伺服驱动PID调整口诀及说明

合集下载

PID调节口诀

PID调节口诀

PID调节口诀PID调节口诀1. ID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: =20~60%,T=180~600s,D=3-180s压力P: =30~70%,T=24~180s,液位L: =20~80%,T=60~300s,流量L: =40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID调节口诀

PID调节口诀

PID调节口诀1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D 参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID算法的通俗讲解及调节口诀

PID算法的通俗讲解及调节口诀

PID算法的通俗讲解及调节口诀PID算法是一种常用的控制算法,它可以帮助我们将实际测量值与期望值进行比较,并根据比较结果进行相应的控制。

PID算法由三个部分组成,分别是比例控制(P)、积分控制(I)和微分控制(D)。

在实际应用中,我们可以根据实际情况来调节PID算法的参数,以实现更准确的控制效果。

比例控制(P)是PID算法的核心部分之一,它根据误差的大小来调整输出量。

具体来说,比例控制会将误差与一个常数进行相乘,然后输出到系统中。

当误差较大时,输出量也会较大,从而加快系统的响应速度;当误差较小时,输出量也会较小,从而减小系统的超调量。

积分控制(I)是为了解决系统存在的稳态误差而引入的,它通过对误差的累加来调整输出量。

具体来说,积分控制会将误差乘以一个常数,并加到一个累加器中,然后输出到系统中。

通过积分控制,系统可以在长时间内逐渐减小误差,从而达到期望值。

微分控制(D)是为了解决系统存在的超调问题而引入的,它通过对误差的变化率进行调整。

具体来说,微分控制会将误差的变化率与一个常数进行相乘,并输出到系统中。

通过微分控制,系统可以在误差大幅度变化时降低输出量的变化速度,从而减小超调量。

除了PID算法的三个部分,还需要根据实际情况来调节PID算法的参数,以实现更准确的控制效果。

调节PID算法的口诀有三个重要的方面:1.比例项(P项)的调节:-当P项过大时,系统容易产生超调,并且响应速度较快,但稳定性较差;-当P项过小时,系统的响应速度较慢,并且稳态误差较大;-因此,需要通过改变P项的大小来调节系统的超调量和响应速度。

2.积分项(I项)的调节:-当I项过大时,系统容易产生超调,并且响应速度较慢;-当I项过小时,系统的稳态误差较大;-因此,需要通过改变I项的大小来调节系统的超调量和稳态误差。

3.微分项(D项)的调节:-当D项过大时,系统容易产生振荡,并且响应速度较快;-当D项过小时,系统的超调量较大;-因此,需要通过改变D项的大小来调节系统的振荡情况和超调量。

PID参数整定口诀

PID参数整定口诀

PID参数整定口诀
首先是P(比例)参数的整定:
1.增大P,系统更快速响应;
2.减小P,系统更稳定。

接下来是I(积分)参数的整定:
1.增大I,系统的超调量减小;
2.减小I,系统的超调量增大。

最后是D(微分)参数的整定:
1.增大D,系统的震荡减小;
2.减小D,系统的震荡增大。

综合考虑的时候,可以使用以下顺序进行整定:
1.先将I和D参数设置为0,只调整P参数;
2.逐渐增大P参数,直到系统出现超调;
3.根据需要的系统响应速度调整P参数;
4.添加I参数,减小系统超调;
5.根据需要的系统稳定性调整I参数;
6.最后添加D参数,减小系统震荡。

需要注意的是,以上只是一种简单的整定顺序,具体情况需要结合实际的系统性能要求来设置参数。

此外,整定PID参数的过程是一个迭代的过程,需要不断地调整和优化,直到满足系统的需求。

总结起来,PID参数整定的口诀可以概括为:根据需要的系统性能目标,逐步调整P、I和D参数,将系统的超调、响应速度和稳定性达到最佳状态。

通过不断迭代和优化,最终得到满足系统要求的PID参数设置。

伺服驱动PID调整口诀及说明

伺服驱动PID调整口诀及说明

伺服驱动PID调整口诀及说明
伺服驱动PID调整口诀及说明
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。

微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
P比例;PI比例积分;I积分;D微分
PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。

PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下:比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

PID常用口诀

PID常用口诀

PID常用口诀(转)1.PID常用口诀:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢,微分时间应加长;理想曲线两个波,前高后低4比1好。

2.一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D 参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID调节口诀

PID调节口诀

1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID基本概述和参数调整口诀

PID基本概述和参数调整口诀

PID基本概述和参数调整口诀(一)PID基本概述:1、PID是一个闭环控制算法。

因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。

比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。

2、PID是比例(P)、积分(I)、微分(D)控制算法。

但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。

我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。

现在知道这只是最简单的闭环控制算法。

3、比例(P)、积分(I)、微分(D)控制算法各有作用:比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。

但是微分对噪声干扰有放大作用,加强微分对系统抗干扰不利。

积分和微分都不能单独起作用,必须与比例控制配合。

4、控制器的P,I,D项选择:根据实际的目标系统调试出最佳的PID参数。

(二)常用控制规律的特点:1、比例控制规律P:采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现。

它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合。

如:水泵房冷、热水池水位控制;油泵房中间油罐油位控制等。

2、比例积分控制规律(PI):在工程中比例积分控制规律是应用最广泛的一种控制规律。

积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服驱动PID调整口诀及说明
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。

微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
P比例;PI比例积分;I积分;D微分
PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。

PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下:比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

相关文档
最新文档