D_九年级数学上册第23章旋转年单元综合测试题(含解析)

合集下载

人教版九年级上册数学 第23章 旋转 单元测试卷(含答案解析)

人教版九年级上册数学 第23章 旋转 单元测试卷(含答案解析)

人教版九年级上册数学第23章旋转单元测试卷一.选择题1.已知A点坐标为(2,3),则点A关于原点对称的点的坐标为()A.(﹣3,﹣2)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)2.如图,在△ABC中,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,若∠B′C′B=52°,则∠C的度数为()A.74°B.66°C.64°D.76°3.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=4,CG=3,则CE的长为()A.5B.5C.5D.4.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图,△ABC中,∠CAB=68°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得C′C∥AB,则∠BAB′的度数为()A.34°B.36°C.44°D.46°6.在图形的旋转中,下列说法不正确的是()A.旋转前和旋转后的图形全等B.图形上的每一个点到旋转中心的距离都相等C.图形上的每一个点旋转的角度都相同D.图形上可能存在不动的点7.如图△ABO的顶点分别是A(3,1),B(0,2),O(0,0),点C,D分别为BO,BA 的中点,连AC,OD交于点G,过点A作AP⊥OD交OD的延长线于点P.若△APO绕原点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点P的坐标是()A.(2,1)B.(2,2)C.(1,2)D.A(1,1)8.如图,矩形ABCD中,AB=7,BC=12,E为边AD的中点,点F为边CD上一点,将线段EF绕点E顺时针旋转90°得到EH,若点H恰好在线段BF上,则CF的长是()A.3B.3.5C.4D.4.59.若点P(a+1,a﹣2)关于原点对称的点位于第二象限,则a的取值范围表示正确的是()A.B.C.D.10.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()。

人教版九年级数学上册 第23章 《旋转》 综合测试卷(含答案)

人教版九年级数学上册  第23章   《旋转》    综合测试卷(含答案)

人教版数学九年级上册第23章旋转综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列图形,既是轴对称图形,又是中心对称图形的是( )2. 下列图形中,既是中心对称图形又是轴对称图形的有( )A.4个B.3个C.2个D.1个3. 如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是( )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位长度B.△ABC绕点C顺时针旋转90°,再向下平移1个单位长度C.△ABC绕点C逆时针旋转90°,再向下平移1个单位长度D.△ABC绕点C逆时针旋转90°,再向下平移3个单位长度4. 在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是( )A.(3,-3) B.(-3,3)C.(3,3)或(-3,-3) D.(3,-3)或(-3,3)5. 如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )A.55°B.60°C.65°D.70°6.如图,为保持原图的模样,应选哪一块拼在图案的空白处( )7. 如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.10°B.20°C.50°D.70°8. 如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°9. 如图,将边长为3的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为( )A.3 B. 3C.3- 3 D.3-3 210.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11. 已知点A的坐标为(-1,3),将点A绕坐标原点顺时针旋转90°,则点A的对应点的坐标为_______.12.如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得的图形,则旋转中心P的坐标是_________.13.如图,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是14.如图,在△ABC中,∠B=45°,∠C=60°,将△ABC绕点A旋转30°后得到△AB1C1,掌握∠BAC1的度数是__________.15. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为____.16. 如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连接AP 并延长交CD于点E,连接PC,则三角形PCE的面积为_________.17.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.若抛物线C1的解析式为y=34(x+2)2-1,那么抛物线C2的解析式为____________________.18.如图所示,将图形①以点O为旋转中心,每次旋转90°,则第2019次旋转后的是图形(在下列各图中选填正确图形的序号即可).三.解答题(共9小题,66分)19.(6分) 如图,把△AOB绕点O逆时针旋转40°可得到△A′OB′.(1)画出旋转后的图形;(2)指出旋转角的度数并找出一组对应边.20.(6分) 如图,已知△ACE,△ABF都是等腰直角三角形,且∠BAF=∠CAE=90°.那么你能利用旋转的知识说明FC=BE吗?21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.22.(6分) 如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图①中画出一个面积最小的▱PAQB.(2)在图②中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.23.(6分)直角坐标系内的点P(x2-3x,4)与另一点Q(x-8,y)关于原点对称,试求2020(2x-y)的值.24.(8分) 如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0, 3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP的长.25.(8分) ) 如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.26.(10分) 如图,已知点A(2, 3)和直线y=x,(1)点A关于直线y=x的对称点为点B,点A关于原点(0, 0)的对称点为点C;写出点B、C的坐标;(2)若点D是点B关于原点(0, 0)的对称点,判断四形ABCD的形状,并说明理由.27.(10分) 某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC 与AFE按如图①所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.参考答案:1-5DDADC 6-10BBCCD 11. (3,1) 12. (0,1)13.(2,10)或(-2,0) 14. 105° 15. 15° 16. 9-5 317. y =-34(x -2)2+118. ④19. 解:(1)如图所示(2)旋转角∠AOA′=∠BOB′=40°,OA ,OA′或OB ,OB′或AB ,A′B′是一组对应边 20. 解:∵AE ,AB 绕A 点顺时针旋转90°分别与AC ,AF 重合, ∴△AFC 可看作是△ABE 绕A 点顺时针旋转90°得到的,∴FC =BE 21. 解:(1)①②如图所示(2)连接B 1B 2,C 1C 2得到对称中心M 的坐标为(2,1) 22. 解:(1)如图①所示(2)如图②所示23. 解:由题意得y=-4,x2-3x=8-x,解得x1=4,x2=-2. 当x=4,y=-4时,2020(2x-y)=2020×(2×4+4)=24240;当x=-2,y=-4时,2020(2x-y)=2014×(-4+4)=0.24.解:∵△AOB是等边三角形,∴∠OAB=60∘,∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠PAD=60∘,AD=AP,∴△APD是等边三角形,∴DP=AP,∠PAD=60∘,∵A的坐标是(0, 3),∠OAB的平分线交x轴于点P,∴∠OAP=30∘,AP=√(√3)2+32=2√3,∴DP=AP=2√3,25.解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△P′AP是等边三角形,∴PP′=6;(2)∵P′B=PC=10,PB=8,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°,∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.26.解:(1)∵A(2, 3),∴点A关于直线y=x的对称点B(3, 2),点A关于原点(0, 0)的对称点C(−2, −3);(2)∵B(3, 2),∴点B关于原点(0, 0)的对称点D(−3, −2),∵点B与点D关于O对称,∴BO=DO,∵点A与点C关于O对称,∴AO=CO,∴四边形ABCD是平行四边形,∵点A关于直线y=x的对称点为点B,点A关于原点(0, 0)的对称点为点C,∴AC=BD,∴平行四边形ABCD是矩形.27. 解:(1)证明:∵∠α+∠EAC=90°,∠NAF+∠EAC=90°,∴∠α=∠NAF.又∵∠B=∠F,AB=AF,∴△ABM≌△AFN(ASA).∴AM=AN(2)四边形ABPF是菱形.理由:∵∠α=30°,∠EAF=90°,∴∠BAF=120°.又∵∠B=∠F=60°,∴∠B+∠BAF=60°+120°=180°,∠F+∠BAF=60°+120°=180°,∴AF∥BC,AB∥EF.∴四边形ABPF是平行四边形.又∵AB=AF,∴四边形ABPF是菱形。

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。

2024-2025学年人教新版九年级上册数学《第23章+旋转》单元测试卷

2024-2025学年人教新版九年级上册数学《第23章+旋转》单元测试卷

2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。

人教版九年级数学上册第二十三章旋转单元复习与检测(含答案解析)

人教版九年级数学上册第二十三章旋转单元复习与检测(含答案解析)

人教版九年级数学上册第二十三章旋转单元复习与检测(含答案)一、选择题1、如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB'C',过点B'作B'D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为( )A.2B.3C.2D.32、下列说法中,正确的有( )①线段两端点关于它的中点对称;②菱形的一组对边关于对角线的交点对称;③成中心对称的两个图形一定全等;④如果两个图形全等,那么这两个图形一定关于某点成中心对称;⑤如果两个三角形的对应点连线都经过一点,那么这两个三角形成中心对称.( )A.2个B.3个C.4个D.5个3、在等腰三角形、平行四边形、直角梯形和圆中,既是轴对称图形又是中心对称图形的是( )A.等腰三角形B.平行四边形C.直角梯形D.圆4、一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形( )A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形5、如图是由五个形状、大小相同的正方形组成的图形,如果去掉其中一个正方形,使得剩下的图形是一个中心对称图形,那么不同的方法有( )A.1种B.2种C.3种D.4种6、如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③△ABF与△DAE成中心对称.其中正确的结论有( )A.0个B.1个C.2个D.3个7、平面直角坐标系内,把一个三角形的各顶点的横、纵坐标都乘以-1,则以这三个新坐标为顶点的三角形与原三角形( )A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称8、如图,△ABC与△A'B'C'成中心对称,下列说法不正确的是( )A.S△ACB=S△A'B'C'B.AB=A'B'C.AB∥A'B',A'C'∥AC,BC∥B'C'D.S△A'B'O=S△ACO9、如图,在平面直角坐标系中,等边三角形OAB的顶点A在x轴上,顶点B在第一象限,若OA=2,则点B关于原点的对称点坐标为( )A.(1,)B.(,1)C.(-1,-)D.(-,-1)10、在平面直角坐标系中,把一个三角形的各顶点的横、纵坐标都乘-1,则以这三个新坐标为顶点的三角形与原三角形( )A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称二、填空题11、如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC的中点,将△ABC绕点D逆时针旋转45°,得到△A'B'C',B'C'与AB交于点E,则S四边形ACDE= .12、在一次数学社团活动上,小明设计了一个社团标识,如图所示,正方形ABCD与折线D-E-F-B构成了中心对称图形,且DE⊥EF,AD=50,DE比EF长25,那么EF的长是.13、下列图形:角、线段、等边三角形、长方形、平行四边形、圆,其中既是轴对称图形又是中心对称图形的有.14、如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(1,1),过点E的直线平分矩形ABCD的面积,则此直线的解析式为.15、四边形ABCD中,AD∥BC,E是CD的中点,连接AE并延长交BC的延长线于点F,连接BE,则点C与点关于点E对称,△ADE与△FCE成对称;若AB=AD+BC,则△ABF 是三角形,BE是△ABF的(将你认为正确的结论填上一个即可).16、已知a<0,则点P(-a2,-a+1)关于原点的对称点P'在第象限.17、如图,P为正方形ABCD内的一点,PC=1,将△CDP绕点C逆时针旋转得到△CBE,则PE= .18、如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC 绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是.19、已知平面直角坐标系中点A、B、C的坐标分别为(0,-1)、(0,2)、(3,0),若从四个点M(3,3)、N(3,-3)、P(-3,1)、Q(-3,0)中选一个,分别与点A、B、C一起作为顶点组成四边形,则组成的四边形是中心对称图形的个数为( )A.4B.3C.2D.120、在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,称为一次变换.已知点A的坐标为(-1,0),则点A经过连续2 019次这样的变换后得到的点A2 019的坐标是.三、解答题21、如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,求AP的长.22、如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:BF=DE.23、如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的格点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.24、如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.25、如图,在正方形网格上有A、B、O三点,用(3,3)表示A点的位置,用(1,1)表示B点的位置,O点也在网格格点上.(1)作出点B关于直线OA的对称点C,写出点C的坐标(不写作法,但要在图中标出字母);(2)作出△ABC关于点O的中心对称图形△A'B'C',写出A'、B'、C'三点的坐标(不写作法,但要标出字母);(3)若网格上的最小正方形边长为1,求出△A'B'C'的面积.参考答案一、1、答案 D 在等腰直角△ABC中,AB===6,由旋转的性质知AB'=AB=6,∠BAB'=75°.在直角△B'AD中,∠B'AD=180°-∠BAC-∠BAB'=180°-45°-75°=60°,则AD=6×=3.故选D.2、答案 B ①正确;②正确;③正确;两个图形全等,这两个图形不一定关于某点成中心对称,但关于某点中心对称的两个图形一定全等,故④错误;如果两个三角形的对应点连线都经过一点,那么这两个三角形位似,但不一定全等,故这两个三角形不一定成中心对称,故⑤错误.故选B.3、答案 D 由轴对称图形与中心对称图形的概念知,圆既是轴对称图形又是中心对称图形.故选D.4、答案 C ∵一个正多边形绕它的中心旋转45°后,能与原正多边形第一次重合,又∵360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C.5、答案 B 去掉一个正方形,得到中心对称图形的情况如下图所示,共2种方法.故选B.6、答案 C ∵四边形ABCD为正方形,∴AB=DA=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF,∴①②正确.∵△ABF 绕对角线的交点,顺时针旋转90°可得△DAE,∴△ABF与△DAE不成中心对称,故③错误.故选C.7、答案 C 一个三角形的各顶点的横、纵坐标都乘以-1,则新图形的各顶点的横、纵坐标与原图形的相应顶点的横、纵坐标互为相反数,∴以这三个新坐标为顶点的三角形与原三角形关于坐标原点对称.故选C.8、答案y=x-1解析∵抛物线y=-x2的顶点为(0,0),抛物线y=x2-2的顶点为(0,-2),∴点A的坐标为(0,-1).把y=0代入y=x2-2,得x2-2=0,解得x=±,∴点B的坐标为(,0).设直线AB的解析式为y=kx+b,把(0,-1)和(,0)代入可得解得∴直线AB的解析式为y=x-1.9、答案C如图,过点B作BC⊥x轴于C,∵△OAB是等边三角形,OA=2,∴OC=OA=×2=1,OB=OA=2,由勾股定理得BC=-=-=,∴点B的坐标为(1,),∴点B关于原点的对称点坐标为(-1,-).故选C.10、答案 C ∵一个三角形的各顶点的横、纵坐标都乘-1,∴以这三个新坐标为顶点的三角形与原三角形关于坐标原点对称.故选C.二、11、答案4+2解析如图,连接MN,过N作NH⊥OA于H,∵线段PM绕P点逆时针旋转90°,M点恰好落在OB上的N点,∴∠MPN=90°,PN=PM=,∴△PMN为等腰直角三角形,∴MN===2,在Rt△OHN中,∵∠NOH=30°,ON=8,∴NH=ON=4,OH=-=-=4.在Rt△MNH中,∵NH=4,MN=2,∴MH=-=2,∴OM=OH+MH=4+2.12、答案10解析连接BD,与EF交于点O,∵正方形ABCD与折线D-E-F-B构成了中心对称图形,∴OE=EF,OD=BD.∵AD=50,∴BD==50,∴OD=25.设EF=2x,则OE=x,DE=2x+25,在Rt△DOE中,x2+(2x+25)2=(25)2,解得x=5或x=-25(舍去),则EF=5×2=10.13.答案线段、长方形、圆解析由轴对称图形和中心对称图形的概念可知,线段、长方形、圆既是轴对称图形又是中心对称图形.14、答案y=-2x+3解析易知矩形是中心对称图形,且对称中心是对角线的交点.由题意可得矩形ABCD的对角线交于点F(1.5,0),∵过对称中心的直线把矩形分成面积相等的两个图形,∴直线EF平分矩形ABCD的面积.设直线EF的解析式为y=kx+b,则解得∴直线EF的解析式为y=-2x+3.15、答案D;中心;等腰;高(或中线或角平分线)16、答案四解析∵点P(-a2,-a+1)关于原点的对称点为P',∴P'(a2,a-1),∵a<0,∴a-1<0,a2>0,∴P'在第四象限.17、答案解析∵△CDP绕点C逆时针旋转得到△CBE,∴其旋转中心是点C,旋转角度是90°,∴∠PCE=90°,EC=PC,∵PC=1,∴EC=PC=1,∴△CPE是等腰直角三角形,∴PE===.18、答案 1.5解析如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°.又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE.∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG.又∵CE旋转到CF,∴CE=CF,∴△DCF≌△GCE,∴DF=EG,根据垂线段最短知EG⊥AD时,EG最短,即DF最短,此时,∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.19、答案 B 如图所示,组成的四边形有4个,其中四边形BACM、四边形BANC和四边形ACBP 都是平行四边形,都是中心对称图形.故选B.20、答案-解析由题意知第一次变换后的坐标为,第二次变换后的坐标为(0,-1),第三次变换后的坐标为-,第四次变换后的坐标为(1,0),第五次变换后的坐标为--,第六次变换后的坐标为(0,1),第七次变换后的坐标为-,第八次变换后的坐标为(-1,0),回到变换前A的位置,说明8次变换为一个循环.因为2 019÷8=252……3,所以把点A经过连续2 019次这样的变换后得到的点A2 019的坐标是-.三、21、解析如图,∵AC=9,AO=3,∴CO=6.∵△ABC为等边三角形,∴∠A=∠C=60°.∵线段OP绕点O逆时针旋转60°得到线段OD,且点D恰好落在BC上,∴OD=OP,∠POD=60°.∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3.在△AOP和△CDO中,∴△AOP≌△CDO,∴AP=CO=6.即AP的长为6.22、证明如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,∵点E、F关于点O对称,∴OF=OE,在△BOF和△DOE中,∴△BOF≌△DOE(SAS),∴BF=DE.23.解析(1)如图甲所示.(2)如图乙所示.(3)如图丙所示.24、解析(1)如图所示.(2)如图所示.(3)点P的坐标为(2,0).25、解析(1)如图所示:点C即为所求,C(5,1).(2)如图所示:△A'B'C'即为所求,A'(3,-3),B'(5,-1),C'(1,-1).(3)△A'B'C'的面积S△A'B'C'=×4×2=4.。

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。

第23章 旋转 单元测试-2022-2023学年九年级人教版数学上册(含答案)

第23章 旋转单元测试(附解析)学校:___________姓名:___________班级:___________考号:___________总分120分,考试时间120分钟一、单选题(共10个小题,每小题3分,共30分)1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D . 2.2022年冬奥会将在我国北京市和张家口市联合举行,下列历届冬奥会会徽的部分图案中,是中心对称图形的是( )A .B .C .D . 3.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,2)B .(-2,-3)C .(2,-3)D .(2,3)4.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .()42,22-C .()42,2-D .()26,22- 5.如图,在钝角△ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠ 6.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-7.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .48.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .25B .342-C .4D .341+9.如图,在Rt △ABC 中,∠ACB =90°,2AC BC ==将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A 6B .22C 3D 210.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于( ).A .120°B .135°C .150°D .160°二、填空题(共10个小题,每小题3分,共30分)11.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 按顺时针方向旋转能与△CBP '重合,若PB =3,则PP '=__________12.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =_________. 13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_________________.(填写图形的相应编号) 14.若点P (a ,2)点Q (﹣4,b )关于原点对称,则点M (a ,b )在第___象限.15.如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于___________度.16.如图,在矩形ABCD 中,23AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.17.如图,△ABC 边长为1的正三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,则AMN 的周长为__________.18.如图,在Rt △ABC 中,90ACB ∠=,30BAC ∠=,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.19.如图,在△ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.20.如图,点P 是等边三角形ABC 内一点,且6PA 2PB =22=PC ABC 的边长为________.三、解答题(共6个小题,每小题10分,共60分)21.如图,在△ABC 中,∠ACB =90°,∠B =60°,以C 为旋转中心,旋转一定角度后成△A ′B ′C ,此时B ′落在斜边AB 上,试确定∠ACA ′,∠BB ′C 的度数.22.四边形ABCD 各顶点坐标分别为(5,0)A ,(2,3)B -,(1,0)C -,(1,5)D --,作出与四边形ABCD 关于原点对称的图形.23.如图,在同一平面内,△BEC绕点B逆时针旋转60°得到△BAD,且AB⊥BC,BE=CE.连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.正方形ABCD中,点F为正方形ABCD内的点,BFC△绕着点B按逆时针方向旋转90︒后与△重合.BEA(1)如图①,若正方形ABCD的边长为2,1BE=,3FC=AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.。

人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)

人教版九年级数学上册第二十三章旋转单元检测(含答案)一、单选题1.下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称2.下列图案中,是中心对称图形的是( )A.B.C.D.3.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)4.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)5.如图所示,ABC V 中,5AC =,中线7AD =,EDC V 是由ADB V 旋转180o 所得,则AB 边的取值范围是( )A .1<AB<29B .4<AB<24C .5<AB<19D .9<AB<196.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .△ABD =△EB .△CBE =△C C .AD △BC D .AD =BC 7.下列图形是中心对称图形,但不是轴对称图形的是( )A .正方形B .等边三角形C .圆D .平行四边形8.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到△COD ,若15AOB ∠=︒,则AOD ∠的度数是( )A .75︒B .60︒C .45︒D .30°9.如图所示,△ABC 与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A .AB=A′B′,BC=B′C′B .AB△A′B′,BC△B′C′C .S △ABC =S △A′B′C′D .△ABC△△A′OC′10.如图,在Rt 直角△ABC 中,△B =45°,AB =AC ,点D 为BC 中点,直角△MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△AE =CF ;△△BDE△△ADF ;△BE+CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题 11.如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.12.如图,将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,若△CAE=90°,AB=1,则BD=_________.13.如图,直线443y x =+与x 轴轴分别交于A ,B 两点,把AOB ∆绕点A 逆时针旋转90︒后得到''AO B ∆,则点'B 的坐标是______.14.如图所示,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ; 将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;⋅⋅⋅如此进行下去,直到13C .若()37,P m 在第13段抛物线13C 上,则m =______.三、解答题15.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(1,1)A 、(5,1)B 、(4,4)C .(1)按下列要求作图:△将ABC ∆向左平移5个单位得到111A B C ∆,并写出点1A 的坐标;△将ABC ∆绕原点O 逆时针旋转90°后得到222A B C ∆,并写出点2B 的坐标;(2)111A B C ∆与222A B C ∆重合部分的面积为 (直接写出答案).16.如图,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,﹣1).(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕点C 逆时针旋转90°,得△A 2B 2C ,画出△A 2B 2C ,并写出点A 2的坐标;(3)直接写出△A 2B 2C 的面积.17.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)判断AB与CD的关系并证明;(2)求直线EC的解析式.18.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由答案1.D2.D3.B4.C 。

人教版九年级数学上册 第23章《旋转》 综合测试卷(含答案)

C.(-2,-3) D.(-2,-4)9.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称,其中正确的个数为( )A.2个B.3个C.4个D.5个10.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是_______.12.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°得△A′B′O,则点A的对应点A′的坐标为_____________.三.解答题(共6小题,66分)19.(8分) 直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y 的值.20.(8分) 如图,已知四边形ABCD关于点O成中心对称的图形,试判断四边形ABCD的形状,并说明理由.21.(8分) 如图,四边形ABCD绕某一点旋转后得四边形EFGH,其中点A,B,C,D分别对应点E,F,G,H.(1)请在图中画出旋转中心点O的位置;(2)说出旋转方向和旋转角.22.(10分) 直角坐标系内的点P(x2-3x,4)与另一点Q(x-8,y)关于原点对称,试求2019(2x-y)的值.23.(8分) 在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E、F的坐标;BE. BE。

人教版九年级数学(上)第二十三章《旋转》检测卷含答案

人教版九年级数学(上)第二十三章《旋转》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形,既是轴对称图形,又是中心对称图形的是2.将大写字母E绕点P按顺时针方向旋转90°得到的图形是3.下列说法中,正确的有①平行四边形是中心对称图形;②两个全等三角形一定成中心对称;③中心对称图形的对称中心是连接两对称点的线段的中点;④一个图形若是轴对称图形,则一定不是中心对称图形;⑤一个图形若是中心对称图形,则一定不是轴对称图形.A.1个B.2个C.3个D.4个4.如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是A.△ODE绕点O顺时针旋转60°得到△OBCB.△ODE绕点O逆时针旋转120°得到△OABC.△ODE绕点F顺时针旋转60°得到△OABD.△ODE绕点C逆时针旋转90°得△OAB5.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度,得到的点的坐标是A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为A.10√2B.10C.20D.5√27.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为A.30,2B.60,2D.60,√3C.60,√328.如图,在平面直角坐标系中,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)9.有两个完全重合的直尺,将其中一个始终保持不动,另一个直尺绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是A.图①B.图②C.图③D.图④10.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点.下列结论:①(BE+CF )=√22BC ;②S △AEF ≤14S △ABC ;③S 四边形AEDF =AD ·EF ;④AD ≥EF ;⑤AD 与EF 可能互相平分,其中正确结论的个数是A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.已知a<0,则点P (-a 2,-a+1)关于原点的对称点P'在第 四 象限.12.如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 延长线上的点E 处,则∠BDC= 15° .13.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB'C'可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的,则线段B'C 的长为 3√7 .14.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,AC=6√3,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG 在旋转过程中,DG 的最大值是 9 .三、(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E.试确定旋转后的四边形.解:如图所示,四边形EB'C'D'即为四边形ABCD绕点O旋转后的四边形.AB,请你用旋转的16.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=12方法说明线段BE和DF之间的关系.AB,∴AE=AF,解:∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵E是AD的中点,AF=12∴△DFA≌△BEA,∴把△ABE绕点A逆时针旋转90°可得到△ADF,∴BE=DF,BE⊥DF.四、(本大题共2小题,每小题8分,满分16分)17.△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.答案图解:(1)如图,C 1(-3,2). (2)如图,C 2(-3,-2).18.已知点P (x+1,2x-1)关于原点的对称点在第一象限,试化简:|x-3|-|1-x|. 解:∵点P (x+1,2x-1)关于原点的对称点P'的坐标为(-x-1,-2x+1),点P'在第一象限,∴{-x -1>0,-2x +1>0,∴x<-1,∴|x-3|-|1-x|=-x+3-1+x=2.五、(本大题共2小题,每小题10分,满分20分)19.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上的一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,求AP 的长. 解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,{∠A=∠C,∠2=∠3, OP=OD,∴△AOP≌△CDO,∴AP=CO=6.20.在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A'BO',点O,A旋转后的对应点为O',A',记旋转角为β.(1)如图1,若β=90°,求AA'的长;(2)如图2,若β=120°,求点O'的坐标.解:(1)∵β=90°,∴∠A'BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB=√OA 2+OB 2=√82+62=10, 由旋转的性质得,A'B=AB=10,在Rt △A'BA 中,根据勾股定理得,AA'=√AB 2+A 'B 2=√102+102=10√2. (2)如图,过点O'作O'C ⊥y 轴于点C , 由旋转的性质得,O'B=OB=6,∵β=120°,∴∠OBO'=120°,∴∠O'BC=180°-120°=60°, ∴BC=12O'B=12×6=3,CO'=√O 'B 2-BC 2=√62-32=3√3,∴OC=OB+BC=6+3=9,∴点O'的坐标为(3√3,9).六、(本题满分12分)21.如图,在等腰△ABC 中,∠CAB=90°,P 是△ABC 内一点,PA=1,PB=3,PC=√7,将△APB 绕点A 逆时针旋转后与△AQC 重合.求: (1)线段PQ 的长; (2)∠APC 的度数.解:(1)∵△APB 绕点A 旋转与△AQC 重合,∴AQ=AP=1,∠QAP=∠CAB=90°, ∴在Rt △APQ 中,PQ=√AQ 2+AP 2=√2.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB绕点A旋转与△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=√2,CQ=3,CP=√7,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.七、(本题满分12分)22.如图,▱ABCD中,AB⊥AC,AB=1,BC=√5,对角线BD,AC交于点O.将直线AC绕点O顺时针旋转分别交BC,AD于点E,F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.解:(1)在▱ABCD中,AD∥BC,OA=OC,∴∠1=∠2,在△AOF和△COE中,{∠1=∠2,OA=OC,∠3=∠4,∴△AOF≌△COE(ASA),∴AF=CE.(2)由题意,∠AOF=90°(如图1),又∵AB ⊥AC ,∴∠BAO=90°,∴∠BAO=∠AOF ,∴AB ∥EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.(3)当EF ⊥BD 时,四边形BEDF 是菱形(如图2).由(1)知,AF=CE ,∵▱ABCD ,∴AD=BC ,AD ∥BC ,∴DF ∥BE ,DF=BE ,∴四边形BEDF 是平行四边形,又∵EF ⊥BD ,∴▱BEDF 是菱形,∵AB ⊥AC ,∴在△ABC 中,∠BAC=90°,∴BC 2=AB 2+AC 2, ∵AB=1,BC=√5,∴AC=√BC 2-AB 2=√(√5)2-12=2, ∵四边形ABCD 是平行四边形,∴OA=12AC=12×2=1, ∵在△AOB 中,AB=AO=1,∠BAO=90°, ∴∠1=45°,∵EF ⊥BD ,∴∠BOF=90°,∴∠2=∠BOF-∠1=90°-45°=45°,即旋转角为45°. 八、(本题满分14分)23.如图1,在正方形ABCD 中,点M ,N 分别在AD ,CD 上,若∠MBN=45°,易证MN=AM+CN. (1)如图2,在梯形ABCD 中,BC ∥AD ,AB=BC=CD ,点M ,N 分别在AD ,CD 上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD 中,AB=BC ,∠ABC+∠ADC=180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 又有怎样的数量关系?请直接写出猜想,不需证明.解:(1)MN=AM+CN.理由如下:如图2,∵BC ∥AD ,AB=BC=CD ,∴梯形ABCD 是等腰梯形,∴∠A+∠BCD=180°,把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则△ABM ≌△CBM',∴AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC ,∴∠BCM'+∠BCD=180°,∴点M',C ,N 三点共线,∵∠MBN=12∠ABC ,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=12∠ABC ,∴∠MBN=∠M'BN ,在△BMN 和△BM'N 中,{BM =BM ',∠MBN =∠M 'BN ,BN =BN , ∴△BMN ≌△BM'N (SAS),∴MN=M'N ,又∵M'N=CM'+CN=AM+CN ,∴MN=AM+CN.(2)MN=CN-AM.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第23章旋转年一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A.B.C.D.2.下列图形中,既是中心对称又是轴对称图形的是( )A.等边三角形B.平行四边形C.梯形D.矩形3.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A.20°B.30°C.40°D.50°4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是( )A.110°B.80°C.40°D.30°5.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在( )A.第一象限B.第二象限C.第三象限D.第四象限6.下列命题中的真命题是( )A.全等的两个图形是中心对称图形B.关于对称中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形7.四边形ABCD的对角线相交于O,且AO=BO=CO=DO,则这个四边形( )A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形8.如图所示,A,B,C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转到如图位置,得到△AC′B′,使A,C,B′三点共线,则旋转角为( )A.30°B.60°C.20°D.45°9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1B.2C.3D.410.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB 的延长线上的点E处,则∠BDC的度数为__________度.13.正方形是中心对称图形,它绕它的中心,旋转一周和原来的图形重合__________次.14.边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为__________cm.15.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA__________PB+PC(选填“>”、“=”、“<”)16.与点A(﹣3,4)关于原点对称的点B的坐标为__________.17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是__________.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为__________.三、解答题(共66分)19.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是__________,∠AOB1的度数是__________;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.20.已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.22.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF 交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.25.直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?26.如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?新人教版九年级上册《第23章旋转》2015年单元测试卷(云南省曲靖市罗平县长底民中)一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A.B.C.D.【考点】中心对称图形.【专题】数形结合.【分析】根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.【点评】本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2.下列图形中,既是中心对称又是轴对称图形的是( )A.等边三角形B.平行四边形C.梯形D.矩形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D选项既为中心对称图形又是轴对称图形【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选D.【点评】本题主要考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3.如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A.20°B.30°C.40°D.50°【考点】旋转的性质.【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故选:A.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是( )A.110°B.80°C.40°D.30°【考点】旋转的性质.【专题】压轴题.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.【点评】此题主要考查了旋转的性质,关键是熟练掌握旋转前、后的图形全等,进而可得到一些对应角相等.5.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得P′(a2,a﹣1),再根据a<0判断出a2>0,﹣a+1<0,可得答案.【解答】解:∵点P(﹣a2,﹣a+1)关于原点的对称点P′(a2,a﹣1),∵a<0,∴a2>0,﹣a+1<0,∴点P′在第四象限,故选:D.【点评】此题主要考查了关于原点对称,关键是掌握点的坐标的变化规律.6.下列命题中的真命题是( )A.全等的两个图形是中心对称图形B.关于对称中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形【考点】命题与定理.【分析】根据中心对称的性质即可求出答案.【解答】解:A、错误,比如,一个含有30度角的直角三角形平移后的图形与原三角形全等,但不中中心对称图形;B、正确;C、错误,平行四边形是中心对称图形,但不是轴对称图形;D、错误,正五边形是轴对称图形,但不是中心对称图形.故选B.【点评】本题考查了中心对称图形和轴对称图形的性质与区别.7.四边形ABCD的对角线相交于O,且AO=BO=CO=DO,则这个四边形( )A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形【考点】中心对称图形;轴对称图形.【分析】首先根据已知条件OA=OB=OC=OD,可知四边形ABCD的对角线相等且互相平分,得出四边形ABCD是矩形,然后根据矩形的对称性,得出结果.【解答】解:如图所示:∵四边形ABCD的对角线相交于点O且OA=OB=OC=OD,∴OA=OC,OB=OD;AC=OA+OC=OB+OD=BD,∴四边形ABCD是矩形,∴四边形ABCD既是轴对称图形,又是中心对称图形.故选C.【点评】本题主要考查了矩形的判定及矩形的对称性.对角线相等且互相平分的四边形是矩形,矩形既是轴对称图形,又是中心对称图形.8.如图所示,A,B,C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转到如图位置,得到△AC′B′,使A,C,B′三点共线,则旋转角为( )A.30°B.60°C.20°D.45°【考点】旋转的性质.【分析】根据旋转的性质得到∠BAB′就是旋转角,则结合图示直接回答问题.【解答】解:如图所示:∠BAB′就是旋转角,且∠BAB′=45°.故选:D.【点评】此题主要考查了旋转的性质.对应点与旋转中心所连线段的夹角等于旋转角.9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1B.2C.3D.4【考点】中心对称.【分析】根据真假命题的概念,分别判断各命题的真假,再作选择.【解答】解:(1)成中心对称的两个三角形是全等三角形,正确;(2)两个全等三角形不一定关于某一点成中心对称,故错误;(3)两个三角形对应点的连线都经过同一点,且对应点到同一点的距离相等,则这两个三角形关于该点成中心对称,故错误;(4)成中心对称的两个三角形,对称点的连线都经过对称中心,正确.故选B.【点评】此题容易判断错误的是(3),容易漏掉“对应点到同一点的距离相等”这个条件.10.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°【考点】旋转的性质.【分析】此题根据给出的图形先确定出旋转中心,再确定出旋转的方向和度数即可求出答案.【解答】解:根据图形可知:将△ABC绕点A逆时针旋转90°可得到△ADE.故选B.【点评】本题主要考查旋转的性质,在解题时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q【考点】旋转的性质.【专题】网格型.【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解答】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点评】熟练掌握旋转的性质是确定旋转中心的关键所在.12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB 的延长线上的点E处,则∠BDC的度数为15度.【考点】旋转的性质.【专题】计算题;压轴题.【分析】根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BDC的度数.【解答】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°﹣∠DBE=180°﹣30°=150°,∠BDC=(180°﹣∠CBD)=15°.故答案为15°.【点评】根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.13.正方形是中心对称图形,它绕它的中心,旋转一周和原来的图形重合4次.【考点】中心对称图形.【分析】正方形是中心对称图形,它的对称中心是两条对角线的交点,然后根据旋转角及旋转对称图形的定义作答.【解答】解:∵360°÷4=90°,∴正方形绕中心至少旋转90度后能和原来的图案互相重合.∴旋转一周和原来的图形重合4次.故答案为:4.【点评】本题考查了旋转角的定义及求法,对应点与旋转中心所连线段的夹角叫做旋转角.14.边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为4πcm.【考点】弧长的计算;正方形的性质;旋转的性质.【分析】由于边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线是一段弧长,是以点A为圆心,AB为半径,圆心角是180°的弧长,根据弧长公式即可求得其长度.【解答】解:∵边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线是一段弧长,是以点A为圆心,AB为半径,圆心角是180°的弧长,∴根据弧长公式可得:=4π.故填空答案:4π.【点评】本题主要考查了弧长公式的计算方法.15.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.16.与点A(﹣3,4)关于原点对称的点B的坐标为(3,﹣4).【考点】中心对称图形.【分析】根据关于原点对称的点的坐标特点即可得出答案.【解答】解:∵点B与点A关于原点对称,∴点B的坐标为(3,﹣4).故答案为:(3,﹣4).【点评】本题考查了关于原点对称的点的坐标,掌握关于原点对称的点的坐标特点是关键.17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是2.【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得﹣b=﹣3,2a=﹣2,再解即可得到a、b的值,进而可得答案.【解答】解:∵点P(﹣b,2)与点Q(3,2a)关于原点对称,∴﹣b=﹣3,2a=﹣2,解得:b=3,a=﹣1,∴a+b=2,故答案为:2.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为(﹣3,﹣6).【考点】关于原点对称的点的坐标;一次函数图象上点的坐标特征.【分析】首先把(3,n)代入y=x+3中,可得n的值,进而得到P点坐标,再根据关于原点对称的点的坐标特点可得答案.【解答】解:∵直线y=x+3上有一点P(3,n),∴n=3+3=6,∴P(3,6),∴点P关于原点的对称点P′为(﹣3,﹣6),故答案为:(﹣3,﹣6).【点评】此题主要考查了一次函数图象上点的坐标特征,以及关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.三、解答题(共66分)19.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是6,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【考点】旋转的性质;平行四边形的判定.【分析】(1)图形在旋转过程中,边长和角的度数不变;(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形;(3)平行四边形的面积=底×高=OA×OA1.【解答】(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA1B1的面积=6×6=36.【点评】此题主要考查旋转的性质和平行四边形的判定以及面积的求法.20.已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.【考点】旋转的性质;勾股定理;正方形的性质.【专题】计算题.【分析】(1)根据正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的性质求解;(2)根据旋转的性质得BP=BE=2,∠PBE=90°,然后根据等腰直角三角形的性质求解.【解答】解:(1)∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△ABP旋转后能与△CBE重合,∴△ABP旋转的旋转中心是点B,按顺时针方向旋转90°;(2)∵△ABP旋转后能与△CBE重合,∴BP=BE=2,∠PBE=90°,∴PE=PB=2.答:(1)△ABP旋转的旋转中心是点B,按顺时针方向旋转90°;(2)PE为2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.【考点】作图-旋转变换;弧长的计算;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理求出A1C1的长度,然后根据弧长公式列式计算即可得解.【解答】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标为(1,0);(2)如图所示,△A2B2C2即为所求作的三角形,根据勾股定理,A1C1==,所以,旋转过程中C1所经过的路程为=π.【点评】本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.22.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【考点】全等三角形的判定与性质;旋转的性质.【专题】几何综合题.【分析】(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.【点评】本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF 交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.【考点】旋转的性质;全等三角形的判定.【专题】探究型.【分析】利用旋转的性质和正方形的性质得出△OBM≌△OFN,从而证明猜想正确.【解答】解:猜想:BM=FN.证明:在正方形ABCD中,BD为对角线,O为对称中心,∴BO=DO,∠BDA=∠DBA=45°,∵△GEF为△ABD绕O点旋转所得,∴FO=DO,∠F=∠BDA,∴OB=OF,∠OBM=∠OFN,在△OMB和△ONF中,∴△OBM≌△OFN,∴BM=FN.【点评】本题综合考查了旋转的性质和正方形的性质.25.直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?【考点】关于原点对称的点的坐标;等腰三角形的性质.【专题】应用题.【分析】(1)根据坐标关于原点对称的特点即可得出点P′的坐标,(2)要分类讨论,动点T在原点左侧和右侧时分别进行讨论即可得出当t取何值时,△P′TO是等腰三角形.【解答】解:(1)点P关于原点的对称点P'的坐标为(2,1);(2),(a)动点T在原点左侧,当时,△P'TO是等腰三角形,∴点,(b)动点T在原点右侧,①当T2O=T2P'时,△P'TO是等腰三角形,得:,②当T3O=P'O时,△P'TO是等腰三角形,得:点,③当T4P'=P'O时,△P'TO是等腰三角形,得:点T4(4,0).综上所述,符合条件的t的值为.【点评】本题主要考查了平面直角坐标系中坐标关于原点对称的特点,难度适中.26.如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?【考点】旋转的性质.【分析】(1)由条件易得BC和BE,BA和BF为对应边,而△ABC旋转后能与△FBE重合,于是可判断旋转中心为点B;(2)根据旋转的性质得∠ABF等于旋转角,从而得到旋转角度;(3)根据旋转的性质即可判断AC=EF,AC⊥EF.【解答】解:(1)∵BC=BE,BA=BF,∴BC和BE,BA和BF为对应边,∵△ABC旋转后能与△FBE重合,∴旋转中心为点B;(2)∵∠ABC=90°,而△ABC旋转后能与△FBE重合,∴∠ABF等于旋转角,∴旋转了90度;(3)AC=EF,AC⊥EF.理由如下:∵△ABC绕点B顺时针旋转90°后能与△FBE重合,∴EF=AC,EF与AC成90°的角,即AC⊥EF.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.。

相关文档
最新文档