核医学(PETCT显像剂
核医学病例科普文章

核医学病例科普文章
核医学病例:一种有效的癌症诊断工具
核医学是一种利用放射性物质的特殊诊断技术,可以检测和诊断各种疾病,尤其是癌症。
本文将通过一个具体的核医学病例,向您介绍核医学在癌症诊断中的应用。
患者张先生,55岁,因持续咳嗽和胸痛到医院就诊。
经过一系列常规检查,医生怀疑张先生可能患有肺癌。
为了进一步确诊,医生建议进行核医学检查。
核医学检查包括发射型计算机断层扫描(ECT)和正电子发射断层扫描(PET-CT)。
ECT可以检测肿瘤组织与正常组织之间的代谢差异,而PET-CT则可以更精确地定位肿瘤位置和范围。
在ECT检查中,医生给张先生注射了一种含有放射性核素的示踪剂。
示踪
剂在体内循环并积聚在肿瘤组织中,通过ECT设备检测示踪剂的放射性信号,医生可以判断肿瘤是否存在以及其位置。
结果显示,张先生的肺部存在异常放射性信号,提示可能存在肿瘤。
为了更精确地定位肿瘤位置和范围,医生给张先生进行了PET-CT检查。
PET-CT设备可以检测示踪剂在肿瘤组织中的聚集情况,并通过计算机重建技术生成三维图像。
结果显示,张先生的肺部存在一个明显的肿瘤病灶,且已经出现了淋巴结转移。
通过核医学检查,医生确诊张先生患有肺癌,并已经出现了淋巴结转移。
医生根据检查结果为张先生制定了合适的治疗方案。
经过一段时间的治疗,张先生的病情得到了控制,生活质量也有所提高。
总之,核医学在癌症诊断中具有重要的作用。
通过核医学检查,医生可以更早地发现肿瘤,并制定合适的治疗方案。
如果您有任何不适或疑虑,建议及时就医并进行核医学检查。
PET与ECT的区别

PET与ECT的区别应用计算机辅助断层技术进行显像的设备统称为ECT。
ECT称为发射型计算机断层显像Emission Computed Tomography)。
ECT又包括SPECT(即习惯讲的ECT)和PECT(即习惯讲的PET)。
科学家将CT技术融入了ECT,从而产生了PET-CT和SPECT-CT。
ECT,即SPECT,是以发射单光子放射性核素做为示踪剂的显像设备,称为单光子发射型计算机断层显像single photon emission computed tomography。
目前国内很多三级以上医院都已经配备SPECT,数量达300台以上,主要用于全身骨骼、心肌、心脏功能、肾、脑、甲状腺等检查。
PET,即PECT,是ECT的另一类设备,是以发射正电子的放射性核素做为显像剂,称为正电子发射型计算机断层显像positron emission computed tomography,即我们通常所说的PET。
PET是核医学领域中最先进的显像设备,被视为核医学史上划时代的里程碑,是最高水平核医学的标志。
PET所应用的显像剂如F-18-FDG、C-11、N-13,O-15等都是人体组织的基本元素,易于标记到各种生命必须的化合物、代谢产物或类似物上而不改变它们的生物活性,且可以参与人体的生理、生化代谢过程,因而能够深入分子水平反映人体的生理、生化过程,从功能、代谢等方面前面评价人体的功能状态,达到早期诊断疾病、肿瘤分期、疗效判断、预后评估等目的。
PET最大的缺点是解剖结构不够清晰。
因此人们尝试把擅长功能显像的PET与擅长显示解剖结构的全身CT结合起来,PET-CT研制成功。
SPECT与PECT,就是通常说的ECT和PET,都属于核医学发射型计算机断层的影像设备ECT,各有优势,相互补充。
在肿瘤的临床应用方面PET,特别是PET-CT有极高的应用价值。
另外,SPECT还能够进行其它功能检查、脏器显像与核素治疗的示踪分析,PET-CT却不能。
影像医学课件:PETCT显像

研发新型的高灵敏度和高分辨率的探测器材料,能够提高PETCT显 像的图像质量。
人工智能辅助诊断
利用深度学习等人工智能技术,辅助医生进行PETCT图像的解读和 诊断,提高诊断准确率。
在精准医疗中的应用前景
1 2 3
个性化治疗
通过PETCT显像,医生可以根据每个患者的肿瘤 类型、大小和位置等信息,制定个性化的治疗方 案,提高治疗效果。
PETCT还广泛应用于心血管疾病、感染性疾病和其他复杂疾病的诊断和治疗中。
02
PETCT显像原理
PET显像原理
正电子发射断层扫描(PET)是一种核医学影像技术,利用 正电子发射体标记的特定生物分子在体内代谢过程进行显像 。
PET显像原理基于人体内细胞对标记化合物的摄取,通过体 外发射的带电粒子(如β粒子)与人体内物质相互作用产生能 量转移,进而检测发射光子,形成图像。
饮食控制
患者在检查前需遵循医生建议的饮食 计划,通常需要禁食4-6小时,以避 免食物对检查结果产生干扰。
停用药物
患者在检查前需停用可能影响检查结 果的药物,如降糖药、降压药等。
检查中操作
核医学技术员
CT扫描
核医学技术员负责为患者注射放射性药物 ,并监控其在体内的分布情况。
图像采集
在注射药物后的一定时间内,患者需要进 行CT扫描,以获取身体各部位的结构图像 。
药物研发与评估
PETCT显像可以用于新药研发和评估过程中,帮 助研究人员了解药物在体内的分布和效果,为新 药研发提供重要依据。
基因诊断与治疗
随着基因组学的发展,PETCT显像有望用于基因 诊断和基因治疗中,为精准分期
PETCT显像在肿瘤诊断和分期中具有重要作用,能够准确 识别肿瘤的位置、大小和转移情况,为制定治疗方案提供 重要参考。
核医学(PETCT显像剂

PET显像剂的种类正电子显像剂的一般性质量要求正电子显像剂有其本身的特殊性,即必须在严格的时间限制内完成生产和就地就近使用,而且在生产与应用之间没有足够时间进行目前认可的所有质量控制(QC)试验,不仅细菌学、内毒素检查是如此,某些化学质量检查也是如此。
正电子显像剂有两个特点,其一是因所用放射性核素的半衰期短,生产这些化合物时必须涉及高水平的放射性,以便最后能得到临床研究需要的有用数量,生产工序必须遥控。
其二,所研究的化合物极其微量,生产的绝大多数正电子显像剂不加载体,通常相当于近纳摩尔量级。
这在测定生理机能时具有不产生药效效应的优点。
因此,使用于质量控制的分析方法必须具有更低的探测下限。
在正电子显像剂这种特殊情况下,最终产品的质量控制受到时间的限制,对质量保证来讲,过程控制成为主要因素。
因此应建立单独而又严格的生产控制测量方法和程序。
例如在生产过程中,采用放射性高效液相色谱(HPLC)和放射性气相色谱(GC)等方法,无疑可以保证产品质量。
在线(Online)生产控制更有效的方法是连续监测合成中放射性的变化,这有可能在很早阶段就发现生产过程中的大多数问题。
生产工艺研究结束时以及随后工艺和物料来源的任何明显变化,都应通过对几批放射性显像剂的必要质量指标进行验证以进行全面的质量控制。
成分和原材料的质量管理是正电子显像剂质量保证的重要的过程控制。
这些原材料包括生产器具以及药物制品等所有成分。
每批原材料的一致性和质量必须得到保证并有证明文件。
经过“入口控制”后,该批产品必须作出标记并登记批号,且应备有关生产控制方式的证明文件,并制订试验记录和分析方法细则说明。
凡药典收载的成分,有详细的说明书就足够了。
如果试验方法药典未载明,则必须对其确认并被证实符合质量要求。
如果药典未载明而通常用作PET显像剂合成前体的原材料,必须以专题报告形式作出说明,包括名称、鉴定方法、纯度试验说明、稳定性和物理、化学性质。
在18F-FDG生产中,比较重要的原材料包括靶材料的纯度和丰度、三氟甘露糖的纯度、乙腈的纯度与含水量的高低以及其它化学试剂的质量,同时也包括靶室的清洁程度、反应器皿的清洁程度以及分离纯化材料的质量等,只有这些材料均合乎要求,才能生产出符号要求的18F-FDG。
petct简介

PET/CTPET/CT是一种将PET(功能代谢显像)和CT(解剖结构显像)两种影像技术有机地结合的新型影像设备,是将微量的正电子核素示踪剂注射到人体内,然后采用特殊的体外探测仪(PET)探测这些正电子核素人体各脏器的分布情况,通过计算机断层显像的方法显示人体的主要器官的生理代谢功能,同时应用CT技术为这些核素分布情况进行精确定位,使这台机器同时具有PET 和CT的优点,发挥出各自的最大优势。
中文名正电子发射断层显像/X 线计算机体层成像仪PET/CTPET/CT(positron emission tomography / computedtomography )全称为正电子发射断层显像/X 线计算机体层成像仪,是一种将PET(功能代谢显像)和CT(解剖结构显像)两种先进的影像技术有机地结合在一起的新型的影像设备. 它是将微量的正电子核素示踪剂注射到人体内,然后采用特殊的体外探测仪(PET)探测这些正电子核素人体各脏器的分布情况,通过计算机断层显像的方法显示人体的主要器官的生理代谢功能,同时应用CT 技术为这些核素分布情况进行精确定位,使这台机器同时具有PET 和CT 的优点,发挥出各自的最大优势[1] 。
PET/CT是PET和CT的组合体,将PET和CT设计为一体,由一个工作站控制[2] 。
单PET进行核医学显像时,有其它诊断设备无法比拟的早期发现灵敏性等优越特性,但因药物及其原理所限,其定位精度不够好,有厂商后来将PET和CT设计为一体,扫描时根据需求同时进行PET显像和CT显像[3] ,并由工作站将两种图像融合到一起,以达到更好的鉴别和定位。
2 发展历史编辑PET/CT近年来,影像诊断学的一个重要进展,就是图像融合技术的发展与应用。
图像融合包括硬件与软件,是一个全自动图像配准及多种图像的解读技术,它不仅具有全自动的功能与解剖图像的融合,还可以让具有不同特征的影像在同一平台显示、解读,对比与分析,为临床诊断与治疗之间架起了一座高速、流畅的桥梁。
petct肿瘤显像原理

petct肿瘤显像原理
PET-CT肿瘤显像原理是利用PET和CT联合成像,通过引入放射性核素进行显像,然后再使用CT解剖结构进行联合诊断。
其显像主要引入的显像剂包括代谢物、葡萄糖、氨基酸、蛋白质及多肽等元素,属于综合分子显像技术。
葡萄糖是人体细胞(包括肿瘤细胞)能量的主要来源之一,恶性肿瘤摄取的葡萄糖远远多于其它正常组织。
利用这一特性,在葡萄糖上标记上带有放射活性的元素氟-18作为显像剂18F-FDG,将此显像剂注入静脉内,在体内回圈,恶性肿瘤摄取的18F-FDG远多于其它组织。
因此肿瘤细胞内可积聚大量18F-FDG,经PET显像可以检测到体内18F分布情况从而显示肿瘤的部位、形态、大小、数量及肿瘤内的放射性分布。
pet ct 简介

时间分辨率定义为:对已知好事例相对的两个探测器响应的时间差分布的半宽高。时间分辨率[18]是时间窗的选定主要依据,时间窗选择应比时间分辨率稍大,一般以时间分布曲线的1/10高宽来定。
能量分辨率
能量甄别是排除散射事例的有力依据。因为散射事例中至少有一个光子经过了康普顿散射,能量部分损失,因而可以根据被测光子的能量大小决定好坏事例的取舍。系统能量分辨率的大小决定着能量窗的选择,好的能量分辨率可以选择较小的能量窗。
CT的基本原理
CT的全称是:计算机断层扫描显像(computedtomography,简称CT),利用人体各种组织对X线的吸收能力不等的特性,X线通过人体衰减,经重建计算获得图像矩阵。CT对组织的密度分辨率较高。
PET/ CT的工作原理
PET主要根据示踪剂来选择性地反映组织器官的代谢情况,从分子水平上反映人体组织的生理、病理、生化及代谢等改变,尤其适合人体生理功能方面的研究。但是图像解剖结构不清楚;CT功能有:采用X线对PET图像进行衰减校正,大大缩短了数据采集时间,提高了图像分辨率;利用CT图像对PET图像病变部位进行解剖定位和鉴别诊断。所以PET/ CT从根本上解决了核医学图像解剖结构不清楚的缺陷,同时又采用CT图像对核医学图像进行全能量衰减校正,使核医学图像真正达到定量的目的并且提高诊断的准确性,实现了功能图像和解剖图像信息的互补。
在1998~2001年间,在这台原型机上做了300余例肿瘤病人,并获得很好的效果。这一工作还获得一系列的荣誉:其中一幅图像被评为1999年美国核医学年会最佳图像。[
3成像原理编辑
PET的基本原理
PET/ቤተ መጻሕፍቲ ባይዱT
PET其全称是:正电子发射型计算机断层扫描显像仪(positron emission tomography,简称PET)由探头、数据处理系统、图像显示及检查床组成。PET使用正电子示踪剂,核素衰变过程中正电子从原子核内放出后很快与自由电子碰撞湮灭,转化成一对方向相反、能量为511 keV的γ光子。在这光子飞行方向上对置一对探测器,便可以几乎在同时接受到这两个光子,并可推定正电子发射点在两探头间连线上,通过环绕360°排列的多组配对探头,得到探头对连线上的一维信息,将信号向中心点反投射并加以适当的数学处理,便可形成断层示踪剂分布图像。凡代谢率高的组织或病变,在PET上呈明确的高代谢亮信号,凡代谢率低的组织或病变在PET上呈低代谢暗信号。
核医学(PETCT显像剂

核医学(PETCT显像剂PET显像剂的种类显像剂类型核素显像剂用途血流灌注型13N 13N-NH3· H2O★心、脑血流测定15O 15O-H2O★脑血流测定醇流量测定82R b 82RbCl 心肌血流量测定62C u 62Cu-Cu(PTSM) 心、脑血流量谢18F 18F-FET★氨基酸代谢18F 18F-FPT★氨基酸代谢18F 18F-FEMET★氨基酸代谢肪酸代谢11C 11C-棕榈酸盐脂肪酸代谢11C 11C-胆碱★胆碱代谢11C 11C-胸腺嘧啶核酸代碱代谢18F 18F-FLT★细胞增殖18F 18F-FMISO★乏氧显像18F 18F-FETNIM 乏氧显像18F 18F-NaF★骨谢15O 15O-O2★氧代谢结合型11C 11C-β-CIT 多巴胺转运蛋白显像11C 11C-SCH2339 多巴胺巴胺D2受体显像11C 11C-MSP 多巴胺D2受体显像11C 11C-McN5652 5-白显像11C 11C-WAY100635 5-羟色胺受体显像11C 11C-Flumazenil 苯并二氮卓氧化酶B活性显像11C S-[11C] CGP12177 肾上腺素能受体显像体显像11C 11C-MQNB 乙酰胆碱能受体显像11C 11C-烟碱乙酰胆碱片受体显像11C 11C-Diprenorphine 阿片受体显像18F 18F-DOPA★多巴胺能神巴胺转运蛋白显像18F 18F-β-FM-CIT 多巴胺转运蛋白显体显像18F 18F-FESP★多巴胺D2受体显像18F 18F-Setoperone 5-羟色胺受氮卓受体显像18F 18F-FES★雌激素受体显像18F 18F-Carazolol 肾上腺F F-RGD多肽血管生成显像18F 18F-Annexin V 肿瘤细胞凋亡显像18F 18F-Cyclofoxy 阿片体显像18F 18F-Octreotide 生长抑素受体显像18F 18F-FHBG 基因表达显正电子显像剂的一般性质量要求正电子显像剂有其本身的特殊性,即必须在严格的时间限制内完成生产和就地就近使用,而且在生产与应用之间没有足够时间进行目前认可的所有质量控制(QC)试验,不仅细菌学、内毒素检查是如此,某些化学质量检查也是如此。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PET显像剂的种类正电子显像剂的一般性质量要求正电子显像剂有其本身的特殊性,即必须在严格的时间限制内完成生产和就地就近使用,而且在生产与应用之间没有足够时间进行目前认可的所有质量控制(QC)试验,不仅细菌学、内毒素检查是如此,某些化学质量检查也是如此。
正电子显像剂有两个特点,其一是因所用放射性核素的半衰期短,生产这些化合物时必须涉及高水平的放射性,以便最后能得到临床研究需要的有用数量,生产工序必须遥控。
其二,所研究的化合物极其微量,生产的绝大多数正电子显像剂不加载体,通常相当于近纳摩尔量级。
这在测定生理机能时具有不产生药效效应的优点。
因此,使用于质量控制的分析方法必须具有更低的探测下限。
在正电子显像剂这种特殊情况下,最终产品的质量控制受到时间的限制,对质量保证来讲,过程控制成为主要因素。
因此应建立单独而又严格的生产控制测量方法和程序。
例如在生产过程中,采用放射性高效液相色谱(HPLC)和放射性气相色谱(GC)等方法,无疑可以保证产品质量。
在线(Online)生产控制更有效的方法是连续监测合成中放射性的变化,这有可能在很早阶段就发现生产过程中的大多数问题。
生产工艺研究结束时以及随后工艺和物料来源的任何明显变化,都应通过对几批放射性显像剂的必要质量指标进行验证以进行全面的质量控制。
成分和原材料的质量管理是正电子显像剂质量保证的重要的过程控制。
这些原材料包括生产器具以及药物制品等所有成分。
每批原材料的一致性和质量必须得到保证并有证明文件。
经过“入口控制”后,该批产品必须作出标记并登记批号,且应备有关生产控制方式的证明文件,并制订试验记录和分析方法细则说明。
凡药典收载的成分,有详细的说明书就足够了。
如果试验方法药典未载明,则必须对其确认并被证实符合质量要求。
如果药典未载明而通常用作PET显像剂合成前体的原材料,必须以专题报告形式作出说明,包括名称、鉴定方法、纯度试验说明、稳定性和物理、化学性质。
在18F-FDG生产中,比较重要的原材料包括靶材料的纯度和丰度、三氟甘露糖的纯度、乙腈的纯度与含水量的高低以及其它化学试剂的质量,同时也包括靶室的清洁程度、反应器皿的清洁程度以及分离纯化材料的质量等,只有这些材料均合乎要求,才能生产出符号要求的18F-FDG。
任何满足短寿命放射性药物质量要求的体系,均取决于经过良好培训、具有经验的高素质人员,这就要求有一支在药物实践方面有经验的放射性药物化学专家或有经验的放射性药物专家,并要在短寿命放射性药物的专业化生产与分析方面进行培训。
18F-FDG国家暂行标准•本品为无载体的氟[18F]脱氧氧葡萄糖的无菌、无热原、等渗水溶液。
含18F的放射性浓度,按其标签上记载的时间,为标示量的90.0-110%。
•性状:本品为无色澄明测试液体•鉴别:(1)取本品适量,用合适的仪器测量本品的半衰期(中国药典2000版二部附录XIII,半衰期测定法),其半衰期为105-115分钟之间。
•(2)取本品适量,照g谱仪法(中国药典2000牘二部附录XIII,g谱仪法)测量,其主要光子的能量应为0.511Kev和可能有的合成峰1.022KeV.•(3)取本品适量,照放射化学纯度项下的方法测量,在Rf值约为0.45处有放射性主峰。
•检查:pH值:应为4.5-7.5(中国药典2000牘二部附录XIII,pH值测量法)•含氨基聚醚2.2.2(K2.2.2)量对照溶液的配制精密称取氨基聚醚(2.2.2)0.025g 于50ml 烧杯,加热的二次蒸馏水溶解,次却后定量转移到250ml量瓶里,加水至刻度,摇匀即得含氨基聚醚(2.2.2)量为100.0mg的对照溶液.•工作曲线的绘制:精密量取对照溶液0.00, 0.05.0.10,0.20,0.40ml,分别置于5ml容量瓶中,依次加入pH值为6.4的柠檬酸一氢钠缓冲溶液1.0ml(称取5.25g柠檬酸和2.0氢氧化钠于烧杯,用50ml水溶解,以0.1mol/L的NaOH溶液和pH计调节pH值为6.4,再稀释到250ml,摇匀,即可),含Pb2+500mg/ml的硝酸铅溶液(称取79.93mgPb(NO3)2于烧杯中,加水溶解,转移到100ml容量瓶中,用水定容,摇匀,即可)1.0ml,加水到刻度,摇匀.照紫外分光光度法(中国药典2000年版二部附录IV A),在254nm波长处分别测定吸光度,绘制工作曲线,工作曲线相关系数不小于0.99.•测量法:精密量取供试品溶液0.5ml于5ml量瓶中,以下操作步骤同工作曲线的绘制.测定供试品的吸光度,根据工作曲线求出氨基聚醚(2.22)量.本品每ml含氨基聚醚(2.2.2)量不超过25mg.•细菌内毒素:取本品适量,至少稀释6倍后,依中国药典2000年版二部附录XIE检查,本品每1ml含细菌内毒素量应小于15EU.•无菌:取本品适量,依中国药典2000年版二部附录XI H,无菌应符合规定.•其它:应符合注射剂项下有关规定(中国药典2000年版二部附录IB)•放射化学纯度取本品适量,以硅胶为固定相,以乙腈:水(85:5 V/V)为展开剂,按放射化学纯度测量第一法(中国药典2000年版二部附录藏XIII)测量,含氟[18F]脱氧氧葡萄糖放射化学纯度应不低于90%.•放射性浓度取本品适量,按中国药典2000年版二部附录XIII,放射性浓度测量法第一法,按标签上记载的时间,放射性浓度应不低370MBq/ml.•类别放射性诊断用药•规格0.37-7.4GBq•贮藏本品密封于30ml或10ml无菌瓶中,置于铅容器内.•有效期从标定时间开始计算为6小时.18F-FDG的质量指标18F-FDG是载于美国药典的第一个PET放射性药物,这里按照美国药典(1995年)制订的关于18F-FDG的质量要求,对18F-FDG的质量指标进行简要介绍。
①放射性核纯度核杂质来源:对于不同的18F生产方法,可能产生不同的杂质同位素。
以20Ne(d,α)18F反应生产的18F-F2的质量较高,可能的杂质同位素是寿命很短的钠和氖,在加工过程中会逐渐衰变,并在合成期间消失。
以18O-H2O为靶材料,通过18O(p,n)18F反应生产18F-F-,其放射性核纯度需要严格的控制,因18F-F-的质量不仅决定最终产品的核纯度,而且还影响亲核取代的反应性。
随着18O-H2O的丰度下降,通过16O(p,α)13N反应生成13N的量增加。
另外,来自靶窗箔膜和因箔膜材料改变产生的阳离子型放射性核素杂质也是较有影响的因素。
因此,建议用阴离子交换柱来固定吸附18F-F-。
核纯度的测定:有两种方法可以进行核纯度的鉴定。
其一是利用锗半导体多道γ谱仪测量法进行测定,其γ谱出现一个0.511MeV的主光电峰。
在检测中,可能出现一个1.022MeV的总峰,这取决于源的几何条件和探测器效率。
其二是半衰期测定法,即取一定剂量的18F-FDG溶液,测定其放射性活度,并记录测量时间,然后以一定的时间间隔进行连续测定5个半衰期内18F-FDG溶液的放射性活度,以时间为横坐标,放射性活度的对数为纵坐标作图,得到斜率k<0的直线,由此直线上的任何两点可计算得半衰期,并求得在t=0时的总放射性活度,与原始总放射性活度相比,从而求得18F的核纯度。
18F的核纯度大于99.8%。
②化学纯度除了合成前体三氟甘露糖(Mannose triflate)和3.4.6-三乙酰-D-葡萄糖醛(TAG)的纯度影响最终18F-FDG的化学纯度外,合成方法和反应条件也显著影响18F-FDG的化学纯度。
因此在市场购买前体时,尽量选用色谱级试剂。
在氨基聚醚Kryptofix 2.2.2(Kry2.2.2)催化法中,必须在最终产品中控制有机溶剂和Kry2.2.2的含量。
利用AG50树脂可以除去Kry2.2.2。
元素分析、质谱和色谱已用于测定极微水平的Kry2.2.2。
硅胶板-TLC法是目前分析Kry2.2.2最实用的方法,最低检出限量为0.025mg/ml,展开剂为甲醇-30%氨水(9:1 V/V)或0.1%三乙胺甲醇溶液,用碘显色,并与50μg/mL标准Kry2.2.2的层析斑点比较,要求2-18F-FDG注射液所呈现斑点的大小及明暗度不能超过标准溶液。
在亲核或亲电取代法中会产生2-18F-FDG的差向异构体2-[18F]氟-2-脱氧-D-甘露糖(18F-FDM)(图)。
特别以亲电取代法产生2-18F-FDG时,所选择的底物、亲电氟化试剂、反应溶剂对2-18F-FDG和2-18F-FDM的构成比例有很大的影响。
表列举了以TAG为底物进行2-18F-FDG生产时亲电氟化试剂和反应溶剂对2-18F-FDG和2-18F-FDM的构成比例的影响。
表亲电氟化试剂和反应溶剂对2-18F-FDG和2-18F-FDM的构成比例的影响亲电氟化试剂反应溶剂2-18F-FDG :2-18F-FDM18F-F2CH3COOH 65 :3518F-F2CH3CN 65 :3518F-CH3COOF CH3COOH 27 :7518F-CH3COOF CH3CN 30 :7018F-XeF2C6H6/BF350 :5018F-XeF2Et2/ BF3100 :0利用纯的2-18F-FDG和2-18F-FDM进行PET脑显像,发现局部大脑的代谢率无差异,但是进行2-18F-FDG和2-18F-FDM比例的测定仍然是有必要的,并尽量使2-18F-FDM的比例低于5%。
HPLC法是进行2-18F-FDG化学纯度分析的最好方法,以85%乙腈水溶液为流动相,流速为1ml/min,层析柱为反相氨基柱,以视差检测器进行检测,要求化学纯度大于95%。
③放射化学纯度除含有2-18F-FDG外,可以通过放射分析方法来鉴定未反应的[18F]氟化物、部分乙酰化的[18F]氟-脱氧葡萄糖衍生物或[18F]氟标记化合物。
要求2-18F-FDG的放射化学纯度大于95%。
放射性-HPLC法:该法是快速而准确的方法,容易对放射性杂质进行有效的分离并进行定量测定。
测定时同样以85%乙腈水溶液为流动相,流速为1ml/min,层析柱为反相氨基柱,用放射性探测器进行检测,要求放射化学纯度大于95%。
但使用反相氨基柱,由于拖尾效应,2-18F-FDG与[18F]氟化物的分离不理想。
因此,在乙腈水溶液洗脱的反相氨基柱法中,为了起排代作用,在洗脱液中加入一定量的NaF,才能有效地将[18F]氟化物分离并从该柱上洗脱下来。
另外,也可用Dionex PA100阴离子交换柱,用0.1mol/L NaOH作为洗脱剂,该法能使[18F]氟化物、葡萄糖、2-18F-FDG以及部分水解的糖实现分离。
TLC法:取适量注射液和标准2-19F-FDG溶液分别点于硅胶薄层层析板上,用95%乙腈水溶液为展开剂进行展开,直到溶剂移到层析板长度的约3/4处,取出并干燥,然后用适当的放射性测定法测定放射性分布。