<b

b x<2.
当b2≤54即 b≤52时,xx≥54∩xx<b2= ,原不等式组的解集为 ;
当b2>54即 b>52时,xx≥54∩xx<b2=54,b2,原不等式组的解集为54,b2. 综上,b≤52时,解集为 ; b>52时,解集为54,b2.
这就是数轴上两点之间的距离公式.
a+b
如果线段AB的中点M对应的数为x,即M(x),则 x=_____2_____.
这就是数轴上的中点坐标公式.
教材拓展补遗 [微判断] 1.不等式x>y2的解集为(0,+∞).( × )

八年级数学不等式的解集

八年级数学不等式的解集

解一元一次不等式的注意事项
不等式两边乘以或除以同一个负数时,不等号的方 向要改变。
在解不等式的过程中,要注意每一步的变形是否合 法,特别是去分母和去括号时,要注意符号的变化 。
解不等式时,要注意检验解的合理性,即解是否满 足原不等式。
04
一元一次不等式组的解法
解一元一次不等式组的基本步骤
列出不等式组
不等式的可加性
可加性定义
对于任意实数a、b、c、d,如果a > b且c > d,则a + c > b + d; 如果a < b且c < d,则a + c < b + d。
可加性应用
在处理不等式时,可以通过两边同时加减同一个数或整式来简化 不等式,进而求解。
不等式的可乘性
可乘性定义
对于任意实数a、b、c、d,如果a > b > 0且c > d > 0,则ac > bd;如果 a < b < 0且c < d < 0,则ac > bd。
八年级数学不等式的解集

CONTENCT

• 引言 • 不等式的基本性质 • 一元一次不等式的解法 • 一元一次不等式组的解法 • 含有参数的一元一次不等式(组)
的解法 • 不等式解集的应用举例
01
引言
目的和背景
阐明不等式的解集概念
通过介绍不等式及其解集的定义,帮助学生理解不 等式解集的含义和性质。
辅助数学教学
为八年级数学教师提供有关不等式解集的教学辅助 材料,以提高教学效果。
培养学生的数学素养
通过学习不等式解集,提高学生的数学素养和解决 问题的能力。

初二数学不等式的解集知识点总结

初二数学不等式的解集知识点总结

初二数学不等式的解集知识点总结初二数学不等式的解集知识点总结漫长的学习生涯中,大家最不陌生的就是知识点吧!知识点也可以通俗的理解为重要的内容。

那么,都有哪些知识点呢?以下是店铺精心整理的初二数学不等式的解集知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

初二数学不等式的解集知识点总结1不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

相信上面的知识同学们已经能很好的掌握了,希望同学们在平时认真学习,很好的把每一个知识点掌握。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

(完整版)不等式基本概念讲义

(完整版)不等式基本概念讲义

第五章不等式一、不等式的定义:1、一般地,用不等号表示不相等关系的式子叫做不等式,常见的不等号有“〉”“<”“≤”“≥”及“≠”五种.2、不等号所表示的意义特征3、常见的符号表示:(1)a是正数表示为a>0,a是负数表示为a〈0,(2)a是非负数表示为a≥0,a是非正数表示为a≤0,(3)a,b同号表示为ab〉0,a,b是异号表示为ab〈0。

例1、在下列各式中,是不等式的有__________①—3x〉0; ②4x+3y〉0;③x=4;④a+b+c;⑤x+y=7;⑥1〉8;⑦2≠2提示:判断一个式子是不是不等式从形式上看,只要这个式子是用不等号连接的就是不等式(不管对错)例2、数学表达式中:①a2≥0;②5p—6q〈0;③x—6=0;④7x+7y-1>9;⑤x≠3;⑥800,是不等式的有_____________二、不等式的解与解集1、不等式的解:能使不等式成立的未知数的值叫做不等式的解(不等式的解是一个具体的数值)2、不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集.(不等式的解集是一个集合,一个范围,包含不等式的每一个解)3、解不等式:求不等式解集的过程叫做解不等式。

例1、判断下列说法是否正确,并说明理由(1)x=3是不等式3x≥9的解集()(2)不等式3x≥9的解为3()(3)x=3是不等式3x≥9的一个解( )(4)x≥3是不等式3x≥9的解()(5)不等式3x≥9的解集是x≥3( )三、不等式解集的表示方法(1)一般形式:用x〉a,或x<a或x≥a或x≤a的形式表示出来的形式。

(2)数轴表示法(最容易理解的方法):不等式的解集表示的是未知数的取值范围,所以不等式的解可以表示在数轴上。

注意!!!用数轴表示不等式的解集是首先要“两定”:①定边界点(注意是实心还是空心)有等号需要的是实心圆点,没有等号用空心圆圈;②定方向:大于号开口向右,小于号开口向左。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:8.2 不等式的解集
课型:概念定义课主编:王琳审核:编号:
课前反馈:
学习目标:1.理解不等式的解集,能正确表示不等式的解集
2.培养学生的数感,渗透数形结合的思想.
学习过程:
一.情景构建、认知概念:
下列各数中,哪些是不等式x+2>5的解?哪些不是?
-3, -2, -1, 0, 1.5, 2.5, 3, 3.5, 5, 7
我们发现-3,-2,-1,0,1.5,2.5,3都是不等式x+2>5的解,由此看出,不等式x+2>5有许多个解
进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解,不等式x+2>5的解有无数个,它们组成一个集合,称为不等式x+2>5的解集。

在数轴上表示为
二.提供素材、观察实验:
探究一:若方程(m+2)x=2的解为x=2,想一想,不等式(m-2)x>-3的解集是多少?试探究-2,-1,0,1,2这五个数中哪些数是该不等式的解
探究二:在数轴上表示下列不等式的解集:
(1) x≥-3;(2) x<0;(3) x>2.
探究三:求出适合下列不等式的x的整数解,并在数轴上表示出来.
(1)2<x<7; (2)-4<x≤-2; (3)1≤|x|≤3.
三.归纳抽象、得出概念:
1.一个组成这个不等式的解集.
2.含有,未知数的是的不等式,叫做一元一次不等式.
3 在数轴上,解集x ≤a ,表示成
解集x <a , 表示成
四.基础演练、理解概念:
1、写出不等式x -5<0的一个整数解:__________.
2、如图所示,图中阴影部分表示x 的取值范围,则下列表示中正确的是( )
A.x >-3<2
B.-3<x ≤2
C.-3≤x ≤2
D.-3<x <2
3. 左图表示该不等式的解集____________ .
4.不等式2X<6的非负整数解为( )
A.0,1,2
B.1,2
C.0,-1,-2
D.无数个
5.下列说法中,错误的是( )
A.不等式X<5的整数解有无数多个
B.不等式X>-5的负数解集有有限个
C.不等式-2X<8的解集是X<-4
D.-40是不等式2X<-8的一个解
6、直接想出下列不等式的解集,并在数轴上表示出来
(1)x -3>6的解集是______ ; (2)2x <12的解集是________;
(3)x-5>0的解集是_________; (4)2
1x >5的解集是_________.
5.知识梳理、巩固概念:
不等式的解集:
在数轴上表示不等式的解集,如解集x ≥a ,是表示数a 的点左边的部分,包括表示数a 的点在内,这一点画成实心圆点,而解集x >a ,则表示数a 的点左边的部分,但不包括表示数a 的点,这一点画诚空心圆圈。

当堂检测:
1.写出不等式x-5<0的一个整数解:__________.
2、23是方程32x =的唯一解,2
1x =是不等式2x<3的 ( ) A. 唯一解 B. 一个解 C. 不是解 D. 解集
3、不等式2x 4<≤-的所有整数解的和为( )
A.-4 B .-6 C.-8 D. -9
4.下图表示了某个不等式的解集,该解集中所含的自然数解的个数是( )
A.4
B.5
C.6
D.7
5.不等式的解集在数轴上表示如图所示,则该不等式可能是__________.
6.在下列各数-2,-2.5,0,1,34,35中,是不等式3
2x >1的解有__________,是3
2-x >1的解有_____________. 7.一个不等式的解集如图所示,则这个不等式的正整数解是__________.
8.当X _______时,代数式2X -5的值为0,当X _______时,代数式2X -5的值不大于0.
9. 在数轴上表示下列不等式的解集:
(1)x >-2.5 (2)x ≤3.5 (3)-3.5≤x <4(4)1≤x ≤4;
10 .等式X ≤2012有多少解?有多少个正整数解
11.试求不等式X+3≤6的正整数解.
12.用计算器探索:按一定规律排列的一组数:201,191,,121,111,101 ,如果从中选出4若干个数,使它们的和大于0.5,那么至少要选__________个数.。

相关文档
最新文档