第8章 热辐射
第八章 辐射换热

ρ+α=1(原因:因分子间排列非常紧密,当热辐射 能投射到固体表面时,马上被相邻的分子所吸收)
所以对于固体和液体,其吸收和反射均在表面进 行(表面状况影响很大)。吸收能力强,则反射能力 弱。 例如:玻璃—对可见光基本上是透明体,对于其它波 长的热辐射,穿透能力很差(大棚蔬菜;温室效应- 地球变暖)。
在温度较高时,必须考虑热辐射的影响(对气体)。
黑体辐射函数 定义:在0~λ的波长范围内黑体发出的辐射能在其 辐射力中所占份额。
黑体辐射函数
【例8-1】若灯泡钨丝的辐射可近似地视为黑体辐射, 试求可见光区段辐射能所占的份额。设灯丝的温度为 2900K。
解:可见光的波段范围为 0.38μm~0.76μm,
三、基尔霍夫定律 反射辐射与吸收辐射二者之间的联系: 1859年基尔霍夫揭示了与周围环境处于热 平衡状态下的实际物体辐射力E与吸收比α间的 关系。
如图,板1是黑体,板2是实际物体,
工业上一般物体(T<2000K)热辐射的大部分
能量的波长位于0.76~20μm。
太阳辐射:0.1~20μm
约定:除特殊说明,以后论及的热射线都
指红外线。
二、辐射能的吸收、反射和透射
当热辐射的能量投射到物体表面时,和可见光一 样,也发生吸收,反射和穿透现象。
根据能量守恒有:
在一般情况下,对于固体和液体而言,τ=0。
部分材料的法向光谱发射率
3. 辐射力
但实验结果发现,实际物体的辐射力并不严格 地与绝对温度呈四次方的关系,但工程上仍采用四 次方关系进行计算,而把温度项修正包括到黑度中 去,因而黑度还与温度有关。
部分材料的法向总发射率与温度的关系
4、定向发射率εφ
定向发射力:在数值上为单位辐射面积在单位时间内
传热学-热辐射基本定律和辐射特性

C1 (λT
eC2 /(λT )
)−5
d −1
(
λT
)
=
f
(λT )
f(λT)称为黑体辐射函数,表示温度为T 的黑体所发射的辐射能 中在波段0~λ内的辐射能所占的百分数。
利用黑体辐射函数数值表(360页表8-1)可以很容易地用 下式计算黑体在某一温度下发射的任意波段的辐射能量:
Eb(λ1−λ2 ) = ⎡⎣ Fb(0−λ2 ) − Fb(0−λ1) ⎤⎦ Eb
∫ 显然有
Eb =
∞ 0
Ebλ
d
λ
普朗克定律解释了黑体辐射能按波长分布的规律:
Ebλ
=
c1λ−5
ec 2
(λT )
−1
式中,Ebλ—黑体光谱辐射力,W/m3
λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.7419×10-16 W⋅m2; c2 — 第二辐射常数,1.4388×10-2 W⋅K;
8.1.2 从电磁波角度描述热辐射的特性
8.1.2 从电磁波角度描述热辐射的特性
c 电磁波的数学描述: = λν
c — 电磁波传播速度, m/s ν — 频率, 单位 1/s λ — 波长, 常用μm为单位
从理论上说,物体热辐射的电磁波波长范围可以包括整个波谱,即波长从零到无穷大 然而,在工业上所遇到的温度范围内,即2000K以下,有实际意义的热辐射波长位于 0.38—100μm之间,且大部分能量位于红外线区段的0.76—20μm范围内,而在可见 光区段、即波长为0.38—0.76μm 的区段,热辐射能量的比重不大
τ =0, α + ρ =1
热辐射基本定律及物体的辐射特性

5、光谱辐射(单色辐射) 对于某一特定波长下的辐射称为光谱辐射或单
色辐射。 对光谱辐射相应有光谱吸收比、光谱反射比和
光谱透射比。 1
()() () 1
关于物体的颜色
我们所看到的物体颜色是由于从该表面发出的 单色光线(辐射)投入到了我们的眼睛。
而从表面发出的辐射可能是自身发射的,也可 能是反射投入其表面上的可见光。
的份额分别称为吸收比、反射比 和透射比 。
G
G
G G
G G
1
3、镜反射和漫反射 视物体表面状况(平整程度)和投入辐射的波
长,表面的反射又分为镜反射和漫反射。
(a)镜反射
(b)漫反射
漫反射是把来自任意方向、任意波长的投入辐
射以均匀的强度(不是“能量”)反射到半球空间所 有方向上去。注:除了经特殊处理的金属表面,大
如果仅考虑某特定
p
波长的辐射,那么相应
可见辐射
的量被称为定向光谱辐
面积
射强度 L(,) 。
dA
(4) 定向辐射力
是指单位时间、单位辐射面积向空间指定方向
所在的单位立体角内发射的全波段辐射能量。用
符号 E 表示。
E
d()
dAd
因此可得:
E L()cos
E 2Ed
§8-2 黑体辐射的基本定律
一、黑体与黑体模型
三、斯忒藩-玻耳兹曼定律
黑体辐射的辐射力与温度的关系遵循斯忒藩-波 尔兹曼定律:
E b0 E d0 eC C 2/1 T 5 1dT4
Eb T4
Eb
C0
T 4 100
5.67108 W/2(m K4)
C05.67W/2(m K4)
波段范围内辐射力的计算
新大《传热学》习题及解答第8章 热辐射基本定律和辐射特性

第8章 热辐射基本定律和辐射特性(题解)【习题8-3】 把太阳表面近似地看成是K 5800=T 的黑体,试确定太阳发出的辐射能中可见光所占的百分数。
解:K μm 220458003801⋅=⨯=.T λ,K μm 440858007602⋅=⨯=.T λ ()%.F b 191010=-λ,()%.F b 045520=-λ()()()%.%.%.F F F b b b 854419100455122100=-=-=---λλλλ【习题8-4】 一炉膛内火焰的平均温度为500K 1,炉墙上有一看火孔。
试计算当看火孔打开时从孔(单位面积)向外辐射的功率。
该辐射能中波长为μm 2的光谱辐射力是多少?哪一种波长下的能量最多? 解:小孔辐射看成黑体辐射:25484m W 10872150010675⨯=⨯⨯==-..T E b σ对μm 2=λ的辐射:()()()31015001021043881561651m W 107449110210741931622⨯=-⨯⨯⨯=-=⨯⨯⨯------.e .e c E .T c b λλλ最大辐射能对应波长m λ:31092-⨯=.T m λ,m 109331150010921092633---⨯=⨯=⨯=..T .m λ【习题8-6】 一人工黑体腔上的辐射小孔是一个直径为0mm 2的圆。
辐射力25m W 1072.3⨯=b E 。
一个辐射热流计置于该黑体小孔的正前方m 5.0=l 处,该热流计吸收热量的面积为25m 106.1-⨯。
问该热流计所得到的黑体投入辐射是多少?解:2422m 10141634020141634d -⨯=⨯==...d A π sr 1046501061d d 5252--⨯=⨯==...l S Ω ()()545104610141631416310723d d d d d --⨯⨯⨯⨯⨯=⎪⎭⎫⎝⎛==....A E A I b ΩπΩθθΦW 103823-⨯=.【习题8-17】 一漫射表面在某一温度下的光谱辐射强度与波长的关系可以近似地用附图表示,试:(1)计算此时的辐射力;(2)计算此时法线方向的定向辐射强度,及与法向成o 60角处的定向辐射强度。
热辐射和辐射换热

8-1 热辐射的基本概念
辐射:从宏观的角度、辐射是连续的电磁波传递能量的过程;从微观 的角度,辐射是不连续的量子传递能量的过程。因此,物体向外界以 电磁波的形式发射携带能量的量子的过程称为辐射。
辐射能:通过辐射所传递的能量称为辐射能(也把辐射这个术语用来 表明辐射能本身)。
四、克希霍夫定律
黑度ε :把实际物体的辐射力E与同温度下黑体的辐射力Eb之比称为该物体的黑度,用 符号ε表示:
ε=E/Eb
(8-18a)
○ 单色黑度ελ :是实际物体的单色辐射力与同温度下黑体的单色辐射力之比。
ελ=Eλ/Ebλ
○ ε与ελ的关系为 :
Eλ=ελEbλ (8-18b)
E Eb
0Ebd 0Ebd
E E d 2
波段b辐射1力2:波段 1 b
区间的辐射能。
Fb(λ1-λ2):
F 波段辐射力占同
温度下黑b( 体1 辐2 射)
力Eb的百分数。
2 1
E
b
d
0
E
b
d
1
bT 4
2 1
E
b
d
1 ○ (8-12a)
○ (8-12b)bT 4
2 0
E b
d
1 0
E
b
d
F F b( 0 2 )
自然界中并无绝对灰体,它仅作为一种假想物体。实际物体在红外波
长范围内,可以近似地看作是灰体。
物体对于投射能量吸收的百分数是该物体的 吸收率α,实际物体的吸收率既决定于投入 射线的方向和波长,又决定于物体本身的材 料、表面温度及表面状况。引入灰体概念后, 认为灰体的吸收率和单色吸收率都与波长无 关,大小仅取决于吸收表面的状况。
第八章热辐射的基本定律_传热学

d () I () dA cos d
单位:W/m2· sr
2) Lambert定律:
黑体表面具有漫辐射性质,在半球空间各个方向辐射强度相等
I 1 I 2 ...... I n
E I cos I n cos En cos
如果已知黑体温度,则可以求得最大单色辐射力 Eb, max 所对应的波长 max
25
讨论:黑体温度在3800K以下时,其峰值波长处在红外线区域。 因此,在一般工程中所遇到的辐射换热,基本上属于红外辐射。
思考:金属在加热过程中,随 着温度的升高,金属颜色呈暗 红、红、黄、白,请解释这一 现象。
Fb 0-T
T E c1 b d T d T f T 5 0 T C2 5 b b T exp 1 T
30
根据黑体辐射函数,可以计算出给定温度下λ1-λ2波段内的 黑体辐射力为:
Eb 1- 2 Eb Fb 0- 2T Fb 0-1T
f (T )
23
三、维恩位移定律
黑体的峰值波长 max 与热力学温度T之间的函数关系
Eb
c15 ec
2
( T )
1
根据普朗克定律,将Eb 对 波长求极值,可得: maxT 2897.6m.K
随着温度T的升高,最大单色辐射 力 Eb, 所对应的峰值波长 max max 逐渐向短波方向移动
• 实际物体的辐射力并不严格遵从四次方定律,怎么办? 认为E∝T4 由此引起的误差修正归入用实验方法确定的中 因此除了与物性有关,还与物体本身的温度有关
39
2 实际物体的光谱辐射力E
E Eb
第八章 热辐射基本定律和辐射特性(20190415)
E Eb
0 ()Ebd T4
实际物体光谱辐射力小于同温度 下黑体同一波长的光谱辐射力。
实际物体光谱辐射力随波长和方 向作不规则变化。
与波长无关----灰体
8.3 实际固体和液体的辐射特性
3 实际物体的定向辐射强度
定向发射率及其随θ角的变化规律
实际物体的定向辐射强度与 黑体的定向辐射强度之比为 定向发射率(定向黑度):
第八章 热辐射基本定律和辐射特性
主讲人:潘冬梅 华南理工大学机械与汽车工程学院
主要内容
8.1 热辐射现象的基本概念 8.2 黑体热辐射的基本定律 8.3 实际固体和液体的辐射特性 8.4 实际物体对辐射能的吸收与辐射的关系
8.1 热辐射现象的基本概念
8.1 热辐射现象的基本概念
1 热辐射的特性
辐射力与黑体半球总辐射力之比。
E E Eb T 4
实际物体的辐射力可以表示为:
E
Eb
T
4
C0
(T 100
)
4
一般通过实验测得,只取 决于物体本身
8.3 实际固体和液体的辐射特性
2 实际物体的光谱辐射力
光谱发射率(单色黑度) ε(λ) = Eλ Ebλ
实际物体的光谱发射率与发射率
1
d
T 4
8.2 黑体热辐射的基本定律
黑体2 辐普射朗函克数定(律黑体辐射能按波段的分布)
从0到某个波长的波段的黑体辐射能
Eb(0 ) 0 Eb d
这份能量在黑体辐射力中所占的百分数为:
可查表
P360
Fb(0)
0 Eb d T 4
新大《传热学》复习题及解答第8章 热辐射基本定律和辐射特性
第8章热辐射基本定律和辐射特性(复习题解答)【复习题8-1】什么叫黑体?在热辐射理论中为什么要引入这一概念?答:吸收比α=l的物体叫做黑体。
黑体完全吸收投入辐射,从黑体表面发出的辐射都为自身辐射,没有反射,因而黑体辐射的特性反映了物体辐射的规律,这为研究实际物体的辐射提供了理论依据和简化分析的基础。
【复习题8-2]温度均匀的空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射?答:空腔内部壁面不一定是黑体辐射。
小孔之所以呈现黑体特性,是因为辐射在空腔内经历了多次的吸收和反射,辐射能基本基本都被内壁面吸收,从小孔射出的辐射能基本为零。
【复习题8-3]试说明,为什么在定义物体的辐射力时要加上“半球空间”及“全部波长”的说明?答:因为辐射表面会向半球空间各个方向辐射能量,且辐射能中包含各种波长的电磁波,而辐射力必须包括辐射面辐射出去的所有能量,所以要加上“半球空间”和“全部波长”的说明。
【复习题8-4】黑体的辐射能按波长是怎样分布的?光谱辐射力E根的单位中分母的“n?”代表什么意义?答:黑体辐射能按波长的分布服从普朗克定律。
光谱辐射力单位中的分母“n?”代表了单位辐射面积“n?”和辐射的电磁波单位波长范围“m”的意思。
【复习题8-5]黑体的辐射能按空间方向是怎样分布的?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的?答:黑体辐射能按空间方向分布服从拦贝特定律。
定向辐射强度与空间方向无关并不意味着黑体的辐射能在半球空间是均匀分布的。
因为定向辐射强度是指单位可见辐射面积,而在空间不同方向可见辐射面积是不同的,辐射能在各个方向也不同。
【复习题8-6】什么叫光谱吸收比?在不同光源的照耀下,物体常呈现不同的颜色,如何解释?答:光谱吸收比是指物体对某一特定波长的投入辐射所吸收的百分比。
在光源照射下,物体会吸收一部分辐射,并反射一部分辐射,物体呈现的是反射光的颜色,因而光源不同,反射光也会不同,物体也会呈现不同的颜色。
第八章 热辐射的基本定律
5.单色辐射力E:在给定波长下的辐射力。单位:W/m2·m
E 0 Ed
或:
| E
dE
d
6.定向辐射力E:单位面积物体表面、在单位时间内、在某 给定方向上、单位空间立体角内所发射的辐射能。单位为: W/m2·sr
7.单色定向辐射力E,:在给定波长下的定向辐射力。单位 为:W/m2·sr·m
第一节 基 本 概 念
令: =G/G =G/G
则有:
++=1
=G/G
1.吸收率:=G/G 表示总能量被物体吸收的份额; 2.反射率:=G/G 表示总能量被物体反射的份额; 3.透射率:=G/G 表示总能量被物体透射的份额;
若能量为一特定波长的单色辐射,则有:++=1 其中、 、分别称为物体的单色吸收率、单色反射率、单色透射率。 4.镜反射:
当T=1400时,max=2.07,可见光所占能量部 分仍极少。
第二节 热辐射的基本定律
三、斯蒂芬-玻尔兹曼定律
Eb
0 Eb d
c 1
d
0
5
exp
c 2
T
1
积分后有:
Eb=bT4 W/m2 式中:b=5.67×10-8 W/m2·k4,为黑体辐射常数。 为方便计算,上式常写成:
Eb
Cb
5.漫反射:
6.黑体:=1
7.白体:=1
8.透明体:=1
第一节 基 本 概 念
三、辐射强度和辐射力
1.空间立体角:=A/r2,单位:球面度(sr),整个半球:2。
2.辐射强度I:在单位时间内,在给定的其辐射方向上,物体 表面在与发射方向垂直的方向上的单位投影面积,在单位立 体角内所发射的全波长辐射能。单位:W/m2·sr
热辐射基本定律及物体的辐射特性
热辐射的电磁波是物体内部微观粒子的热运动状态改变时激发 出来的。辐射是物体的固有特性,只要物体的温度高于零度( 0k) ,物体总是不断的把热能转变为辐射能,向外发出热辐射。同时, 物体亦不断地吸收周围物体投射到它上面的热辐射,并把吸收的辐 射能重新转变成热能。辐射换热就是物体之间相互辐射和吸收的总 效果。当物体与环境处于热平衡时,其辐射换热量为零,但其表面 上的热辐射仍在不停的进行。
对于太阳辐射( 5800k),主要能量集中在 0.2~2μm的波长范围 内。可见光区段占有很大的比重。
第八章 热辐射基本定律及物体的
4
辐射特性
如果把太阳辐射包括在内,热辐射的波长区段可放宽为0.1~100μm。
红外线又有远红外线和近红外线之分(波长在25μm以上的红 外线称为远红外线)。远红外线加热技术就是利用远红外辐射元件 发射出的以远红外线为主的电磁波对物料进行加热。微波炉就是利 用远红外线来加热物体的。远红外线可以穿过塑料、玻璃及陶瓷制 品,但却会被像水那样具有极性分子的物体吸收,在物体内部产生 内热源,从而使物体比较均匀地得到加热。各类食品中的主要成分 是水,因而远红外线加热是比较理想的加热手段。
(3)电磁辐射波谱 见图8-1
第八章 热辐射基本定律及物体的
3
辐射特性
电磁辐射波谱
图7-1
在工业的温度范围内( 2000k),有实际意义的热辐射波长位于 0.38~100μm之间。且大多数能量位于红外线区段的( 0.76~20μm) 范围内,可见光区段(0.38~0.76μm)热辐射能量的比重不大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:黑体定向辐射强度与θ无关。
2013-5-11 41-22
1)服从兰贝特定律的辐射,定向发射率在极坐标中 是半圆 2)金属导体的定向发射率( ) (t=150℃)
ε(θ)
ε(θ)
特点:自0º 开始,一定角度内定向发射率几乎不变; 随后随增加而急剧增大。而在90º 的极小范围内又减 小(未标出)
T Eb C0 100
2013-5-11
4
C0=5.67 W/m2K4为黑体辐射系数
41-11
黑体辐射能按波段的分布 黑体辐射函数:自0至波长λ间黑体辐射占同温度黑 体辐射力的百分数,记为f(λT)
f (T ) Fb ( 0 )
0
Eb d
T
4
T
兰贝特(Lambert) 定律 (余弦定律) d( ) d( )
I dA cos d
dA d
I cos
上式说明黑体的定向辐射力在单位辐射面积上、单位 立体角内的数值随天顶角呈余弦规律变化,因此, 兰贝特定律也称为余弦定律。 余弦定律表明:黑体法线 方向辐射力最大,切线方 向最小
人工黑体图
人工黑体空腔内壁面有效辐射即为同温度黑体的辐射, 与壁面自身辐射特性无关 有效辐射:自身辐射与反射辐射之和
2013-5-11 41-7
§8-2 黑体热辐射的基本定律 Nhomakorabea2013-5-11
41-8
1. 辐射力与光谱辐射力:
辐射力:发射体单位时间内每单位表面积向半球空间所 2 发射的全部波长能量 用符号E表示,单位是W m 辐射力从总体上表征物体发射辐射能能力
(黑体辐射的第一个基本定律)
Eb
c15 ec
2
( T )
1
λ-波长,m ; T -黑体温度,K ;c1-第一辐射常数, 3.742×10-16 Wm2;c2 - 第二辐射常数,1.4388×10-2 WK λm 与 T 的 关 系 由 维 恩 (Wien)位移定律给出:
mT 2.8976 103 m K
α(λ)
2013-5-11
41-31
2.实际物体的吸收具有选择性 选择性吸收:实际物体对投入辐射的吸收能力根据 投入辐射波长的不同而不同 选择性吸收为大自然带来了丰富色彩
选择性吸收的实际应用
温室:花房、塑料大棚、玻璃窗等(温室效应) 着装:夏浅冬深 太阳能集热器:选择性涂层 军事:武器涂层
2013-5-11 41-32
E Eb
实际物体的辐射力:
2013-5-11
E Eb T 4
41-20
2 实际物体的光谱辐射力 光谱辐射力发射率(单色黑度)
ε(λ)
相同温度下,实际物体
的光谱辐射力Eλ与黑体
的光谱辐射力Ebλ之比:
E ( ) Eb
实际物体的发射率 与光谱发射率关系:
E Eb
3. 物体表面的发射率取决于物质种类、表面温度和表面状 况。这说明发射率只与发射辐射的物体本身有关,而不 涉及外界条件。(是物性参数)
P370 例题
2013-5-11
作业:3,10,11
41-26
§8-4 实际物体对辐射能的吸收与辐射的关系
2013-5-11
41-27
上一节简单介绍了实际物体的发射情况,那 么当外界的辐射投入到物体表面上时,该物体 对投入辐射吸收的情况又是如何呢?本节将对 其作出解答。
2 0
2
0
sin cos d d I
上式表明遵守兰贝特定律的辐射,其半球辐射力数 值上等于定向辐射强度的π倍
2013-5-11 41-17
小结
1.黑体辐射力由斯忒藩-玻耳兹曼定律确定,辐射力 与热力学温度四次方成正比; 2.黑体辐射能量按波长分布服从普朗克定律; 3.黑体辐射能量按空间分布服从兰贝特定律; 4. 黑体单色辐射辐射力存在峰值,峰值对应的波长λm由 维恩位移定律确定,随温度升高,λm逐渐减小。
Semi-transparent medium
2013-5-11
41-28
一、实际物体的吸收比
投入辐射:单位时间内自外界投射到物体单位表面 积上的辐射能 吸收比:物体对投入辐射所吸收的份额。通常 用表示,即 吸收的能量 投入的能量(投入辐射) 1. 光谱吸收比(也叫单色吸收比):物体对某一特定 波长的辐射能所吸收的份额。
2013-5-11
Lambert定律图示 41-16
d( ) I cos dA d
上式两端乘dΩ,然后在半球空间积分,可得辐 射力E: d( )
Eb
2
dA
2
I cos d
d sin d d
Eb I I
2
cos sin d d
41-14
定向辐射强度I():
定义:单位时间内,物体在单位可见辐射面积(垂直发射方
向的单位面积)上,在单位立体角内发射的辐射能量(一切波
长的能量)。
d( ) I ( ) dA cos d
黑体的定向辐射强度与方向无关。
I ( ) I constant
2013-5-11 41-15
2
1
1 1 2 Eb d 4 Eb d Eb d 0 0 T
Fb ( 02 ) Fb ( 01 ) f (2T ) f (1T )
给定波段区间内,单位时间黑体单位面积所辐射能量:
Eb(1 2 ) Fb(1 2 ) Eb
2013-5-11 41-23
3)非导电体材料定向发射率( ) (t=0~93.3℃)
特点:
0 <<60º :定向发射率( )几乎不变; >60º :定向发射率( )逐渐减小,90º 时为0
41-24
2013-5-11
实验表明: 实际物体的半球空间平均发射率ε与法向发 射率εn比值约为1:
0 1 1 b 2 b 2 1 0 1 1 b 2 0 b 2 0 b 2
黑体辐射函数表见p360
2013-5-11 41-13
(3) 兰贝特(Lambert) 定律 (黑体辐射的第 三个基本定律) 立体角
定义:球面面积除以球半径的平方称为立体角,
单位:sr(球面度),
dAc rd r sin d d 2 sin d d 2 r r
2013-5-11
第八章 热辐射基本定律及辐射特性
2013-5-11
41-1
§8-1 热辐射现象的基本概念
2013-5-11
41-2
1. 热辐射定义及特点
定义:由热运动产生的,以电磁波形式传递的能量 主要特点: (1)所有温度大于0 K的物体都具有发射热辐射的能力, 温度愈高,发射热辐射的能力愈强。 (2)所有实际物体都具有吸收热辐射的能力, (3)热辐射不依靠中间媒介,可以在真空中传播; (4)物体间以热辐射的方式进行的热量传递是双向的; 高温 物体
0
2 ( , T2 ) Eb (T2 )d
f (T1 , T2 , 表面1的性质, 表面2的性质)
如果投入辐射来自黑体,由于 b ( ,T2 ) 1 ,则上式可 变为: ( , T ) ( , T ) E (T )d (, T ) E (T )d E (T )d E (T )d
低温 物体
辐射能 ; 内热能 ;
41-3
5)热辐射伴随有能量形式转化。 发射热辐射时:内热能
2013-5-11
吸收热辐射时:辐射能
2. 从电磁波角度描述热辐射特性
电磁辐射包含了多种形式,工业上有实际意义的热辐射 区域一般为0.1~100 μm。 电磁波的传播速度: c = fλ c =3×108m/s; f -频率,s-1; λ-波长,m,常用μ m
0
Eb d (T ) 5 T
黑体在波长λ1和λ2区段内所 发射的辐射力:
Eb ( 1 2 )
2013-5-11
2
1
Eb d
41-12
某波段区间黑体辐射能占同温度黑体辐射力的百分数为:
Fb ( 1 2 )
2
1
0
1 4 Eb d T
Eb d
P362例题
2013-5-11 41-18
§ 8-3 实际固体和液体的辐射特性
2013-5-11
41-19
1 实际物体的辐射力
同温度下,黑体发射热辐射的
能力最强,包括所有方向和所
有波长;
真实物体表面的发射能力低于同温度下的黑体;
发射率 (也称黑度) :相同温度下,实际物体的辐射
力与黑体辐射力之比:
某波长λ的辐射能力称为光谱辐射力 光谱辐射力:发射体单位时间内每单位表面积向半球空 间所发射的单位波长范围内(包含某给定波长λ)的能量
用符号E 表示,单位是W m
E
3
0
E d
黑体一般采用下标b表示,如黑体的辐射力为Eb, 黑体的光谱辐射力为Ebλ
2013-5-11 41-9
2. 黑体辐射的三个基本定律 (1)普朗克(Planck)定律:
2013-5-11
0
E d
T 4
0
( ) Eb d T 4
41-21
3 实际物体的定向辐射强度
实际物体辐射并不完全符合兰贝特定律。 定向发射率(也称定向黑度)ε(θ) 相同温度下,实际物体在与辐射面成θ角的方向上的定 向辐射强度与黑体的定向辐射强度之比:
I ( ) I ( ) ( ) Ib ( ) Ib
3.选择性吸收对辐射换热计算带来的困难