交流接触器、按钮及复合联锁的特点
三相异步电动机正反转控制线路电路分析及教学

三相异步电动机正反转控制线路电路分析及教学三相异步电动机正反转控制线路是电机拖动课程教学中的核心部分,也是学生中级维修电工技能鉴定考核中必考知识技能之一,是学生学习后续课程,学习电路故障排除的基础。
而接触器联锁、按钮联锁及双重联锁正反转这三种联锁控制线路又是控制线路中最基础、最常用的控制电路。
为了更合理、完善地完成三种联锁电路的教学,本文对这三种联锁电路的地位作用、电路组成、工作原理、联系及区别进行了详细的分析,并且给出了便于学生理解和掌握的教学思路。
1、三种正反转控制线路的地位和作用接触器、按钮、双重联锁这三种联锁线路是三相异步电动机正反转控制电路中很重要的控制线路,是通过将接触器、按钮的一个常闭触点串联在另外一个接触器线圈的回路里,起到防止出现正反转接触器同时吸合造成电路短路的作用。
2、电路组成三种电路均由电源隔离开关QS;交流接触器KM1、KM2;热继电器FR;熔断器FU1、FU2,启动按钮SB2、SB3;停止按钮SB1及电动机M组成。
电路中各个元件的文字符号、图形表示、工作原理、实物的触点等,是学习电路工作原理的基础。
3、工作原理图图一接触器联锁正反转控制线路图二按钮联锁正反转控制线路4、工作原理分析(1)接触器联锁正反转控制线路的工作原理(图一)A、正转控制:按下正转按钮SB2→接触器KM1线圈得电→KM1主触头闭合,KM1的自锁触头闭合→电动机自锁正转。
同时,KM1联锁触头断开,对KM2联锁。
B、反转控制:按下反转按钮SB3→接触器KM2线圈得电→KM2主触头闭合,KM2的自锁触头闭合→电动机自锁正转。
同时,KM2联锁触头断开,对KM1联锁。
C、停止控制:按下停止按钮SB1,KM2线圈断电,KM2主触头断开,同时KM2自锁触点也断开,电机反转停止。
KM1常闭触点闭合,为正转做好准备。
图三双重联锁正反转控制线路(2)按钮联锁正反转控制线路的工作原理(图二)A、正转控制:按下正转按钮SB2→SB2常闭触头先分断,对KM2联锁,SB2常开触头后闭合→接触器KM1线圈得电→KM1主触头闭合,KM1的自锁触头闭合→电动机自锁正转。
交流接触器

结构特征
● CJX1-F系列交流接触器为双断点直动式结构,铁芯有E型(小容量)和U 型两种型式。 ● 触头材料采用具有高抗熔焊性及耐电磨损的银合金制成。 ● 产品体积小、重量轻,灭弧罩采用不饱和树脂制成,灭弧室呈封闭型, 飞弧距离小。 ● 导电部件不外露,安全性能好。
交流接触器CJX1-F系列-2
交流接触器CJ20系列-2
结构特点 ● CJ20系列交流接触器为直动式、双断点,立体布置,结构简单紧凑, 外形安装尺寸较CJ10、CJ8等系列接触器老产品大大缩小。 ● CJ20-10、CJ20-16 、CJ2-25为不带灭弧罩的三层二段式结构,上段 为热固性塑料躯壳固定着辅助触头、主触头及灭弧系统,下段为热塑性塑料 底座安装电磁系统及缓冲装置,底座上除有螺钉固定的安装孔外还装有卡轨 安装用的锁,可安装于I EC标准规定的35mm宽帽形安装轨上,拆装方便。 CJ20-40及以上的接触器为两层布置正装式结构,主触头和灭弧罩室在上, 电磁系统在下,两只独立的辅助触头组件布置在躯壳两侧。 ●全系列接触器采用银基合金触头。CJ20-10、16用AgNi触头,CJ20-40 及以上用银基氧化物触头。灭弧性能优良的触头灭弧系统配用抗熔焊耐磨损 的触头材料使产品具有长久的电寿命,并适于在A C-4类特别繁重的条件下 工作。
交流接触器CJX2系列-2
交流接触器CJX2系列-3
交流接触器CJX2-Z系列-1
CJX2- Z直流操作交流接触器适用于交流50Hz(或60Hz),电
压至660V,电流至95A及以下的电路中,供远距离接通,分断电路及 频繁起动,控制交流电动机之用。并且可以同热继电器直接插接安装组 成电磁起动器。
交流接触器CJ19系列-1
CJ19系列切换电容器接触器适用于交流50Hz,电压至380V电力
按钮、接触器双重联锁控制线路优缺点

按钮、接触器双重联锁控制线路优缺点一、接触器联锁正反转控制线路①接触器联锁:当其中一个接触器得电动作,通过其辅助常闭触头使另外一个接触器不能得电动作,这种相互作用的制约叫做联锁或者互锁。
②其优点是工作安全可靠,缺点是操作不便。
因为电机正反转之间的切换时,必须要先按下停止按钮,才能进行正反转间的切换。
否则接触器联锁作用使其不能正反转切换。
二、按钮联锁正反转控制线路按钮联锁正反做控制线路的优点是操作方便,不需按动停止按钮,可以直接进行正反转切换,但缺点是容易产生相间短路。
例如:当接触器KM1主触头熔焊或者被异物卡住时,即使接触器KM1线圈失电,其主触头也没有分断,这时按下SB2,KM2得电动作,主触头闭合,就会造成相间短路。
所以这电路存在一定的安全隐患。
接触器联锁工作安全可靠但操作不方便;按钮联锁操作方便但有安全隐患。
这两种电路优缺点都很明显。
那么实际应用中,又是怎么样解决这些不足和缺点的呢?实际应用当中我们的电路既要工作安全也要操作方便,这就是我们今天要讲的新的控制电路——按钮、接触器双重联锁正反转控制线路。
1、正反转控制线路这是结合了接触器联锁正反转控制线路、按钮联锁正反转控制线路的结构,把两个线路组合起来形成的。
2、双重联锁控制线路的工作原理双重联锁:一重是交流接触器常闭触头与另一线圈串联而构成的联锁;另一重是复合按钮常闭触头串联在对方电路当中构成的联锁。
优点:它是接触器联锁控制线路与按钮联锁控制线路组合在一起形成的新电路,具备了以上两种电路的优点,操作方便,安全可靠,不会造成相间短路。
缺点:虽然克服了接触器联锁和按钮联锁的缺点,但是这电路自身电路比较复杂,连接线路容易出错,造成电路故障。
3、安装训练:①检查元件是否完好齐全;②根据布置图把元件正确安装在工作板上;③根据电路图和接线图把各元件连接起来;④接线完毕后自检线路,排查故障;⑤通电试车。
4、注意事项:①主电路中接触器主触头要换向;②双重联锁触头的连接不要混淆;③怎么样布线才比较合理;④接线完毕经检查无误后方可通电试车。
交流接触器结构与工作原理

交流接触器结构与工作原理引言概述:交流接触器是一种用于控制电气电路中电流的开关设备,通常用于控制电动机、加热器、照明设备等。
它的结构和工作原理对于电气控制系统的正常运行至关重要。
本文将介绍交流接触器的结构和工作原理,匡助读者更好地理解这一重要的电气设备。
一、结构1.1 触点部份:交流接触器的核心部份是触点,它由固定触点和动触点组成。
固定触点固定在接触器内部,而动触点则通过电磁力与固定触点连接。
1.2 线圈部份:交流接触器还包括一个线圈,通过线圈通入电流来产生电磁力,控制动触点的闭合和断开。
1.3 辅助部份:交流接触器通常还包括辅助触点、过载保护、灯信号等辅助部份,用于实现更复杂的控制功能。
二、工作原理2.1 吸合过程:当线圈通入电流时,产生的电磁力使得动触点与固定触点吸合,闭合电路,电器设备开始运行。
2.2 断开过程:当线圈断开电流时,电磁力消失,动触点与固定触点分离,断开电路,电器设备住手运行。
2.3 过载保护:交流接触器还具有过载保护功能,当电路中的电流超过额定值时,过载保护会自动断开电路,避免设备损坏。
三、工作特点3.1 高可靠性:交流接触器采用机械连接,工作稳定可靠,适合于长期运行的场合。
3.2 耐久性强:交流接触器的触点采用特殊合金材料制成,具有良好的耐磨性和导电性,使用寿命长。
3.3 控制灵便:交流接触器可以实现多种控制功能,如正反转控制、时间延时控制等,灵便性高。
四、应用领域4.1 电动机控制:交流接触器常用于电动机的启动、住手和正反转控制。
4.2 照明控制:交流接触器可以用于照明设备的开关控制,实现定时开关等功能。
4.3 加热器控制:交流接触器还广泛应用于加热器的温度控制和过载保护。
五、发展趋势5.1 智能化:随着科技的发展,交流接触器将向智能化方向发展,实现远程监控和自动化控制。
5.2 节能环保:未来的交流接触器将更注重节能环保,采用高效节能的材料和技术,降低能耗。
5.3 多功能化:未来的交流接触器将具备更多的功能,如故障自诊断、远程控制等,满足不同场合的需求。
接触器联锁的正、反转控制

接触器联锁的正、反转控制一、接触器联锁的正、反转控制接触器联锁的正、反转控制电路如图1-6所示。
图中采用两个接触器,正转接触器KM1和反转接触器KM2。
当KM1的三副主触点接通时,三相电源的相序L1-L2-L3接入电动机,而当KM2的三副主触点接通时,三相电源的相序按L3-L2-L1接入电动机。
所以当两接触器分别工作时,电动机的旋转方向相反。
图1-6 接触器连锁的正、反转控制电路电路要求接触器KM1和KM2不能同时通电,否则它们的主触点同时闭合,会造成L1、L3两相电源短路,为此在接触器KM1与KM2线圈各自的支路中相互串联了对方的一副常闭辅助触点,以保证接触器KM1和KM2不会同时通电。
KM1与KM2这两副常闭辅助触点所起的作用称为联锁(或互锁)作用,这两副常闭触点就叫做联锁触点。
接触器连锁正、反转控制电路动作原理如下。
合上电源开关QS。
正转控制:反转控制:该电路的缺点是操作不方便,因为要改变电动机的转向,必须先按停止按钮SB1,再按反转按钮SB3,才能使电动机反转。
二、按钮连锁的正、反转控制按钮连锁的正、反转控制电路如图1-7所示。
控制板上的电器平面布置如图1-8所示。
图1-7 按钮连锁正、反转控制电路图1-8 控制板上电器平面布置按钮连锁的正、反转控制电路动作原理与图1-6接触器连锁的正、反转控制电路大体相同,但是,由于采用了复合按钮,当按下反转按钮SB1后,先是使接在正转控制电路中的反转按钮的常闭触点分析,于是,正转接触器KM1的线圈断电,触点全部分断,电动机便断电作惯性运行;紧接着,反转按钮的常开触点闭合,使反转接触器KM2的线圈通电,电动机立即反转启动。
这样。
即保证了正、反转接触器KM1和KM2不会同时通电,又可不按停止按钮而直接反转按钮进行反转启动。
同样,右反转运行转换成正转运行的情况,也只要直接按正转按钮即可。
这种电路的优点是操作方便,缺点是易产生短路故障。
三、按钮和接触器复合连锁的正反转控制复合连锁正反转控制电路如图1-9所示。
(完整版)按钮、接触器双重联锁正反转控制线路

按钮、接触器双重联锁正反转控制线路⑴提问1)三相异步电动机缺相运行的故障现象是什么?2)怎样接线可使三相异步电动机从正转变为反转?⑵由问题2)引出并简述接触器联锁正反转控制线路工作原理1)电源电路由三相电源线L1、L2、L3、组合开关QS、熔断器FU2等组成,简述各元件的作用。
2)主电路由FU1、KM1、KM2、FR及电动机M组成。
KM1:正转用接触器,其主触头所接通的电源相序按L1、L2、L3相序接线。
KM2:反转用接触器,其主触头所接通的电源相序按L3、L2、L1相序接线。
提问:在三相异步电动机的正反转控制线路中正反转接触器是否可以同时闭合?KM1、KM2不能同时闭合,否则主电路短路,由控制电路中的联锁触头实现接触器联锁。
3)控制电路正转控制电路:由SB1、KM1线圈及1、2、3、4、5号线等组成。
反转控制电路:由SB2、KM2线圈及1、2、3、6、7号线等组成。
简述原理,提问:接触器联锁的缺点是什么?线路缺点:操作不便从正转变为反转,必须先按停止按钮SB3,后按反转启动按钮SB2。
线路优点:工作安全可靠。
由缺点引出按钮联锁正反转控制线路⑶简述按钮联锁正反转控制线路工作原理电源电路及主电路原理同接触器联锁正反转控制线路。
正、反转按钮SB1、SB2换成复合按钮,并使两复合按钮的常闭触头代替接触器联锁触头。
工作原理:基本同接触器联锁,从正转变为反转,不用先按停止按钮,可直接按下反转按钮SB2即可实现。
线路优点:操作方便。
线路缺点:容易产生电源两相短路故障,有不安全隐患。
在实际工作中经常采用按钮、接触器双重联锁正反转控制线路。
2.讲授新内容:四.按钮、接触器双重联锁正反转控制线路(128页)⑴电路组成正、反转按钮SB1、SB2采用复合按钮,同时加上接触器联锁。
电源电路、主电路不变。
⑵工作原理先合上电源开关QS1)正转控制按下正转按钮SB1SB1常闭触头先分断对KM2联锁,切断反转控制电路。
SB1常开触头后闭合,KM1线圈得电。
接触器和按钮双重联锁正反转控制线路
双重联锁的正反转电气控制线路(1)电路组成:主电路、控制电路(2)主要元器件:按钮、低压断路器、交流接触器(3)原理分析正转控制:按下正转按钮SB1→接触器KM1线圈得电→KM1主触头闭合→电动机正转,同时KM1的自锁触头闭合,KM1的互锁触头断开。
反转控制:按下反转按钮SB2→接触器KM1线圈失电→KM1的互锁触头闭合→接触器KM2线圈得电→从而KM2主触头闭合,电动机开始反转,同时KM2的自锁触头闭合,KM2的互锁触头断开。
接触器互锁:为了避免正转和反转两个接触器同时动作造成相间短路,在两个接触器线圈所在的控制电路上加了电气联锁。
即将正转接触器KM1的常闭辅助触头与反转接触器KM2的线圈串联;又将反转接触器KM2的常闭辅助触头与正转接触器KM1的线圈串联。
这样,两个接触器互相制约,使得任何情况下不会出现两个线圈同时得电的状况,起到保护作用。
按钮互锁:复合启动按钮SB1,SB2也具有电气互锁作用。
SB1的常闭触头串接在KM2线圈的供电线路上,SB2的常闭触头串接在KM1线圈的供电线路上,这种互锁关系能保证一个接触器断电释放后,另一个接触器才能通电动作,从而避免因操作失误造成电源相间短路。
按钮和接触器的复合互锁使电路更安全可靠。
1、双重联锁的正反转控制线路原理图:由于电机正反转的实现是通过改变电源相序来实现的。
因此,我们采用两个交流接触器来进行换相,以达到控制电机的正转和反转的目的。
用两个按钮分别实现正转和反转的控制,并把它们的常闭触点分别放在对方的控制回路里,达到联锁的目的。
线路工作原理图如下:2、分析双重联锁的正反转控制的工作原理:合上电源开关正转启动:按下启动按钮SB1,KM1线圈得电,KM1主触头闭合,电机正转转动,同时KM1辅助触点自锁,继续线圈供电。
同时联锁触点KM1常闭触点断开(禁止KM2 线圈得电,对反转进行联锁),电机继续正转转动。
线路启动回路:L1→QS→FU2→FR→SB3→SB1→KM2常闭→KM1线圈→L2反转启动:按下启动按钮SB2,KM1线圈断电,KM1主触头断开,同时KM1自锁触点也断开,电机正转停止转动。
交流接触器工作原理
交流接触器工作原理
接触器是一种电动装置,用于控制电流的开关操作。
它的工作原理基于电磁吸合的现象。
接触器主要由电磁铁和触点组成。
电磁铁包括绕组和铁芯,在通电时会产生磁场。
触点则是由导电材料制成的两个金属片,在正常情况下是分离的。
当通电时,电磁铁产生的磁场会吸引金属片,使其相互接触。
这样,电流就可以流经接触器中的闭合回路,实现电路的开和关。
当断电后,电磁铁的磁力消失,金属片会因为弹力的作用分离,使得电路断开,停止电流的流动。
接触器的工作原理可以类比于电磁继电器。
它们的区别在于接触器一般用于较大电流的控制,而继电器主要用于信号的传递。
接触器广泛应用于起动电动机、控制电路以及电力系统等领域。
总之,接触器通过电磁铁产生的磁场吸引触点实现电路的闭合和断开,从而控制电流的开关操作。
这种工作原理使得接触器具有可靠性高、承载电流大的特点。
[全]接触器、按钮双重连锁正反转控制电路
接触器、按钮双重连锁正反转控制电路如下图为常见的正反转控制电路,通过接触器、按钮双重联锁对电路进行保护。
图1(一)电路主要元器件及其作用1、空气开关(QS):电源的通断,有短路、严重过载及欠电压保护2、熔断器(FU):短路保护;3、接触器(KM):可频繁通断大电流,有灭弧功能,亦有欠电压保护4、热继电器(FR):过载保护;5:、按钮(SB):启停电路(二)电路原理分析1、主电路:从负载端往电源端看,即从下往上。
2、辅助电路:从上到下、从左往右,即先看电源,在顺次看各条回路。
分析清楚电气图的关键:看懂各元器件图形符号、文字符号,对元器件结构、功能掌握。
掌握该电气图的两个关键点:1、电气自锁(定义):依靠接触器自身的常开触电使其线圈保持通电;2、电气互锁:在同一时间段内两个接触器只允许一个通电工作的控制作业;机械连锁:通过按钮的一对常开与常闭来实现两个接触器只允许一个工作(双保险);(三)电气图接线与检修1、先对图纸进行标号,再照图在对实物进行装接,在不够熟练的情况下二次线最好一回路一回路的接;2、可用万用表的蜂鸣档检测电路的通断,蜂鸣档也是电阻档可测出接触器线圈的电阻。
液压传动基础知识通过对千斤顶的工作原理进行了解,初步了解液压作用的实质。
并对目前液压的运用、将来的发展做一个简要的分析。
一、注塑机锁模机构液压传动系统工作过程、千斤顶的工作原理原理图初始状态:液压泵3由电动机带动从油箱1中吸油,然后将具有压力能的油液输送到管路,油液通过节流阀4和管路流至换向阀6。
当阀芯处于图示位置(中间位置)时,这时阀口P、A、B、T互不相通,此时液压缸里没有压力油输入,活塞9不产生运动。
图2图3二、液压传动系统的组成一个完整的液压传动系统由五个相联系的部分组成,分别叫做动力元件、控制元件、执行元件、辅助元件和传动介质。
三、液压传动的工作特点1. 传递运动均匀平稳,负载变化时速度较稳定。
2. 液压装置易于实现过载保护——借助于设置溢流阀等元件,自动防止过载,避免发生事故。
交流接触器介绍范文
交流接触器介绍范文
1.按电流分为小型、中型和大型接触器。
小型接触器适用于控制小功
率设备,中型接触器适用于控制中功率设备,大型接触器适用于控制大功
率设备。
2.按控制电压分为低压和高压接触器。
低压接触器适用于控制额定电
压不超过1000V的电路,高压接触器适用于控制额定电压超过1000V的电路。
3.按应用领域分为通用接触器和专用接触器。
通用接触器适用于一般
用途,如空调、电灯等,专用接触器适用于特殊设备,如电梯、压缩机等。
1.高可靠性:交流接触器采用可靠的电磁原理工作,具有很高的开关
能力和稳定性。
2.耐久耐用:交流接触器的主接触器采用合金触点,具有较长的使用
寿命。
3.多功能:交流接触器可以与多种控制设备组合使用,实现多种复杂
的控制功能。
4.过载保护:交流接触器内置过载保护装置,可以在电路发生过载时
及时切断电源,保护设备安全。
5.易安装:交流接触器具有简单的结构和紧凑的尺寸,安装方便,适
用于各种场合。
总结起来,交流接触器是一种用于控制电气设备开关的装置,具有高
可靠性、耐久耐用和多功能的特点。
它在电力系统、工业自动化以及各种
建筑和通讯领域有着广泛的应用。
通过合理配置和使用交流接触器,可以实现电路的安全控制和过载保护,提高设备的工作效率和稳定性。