Ektngya高一数学典型例题分析:同角三角函数的基本关系式

合集下载

同角三角函数的基本关系式总结瑞文教育文库

同角三角函数的基本关系式总结瑞文教育文库

同角三角函数的基本关系式总结同角三角函数的基本关系式总结成为会员免券下载立即下载1下载券下载文档到电脑,查找使用更方便需要1下载券立即下载成为会员,免券下载同角三角函数的基本关系式总结倒数关系: 商的关系:平方关系:tan cot=1 sin csc=1 cos sec=1 sin/cos=tan=sec/csc cos/sin=cot=csc/sec sin2+cos2=1 1+tan2=sec2 1+cot2=csc2 (六边形记忆法:图形结构上弦中切下割,左正右余中间1记忆方法对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

) 诱导公式(口诀:奇变偶不变,符号看象限。

) sin(-)=-sin cos(-)=cos tan(-)=-tan cot(-)=-cot sin(/2-)=cos cos(/2-)=sin tan(/2-)=cot cot(/2-)=tan sin(/2+)=cos cos(/2+)=-sin tan(/2+)=-cot cot(/2+)=-tan sin()=sin cos()=-cos tan()=-tan cot()=-cot sin()=-sin cos()=-cos tan()=tan cot()=cot sin(3/2-)=-cos cos(3/2-)=-sin tan(3/2-)=cot cot(3/2-)=tan sin(3/2+)=-cos cos(3/2+)=sin tan(3/2+)=-cot cot(3/2+)=-tan sin(2)=-sin cos(2)=cos tan(2)=-tan cot(2)=-cot sin(2k)=sin cos(2k)=cos tan(2k)=tan cot(2k)=cot (其中kZ) 两角和与差的三角函数公式万能公式sin(+)=sincos+cossin sin(-)=sincos-cossin cos(+)=coscos-sinsin cos(-)=coscos+sinsin tan(+)=(tan+tan)/(1-tan tan) tan(-)=(tan-tan)/(1+tan tan) sin=2tan(/2)/(1+tan2(/2)) cos=(1-tan2(/2))/(1+tan2(/2)) tan=(2tan(/2))/(1-tan2(/2)) 半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2=2sincos cos2=cos2-sin2=2cos2-1=1-2sin2 tan2=2tan/(1-tan2) sin3=3sin-4sin3 cos3=4cos3-3cos tan3=(3tan-tan3)/(1-3tan2) 三角函数的和差化积公式三角函数的积化和差公式sin+sin=2sin(2/(+ -))cos(2/(+ -)) sin-sin=2cos(2/(+ -))sin(2/(+ -)) cos+cos=2cos(2/(+ -))cos(2/(+ -)) cos-cos=-2sin(2/(+ -))sin(2/(+ -)) sin cos=-[sin(+)+sin(-)]/2 1cos sin=-[sin(+)-sin(-)]/2 1cos cos=-[cos(+)+cos(-)]/2 1sin sin= -[cos(+)-cos(-)] 2化asin bcos为一个角的一个三角函数的形式(辅助角的三角函数的公式)上传我的文档奖下载券相关推荐回到顶部。

(完整word版)同角三角函数的基本关系-知识点与题型归纳汇总(良心出品必属精品)

(完整word版)同角三角函数的基本关系-知识点与题型归纳汇总(良心出品必属精品)

1●高考明方向1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sinαcosα=tanα. 2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.★备考知考情同角关系式和诱导公式中的π±α,π2±α是高考的热点,题型既有选择题、填空题,又有解答题,难度为中低档题,主要是诱导公式在三角式求值、化简的过程中与同角三角函数的关系式、2 和差角公式及倍角公式的综合应用,一般不单独命题,在考查基本运算的同时,注重考查等价转化的思想方法.一、知识梳理《名师一号》P47知识点一 同角三角函数的基本关系平方关系:;1cos sin 22=+αα商数关系:sin tan cos =ααα注意:《名师一号》P50 问题探究 问题1在利用同角三角函数的基本关系中应注意哪些技巧?利用同角三角函数基本关系式化简求值时, 涉及两个同角基本关系sin 2α+cos 2α=1和tanα=sinαcosα,它们揭示同一角α的各三角函数间的关系,需要在复习中通过解题、理解、掌握.尤其是利用sin2α+cos2α=1及变形形式sin2α=1-cos2α或cos2α=1-sin2α进行开方运算时,要注意符号判断.知识点二诱导公式记忆口诀:奇变偶不变,符号看象限!注意:《名师一号》P50 问题探究问题2诱导公式的记忆口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有34 关?无关,只是把α从形式上看作锐角,从而2kπ+α(k∈Z),π+α,-α,π-α,π2-α,π2+α分别是第一、三、四,二、一、二象限角.二、例题分析:(一) 求值例1.(1)《名师一号》P50 对点自测 4 (09全国卷Ⅰ文)o 585sin 的值为(A) 2-(B)2(C)2-2答案:A例1.(补充)(2)17cos 3⎛⎫-π ⎪⎝⎭的值为5 答案:12例1.(补充)(3)()tan 1665︒-的值为答案:1-注意:(补充)求任意角的三角函数值:负化正→正化主[)0,2π→主化锐例1.(4)《名师一号》P51 高频考点 例2(1)(2014·安徽卷)设函数f(x)(x ∈R)满足f(x +π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f ⎝ ⎛⎭⎪⎫23π6=( ) A.12 B.32 C .0 D .-126解:(1)由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6 =f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin 11π6+sin 17π6=0+12-12+12=12.练习:(补充)(2009重庆卷文)下列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<<7【答案】Csin168sin(18012)sin12,cos10cos(9080)sin80︒︒︒︒︒︒︒︒=-==-=由于正弦函数sin y x =在区间[0,90]︒︒上为递增函数,因此sin11sin12sin80︒︒︒<<,即sin11sin168cos10︒︒︒<<。

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,,则角的终边在第()象限A.一B.二C.三D.四【答案】B【解析】由题意,确定的象限,然后取得结果 .由,得在第二、四象限,由,得在第二、三象限,所以在第二象限.,故选B【考点】任意角的三角函数的定义.2.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算3.已知,且为第三象限角,(1)求的值;(2)求的值。

【答案】(1)(2)【解析】(1)由,再结合第三象限,余弦值为负,算出结果(2)先化简上式,根据,再结合(1)算出结果。

试题解析:(1)且(2分)为第三象限角(4分)(2)==(7分)=(8分)【考点】同角三角函数基本关系的运用以及三角函数的化简.4.已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】要,即,因此角是第二或第三象限角,故选择B.【考点】同角三角函数基本关系及三角函数值的符号确定.5.已知.【答案】.【解析】对式子两边平方,得,从而.【考点】同角三角函数基本关系(平方关系),注意通过平方可与联系.6.已知是第三象限角,且.(1)求的值;(2)求的值【答案】(1);(2).【解析】解题思路:(1)先求,再求,进而求;(2)联立方程组,解得,进而求所求值.规律总结:涉及“”的“知一求二”问题,要利用以下关系式:;.注意点:由的值,求的值,要注意结合角的范围确定符号.试题解析:,是第三象限角,由得.【考点】同角三角函数基本关系式.7.设函数(1)求;(2)若,且,求的值.(3)画出函数在区间上的图像(完成列表并作图)。

(1)列表(2)描点,连线【答案】(1)2;(2);(3)见解析【解析】(1)由正弦函数周期公式得,=,即可求得;(2)将代入的解析式,得到关于的方程,结合诱导公式即可求出,再利用平方关系结合的范围,求出,再利用商关系求出;(3)先由为0和算出分别等于,,在(,)分别令取,0,,求出相应的值和值,在给定的坐标系中描出点,再用平滑的曲线连起来,就得到所要作的图像.试题解析:(1),2分(2)由(1)知由得:, 4分∵∴ 6分∴. 8分(其他写法参照给分)(3)由(1)知,于是有(1)列表11分(2)描点,连线函数 14分【考点】正弦函数周期公式;诱导公式;同角三角函数基本关系式;五点法作图8.已知且是第四象限角,则A.B.C.D.【答案】A【解析】∵=,∴,又∵是第四象限角,∴==,故选A.由诱导公式知,=,∴,由是第四象限角知,,结合同角三角函数基本关系中的平方关系得==.【考点】诱导公式;同角三角函数基本关系式;三角函数在各象限的符号9.已知,.(1)求;(2)求的值.【答案】(1);(2).【解析】(1)由同角三角函数的基本关系:,,结合条件,可得,再由可知,从而;(2)由(1)可知,可将欲求值的表达式化为与只有关的,根据齐次的数学思想,可分子分母同时除以,从而可得:.试题解析:(1)∵,,∴, 2分又∵,∴, 4分∴; 6分(2) 9分12分.【考点】同角三角函数基本关系.10.已知为锐角,则 .【答案】.【解析】∵为锐角,,∴,,∴.【考点】1.同角三角函数基本关系;2.两角和的正切公式.11.已知x,y均为正数,,且满足,,则的值为.【答案】【解析】因为,所以而所以由得,因此或∵x、y为正数,∴【考点】同角三角函数关系,消参数12.已知的值为()A.-2B.2C.D.-【答案】D【解析】由原式可得,解得.【考点】同角三角函数间的基本关系.13.已知,则的值为 .【答案】【解析】,即,又,故.【考点】诱导公式,同角三角函数的基本关系式.14.已知:,其中,则=【答案】【解析】因为,所以,又因,所以,.【考点】诱导公式.15.已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.【答案】;【解析】(1)由角的终边过点求出,利用诱导公式化简即可;(2)由为第三象限角,,可求出,结合(1)求出,利用展开式即可(1)因为的终边过点,所以,而;(2)因为为第三象限角,且,,故【考点】三角函数的定义,诱导公式,同角三角函数基本关系式,两角和与差的三角函数16.已知是第四象限的角,则= .【答案】【解析】是第四象限的角,则,而.【考点】二倍角公式、同角三角函数的基本关系.17.已知()A.B.C.D.【答案】A【解析】由即①由即②所以①+②可得即即,选A.【考点】1.同角三角函数的基本关系式;2.两角差的余弦公式.18.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1) ;(2) .【解析】(1)根据诱导公式进行化简;(2)首先化简,根据第三象限角,同角基本关系式求,确定的值.试题解析:解:(1);. (6)(2),又是第三象限角,,.. (6)【考点】1.诱导公式;2同角基本关系式.19.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.20.函数在区间上的最大值为,则实数的值为( )A.或B.C.D.或【答案】A【解析】因为,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或,故选A.【考点】1.同角三角函数的基本关系式;2.二次函数的最值问题;3.分类讨论的思想.21.已知函数(1)求函数的最小正周期及在区间上的最大值和最小值;(2)若,求的值.【答案】(1)(2)【解析】(1)先利用诱导公式,二倍角公式,化一公式将此函数化简为的形式,利用周期公式,求周期,用x的范围求出整体角的范围,结合三角函数图像求其最值。

高中数学同角三角函数之间的关系总结练习含答案解析X

高中数学同角三角函数之间的关系总结练习含答案解析X

3.2.2 同角三角函数之间的关系1.同角三角函数之间的关系式(1)平方关系:① .该关系体现了正弦与余弦的互化.(2)商数关系:② .该关系体现了切、弦的互化.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形:sin 2α=③ ;cos 2α=④ ;(sin α+ cos α)2=⑤ ;(sin α-cos α)2=⑥ ;(sin α+cos α)2+(sin α- cos α)2=⑦ .(2)tan α=sinαcosα的变形:sin α=⑧ ;cos α=⑨ .一、填空题1.化简sin 2α+cos 4α+sin 2αcos 2α的结果是 .2.已知α是第四象限角,tan α=-512,则sin α= .3.若sin α+sin 2α=1,则cos 2α+cos 4α= .4.若sin α=45,且α是第二象限角,则tan α的值等于 .5.已知tan α=-12,则1+2sinαcosαsin 2α-cos 2α的值为 .6.已知sin α-cos α=-√52,则tan α+1tanα的值为 .7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ= .8.已知sin αcos α=18且π4<α<π2,则cos α-sin α= .二、解答题9.求证:1-2sin2xcos2x cos 2x -sin 2x =1-tan2x 1+tan2x .10.已知sin θ、cos θ是关于x的方程x2-ax+a=0的两个根(a∈R).(1)求sin3θ+cos3θ的值;的值.(2)求tan θ+1tanθ知识清单①sin 2α+cos 2α=1 ②tan α=sinαcosα ③1-cos 2α ④1-sin 2α ⑤1+2sin αcos α ⑥1-2sin αcos α ⑦2 ⑧tan α·cos α ⑨sinαtanα基础过关一、填空题1.答案 1解析 sin 2α+cos 4α+sin 2αcos 2α=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.2.答案 -513 解析 由1cos 2α=sin 2α+cos 2αcos 2α=tan 2α+1=169144得cos 2α=144169,因为α是第四象限角,所以cos α>0,所以cos α=1213,∴sin α=tan α·cos α=-512×1213=-513.3.答案 1解析 ∵sin α+sin 2α=1,∴sin α=1-sin 2α=cos 2α,∴cos 2α+cos 4α=sin α+sin 2α=1.4.答案 -43解析 ∵sin α=45,且α是第二象限角,∴cos α=-35,∴tan α=-43.5.答案 -13解析 1+2sinαcosαsin 2α-cos 2α=sin 2α+2cosαsinα+cos 2α(sinα+cosα)(sinα-cosα)=sinα+cosαsinα-cosα=tanα+1tanα-1,将tan α=-12代入,得原式=-12+1-12-1=-13. 6.答案 -8解析 tan α+1tanα=sinαcosα+cosαsinα=1sinαcosα.∵sin αcos α=1-(sinα-cosα)22=-18,∴tan α+1tanα=-8.7.答案 45解析 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sinθcosθ-2cos 2θsin θ+cos θ=tan 2θ+tanθ-2tan θ+1,又tan θ=2,故原式=4+2-24+1=45.8.答案 -√32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-√32.二、解答题9.证明 左边=cos 22x+sin 22x -2sin2xcos2xcos 2x -sin 2x=(cos2x -sin2x )2(cos2x -sin2x )(cos2x+sin2x )=cos2x -sin2x cos2x+sin2x =1-tan2x1+tan2x =右边,∴原等式成立.10.解析 由韦达定理知sin θ+cos θ=a,sin θ·cos θ=a.∵(sin θ+cos θ)2=1+2sin θcos θ,∴a 2=1+2a,解得a=1-√2或a=1+√2.∵sin θ≤1,cos θ≤1,∴sin θcos θ≤1,即a≤1,∴a=1-√2.(1)sin3θ+cos3θ=(sin θ+cos θ)(sin2θ-sin θ·cos θ+cos2θ) =(sin θ+cos θ)(1-sin θcos θ)=a(1-a)=√2-2.(2)tan θ+1tanθ=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=1sinθcosθ=1a,将a=1-√2代入得,原式=1-√2=-1-√2.。

最新高一数学同角三角函数基本关系式及诱导公式知识点总结及例题优秀名师资料

最新高一数学同角三角函数基本关系式及诱导公式知识点总结及例题优秀名师资料

高一数学同角三角函数基本关系式及诱导公式知识点总结及例题高一数学同角三角函数基本关系式及诱导公式知识点总结及例题1( 同角三角函数的基本关系sin α平方关系:22商数关系:tan α. cos α2. 诱导公式3ππ,,tan α,2,则cos α,________. 1( 已知α??2?答案 ,55sin α解析 ?tan α,2,?,2,?sin α,2cos α. cos α1又sin2α,cos2α,1,?2,cos2α,1,?cos2α.3ππ,?,?cos α,,又?α??2??52sin α,cos α2( 若tan α,2,则的值为________( sin α,2cos α3答案2tan α,13解析原式,,tan α,2413( 已知α是第二象限的角,tan α,,,则cos α,________.25答案 ,5解析 ?α是第二象限的角,?cos α又sin2α,cos2α,1,tan α,25?cos α,,.445,π?的值是________(( sin ?cos π?tan??3?3633答案 ,4π?π,π??,π,ππ,?解析原式,sin?costan3?3?6?π?π?π,sin ??,cos ?,tan ? ,?3??6?3??sin α1,,, cos α2,??3??3×,×,,42??2π?22π,α,,则sin?α,,________.( 已知cos?3?6?3?2答案 ,2πππα,,sin?,?6,α?? 解析 sin?3??2???πππ2α??,,cos?,α?,,. ,,sin?2,??6???6??3题型分析深度剖析题型一同角三角函数基本关系式的应用1例1 已知在?ABC中,sin A,cos A5求sin Acos A的值;判断?ABC是锐角三角形还是钝角三角形;求tan A的值(1思维启迪:由sin A,cos A及sin2A,cos2A,1,可求sin A,cos A的值( 1解 ?sin A,cos A,?1?两边平方得1,2sin Acos A,,512?sin Acos A,,.512由sin Acos A,, 可知cos A ?2,1,2sin Acos A2449,1,,525又sin A>0,cos A0,7?sin A,cos A,.?43?由?,?可得sin A,,cos A,,,545sin A4?tan A,,. cos A33,5探究提高对于sin α,cos α,sin αcos α,sin α,cos α这三个式子,已知其中一个式子的值,其余二式的值可求(转化的公式为2,1?2sin αcosα;关于sin α,cos α的齐次式,往往化为关于tan α的式子(已知tan α,2,求sin2α,sin αcos α,2cos2α;已知sin α,2sin β,tan α,3tan β,求cos α.解 sin2α,sin αcos α,2cos2αsin2α,sin αcos α,2cos2α,sinα,cosαtan2α,tan α,24,.tanα,1?sin α,2sin β,tan α,3tan β,?sin2α,4sin2β,?tan2α,9tan2β,?由???得:9cos2α,4cos2β,??,?得:sin2α,9cos2α,4,36?cos2α,sin2α,1,?cos2α,cos α,.4题型二三角函数的诱导公式的应用π5π3α?,,求cos?α?的值; 例已知cos??6?3?6?73α,π?的值( 已知πππ5π思维启迪:将,α看作一个整体,观察,α与,α的关系(66先化简已知,求出cos α的值,然后化简结论并代入求值(π??5π,α,,α?,π,解 ???6??6?π5πα?. ?,α,π,??6?65π?πα,cos?π,?,α?? ?cos??6???6??π?3,α,,, ,,cos??6?35π?3α,,. 即cos??6?3?cos,cos3,cos,,cos α3?cos α.7α,π? ?sin?tan??2??,tan?7,α?? ,sin???2??πα? ,sin α?tan??2?π?sin??2,α?,sin απ?cos??2α?cos α3,sin αcos α,. sin α5探究提高熟练运用诱导公式和基本关系式,并确定相应三角函数值的符号是解题的关键(另外,切化弦是常用的规律技巧(3πα,?tan?π,α?cos?2π,α?sin?2?? ; cos?,α,3π?sin?,3π,α?sin?π,x?cos?2π,x?tan?,x,π?31π,的值( 已知f,f??3π??,xcos?2??α,π?tan αcos αsin?,2π,??2?解原式,cos?3π,α?[,sin?3π,α?] ,π?tan αcos αsin??2,α??,cos α?sin αtan αcos αcos α,?,cos α?sin αtan αcos αsin αcos α,,,,1. sin αcos αsin αsin x?cos x??,tan x??fsin x,,cos x?tan x,,sin x,31π31π31π,,,sin?,?,sin ?f??3?3?3ππ310π,,sin ,sin?3?32题型三三角函数式的化简与求值11例已知tan α,的值;2sin αcos α,cosα3π,α,tan?π,α?cos?2π,α?sin?2?化简:. cos?,α,π?sin?,π,α?思维启迪:三角函数式的化简与求值,都是按照从繁到简的形式进行转化,要认真观察式子的规律,使用恰当的公式(1解因为tan αsin2α,cos2α1所以2sin αcos α,cosα2sin αcos α,cosαtan2α,12,,2tan α,13π,α,tan α?cos?,α??sin?2?原式,cos?π,α??sin?π,α?πsin αα,?cos αtan α?cos α?sin??2?cos α,,,,1. ,cos α?sin α,sin α探究提高在三角变换中,要注意寻找式子中的角,函数式子的特点和联系,可以切化弦,约分或抵消,减少函数种类,对式子进行化简(π5α,?,,α?,已知sin??2?5παπα,,cos2?,?cos2??42?42?sin?π,α?,cos?3π,α?求的值(π5α,,, 解 ?sin??25?cos α525,又α?,?sin α,55παπα,cos2?,?cos2??42?42? sin?π,α?,cos?3π,α?παπα,,sin2?cos2??42?42,sin α,cos α,sin α2,,3sin α,cos αsin α,cos α分类讨论思想在三角函数化简中的应用典例:化简:sin?4n,14n,1π,α?,cos?π,α? ( ?4??4?π?cos??2,α?, 审题视角角中含有变量n,因而需对n的奇偶分类讨论(利用诱导公式,需将角写成符合公式的某种形式,这就需要将角中的某一部分作为一个整体来看(第节同角三角函数的基本关系式与诱导公式一、选择题 1.tan30?等于--解析:tan30?=tan=tan=-tan0?=-.故选D.2.若cos α=,α?,则tan α等于 --解析:由已知得sin α=-=-=-,?tan α==-2.故选C.3.已知sin=log81 ,且α?4,则tan的值为-?解析:sin=sin α=log8=-,又α?,得cos α==,tan=tan=-tan α=-2=.故选B.4.已知tan θ=2,则sinθ+sin θcosθ-2cosθ等于 - -解析:sinθ+sin θcos θ-2cosθ===.故选D.5.若α是三角形的内角,且sin α+cos α=,则tan α等于 - - -或-解析:将sin α+cos α=两边同时平方,整理得2sin αcos α=-,由这个结果可知角α是第二象限角,并且=1-2sinαcos α=,由于sin α-cos α>0,所以sin α-cos α=,将该式与sin α2 +cos α=联立,解得所以tan α==-.故选B.6.已知f=,则f的值为- -解析:?f==-cos α,?f=-cos= -cos=-cos= -cos=-.故选B.二、填空题7.当k?Z时,= .解析:若k为偶数,则原式===-1;若k为奇数,则原式=答案:-18.设α?==-1. ,sin α+cos α=,则tan α= .解析:将sin α+cos α=?两边平方得sin αcos α=? 由??得或又?0 ?sin α故tan α=.答案:9.若函数f=sin-2cos是奇函数,其中α为锐角, 则sin α2cosα= .解析:因为函数f=sin-2cos是奇函数,所以f=sin α-2cos α=0,所以tan α=2.由于α为锐角,故解得sin α=,cos α=.所以sin α2cos α=.答案:三、解答题10.已知函数 f=.求函数y=f的定义域;设tan α=-,求f的值.解:由cos x?0,得x?+kπ,k?Z,所以函数的定义域是,xx?+kπ,k?Z,.tan α=-,f= ===-1-tan α=.11.已知关于x的方程2x-+的值;+1)x+m=0的两个根为sin θ和cos θ,θ?,求: m的值;网]方程的两根及θ的值.?sin??cos????解:??sin?cos????+=+? m,?==sin θ+cos θ =.将?式两边平方得1+2sin θcos θ=. 所以sin θcos θ=. 由?式得=, 所以m=.同角三角函数的基本关系式及诱导公式一、基本知识:同角三角函数的基本关系式: 平方关系: 商式关系: 倒数关系:诱导公式:A函数名称不变,符号看象限。

高考数学一轮复习考点知识专题讲解27---同角三角函数基本关系式及诱导公式

高考数学一轮复习考点知识专题讲解27---同角三角函数基本关系式及诱导公式

高考数学一轮复习考点知识专题讲解 同角三角函数基本关系式及诱导公式考点要求1.理解同角三角函数的基本关系式sin 2α+cos 2α=1,sin αcos α=tan α.2.掌握诱导公式,并会简单应用.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.三角函数的诱导公式公式一 二三四五 六角2k π+α(k ∈Z )π+α-απ-απ2-απ2+α 正弦sin α-sin α-sin αsin α cos α cos α余弦cos α-cos α cos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀奇变偶不变,符号看象限常用结论同角三角函数的基本关系式的常见变形 sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.(×) (2)若α∈R ,则tan α=sin αcos α恒成立.(×) (3)sin(π+α)=-sin α成立的条件是α为锐角.(×) (4)若sin ⎝⎛⎭⎪⎫3π2-α=13,则cos α=-13.(√)教材改编题1.已知α是第二象限角,sin α=55,则cos α的值为. 答案-255解析∵sin α=55,α是第二象限角, ∴cos α=-1-sin 2α=-255.2.已知sin α-2cos α3sin α+5cos α=-5,那么tan α的值为.答案-2316解析由sin α-2cos α3sin α+5cos α=-5,知cos α≠0,等式左边分子、分母同时除以cos α,可得tan α-23tan α+5=-5,解得tan α=-2316.3.化简cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·sin(α-π)·cos(2π-α)的结果为.答案-sin 2α解析原式=sin αcos α·(-sin α)·cos α=-sin 2α.题型一 同角三角函数基本关系 例1(1)已知cos α=-513,则13sin α+5tan α=. 答案0解析∵cos α=-513<0且cos α≠-1, ∴α是第二或第三象限角.①若α是第二象限角, 则sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-5132=1213, ∴tan α=sin αcos α=1213-513=-125.此时13sin α+5tan α=13×1213+5×⎝ ⎛⎭⎪⎫-125=0. ②若α是第三象限角, 则sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-5132=-1213,∴tan α=sin αcos α=-1213-513=125,此时,13sin α+5tan α=13×⎝ ⎛⎭⎪⎫-1213+5×125=0.综上,13sin α+5tan α=0.(2)已知tan α=12,则sin α-3cos αsin α+cos α=;sin 2α+sin αcos α+2=.答案-53135解析已知tan α=12,所以sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.sin 2α+sin αcos α+2 =sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.(3)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=. 答案-125解析由sin θ+cos θ=713,得sin θcos θ=-60169, 因为θ∈(0,π),所以sin θ>0,cos θ<0, 所以sin θ-cos θ=1-2sin θcos θ=1713,联立⎩⎪⎨⎪⎧sin θ+cos θ=713,sin θ-cos θ=1713,解得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513,所以tan θ=-125. 教师备选1.(2022·平顶山联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin2α等于()A.35 B .-35C .-3D .3答案A解析由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35. 2.若α∈(0,π),sin(π-α)+cos α=23,则sin α-cos α的值为() A.23 B .-23 C.43 D .-43 答案C解析由诱导公式得sin(π-α)+cos α=sin α+cos α=23, 所以(sin α+cos α)2=1+2sin αcos α=29,则2sin αcos α=-79<0,因为α∈(0,π),所以sin α>0, 所以cos α<0,所以sin α-cos α>0, 因为(sin α-cos α)2=1-2sin αcos α=169,所以sin α-cos α=43.思维升华 (1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二. (2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.跟踪训练1(1)(2021·新高考全国Ⅰ)若tan θ=-2,则sin θ(1+sin2θ)sin θ+cos θ等于()A .-65B .-25 C.25 D.65答案C解析方法一因为tan θ=-2, 所以角θ的终边在第二或第四象限, 所以⎩⎪⎨⎪⎧sin θ=25,cos θ=-15或⎩⎪⎨⎪⎧sin θ=-25,cos θ=15,所以sin θ(1+sin2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θ =45-25=25. 方法二(弦化切法)因为tan θ=-2, 所以sin θ(1+sin2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ) =sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ1+tan 2θ=4-21+4=25.(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为.答案-105解析由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1, 所以cos 2α=910,易知cos α<0, 所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 题型二 诱导公式例2(1)已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α的值为()A.223 B .-223 C.13 D .-13答案D解析cos ⎝⎛⎭⎪⎫π4+α=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4 =-sin ⎝⎛⎭⎪⎫α-π4=-13. 延伸探究本例(1)改为已知θ是第二象限角,且sin ⎝⎛⎭⎪⎫θ+π4=45,则tan ⎝ ⎛⎭⎪⎫θ-π4=. 答案34解析∵θ是第二象限角,且sin ⎝⎛⎭⎪⎫θ+π4=45, ∴θ+π4为第二象限角,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-35,∴tan ⎝⎛⎭⎪⎫θ-π4=sin ⎝⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫θ+π4-π2cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫θ+π4-π2=-cos ⎝⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-⎝ ⎛⎭⎪⎫-3545=34.(2)tan(π-α)cos(2π-α)sin⎝⎛⎭⎪⎫-α+3π2cos(-α-π)sin(-π-α)的值为()A.-2B.-1C.1D.2 答案B解析原式=-tanα·cosα·(-cosα)cos(π+α)·[-sin(π+α)]=tanα·cos2α-cosα·sinα=-sinαcosα·cosαsinα=-1.教师备选1.已知函数f(x)=a x-2+2(a>0且a≠1)的图象过定点P,且角α的始边与x轴的正半轴重合,终边过点P,则cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α+sin2αcos⎝⎛⎭⎪⎫π2+αsin(-π-α)等于()A.23B.-23C.32D.-32答案B解析易知函数f(x)=a x-2+2(a>0且a≠1)的图象过定点P(2,3),故tanα=3 2,则cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α+sin2αcos⎝⎛⎭⎪⎫π2+αsin(-π-α)=cos ⎝ ⎛⎭⎪⎫3π2-αsin ⎝ ⎛⎭⎪⎫π2+α+sin2αcos ⎝ ⎛⎭⎪⎫π2+αsin α =-sin αcos α+2sin αcos α-sin αsin α=-cos αsin α=-1tan α=-23. 2.若sin x =3sin ⎝ ⎛⎭⎪⎫x -π2,则cos x ·cos ⎝⎛⎭⎪⎫x +π2等于() A.310 B .-310 C.34 D .-34答案A解析易知sin x =3sin ⎝⎛⎭⎪⎫x -π2=-3cos x , 所以tan x =-3,所以cos x cos ⎝⎛⎭⎪⎫x +π2 =-sin x cos x =-sin x cos x sin 2x +cos 2x=-tan x tan 2x +1=310. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了;②化简:统一角,统一名,同角名少为终了.(2)诱导公式的应用步骤任意负角的三角函数―――――→利用诱导公式三或一任意正角的三角函数――――――→利用诱导公式一0~2π内的角的三角函数――――――→利用诱导公式二或四或五或六锐角三角函数.跟踪训练2(1)已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)=. 答案0解析因为(105°-α)+(75°+α)=180°,(15°-α)+(α+75°)=90°,所以cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-13, sin(15°-α)=sin[90°-(α+75°)]=cos(75°+α)=13. 所以cos(105°-α)+sin(15°-α)=-13+13=0. (2)(2022·盐城南阳中学月考)设tan(5π+α)=2,则sin (-3π+α)+cos (α-π)cos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=. 答案3解析由已知tan(5π+α)=tan α=2,sin (-3π+α)+cos (α-π)cos ⎝ ⎛⎭⎪⎫α-112π+sin ⎝ ⎛⎭⎪⎫9π2+α=sin (π+α)+cos (π-α)cos ⎝ ⎛⎭⎪⎫α+π2+sin ⎝ ⎛⎭⎪⎫π2+α =-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=tan α+1tan α-1=3. 题型三 同角三角函数基本关系式和诱导公式的综合应用例3已知f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α=-31π3,求f (α)的值; (3)若cos ⎝ ⎛⎭⎪⎫-α-π2=15,α∈⎣⎢⎡⎦⎥⎤π,3π2,求f (α)的值. 解(1)f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α)=-sin α×cos α×(-cos α)-cos α×sin α=-cos α.(2)若α=-31π3, 则f (α)=-cos ⎝⎛⎭⎪⎫-31π3=-cos π3=-12. (3)由cos ⎝⎛⎭⎪⎫-α-π2=15, 可得sin α=-15, 因为α∈⎣⎢⎡⎦⎥⎤π,3π2, 所以cos α=-265, 所以f (α)=-cos α=265. 教师备选设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0). (1)化简f (α);(2)若α=-23π6,求f (α)的值. 解(1)f (α)=(-2sin α)·(-cos α)-(-cos α)1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(2sin α+1)sin α(2sin α+1)=cos αsin α=1tan α. (2)当α=-23π6时,f (α)=f ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6 =1tan π6=133= 3. 思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数符号的影响.跟踪训练3(1)(2022·聊城模拟)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是()A.355B.377C.31010D.13答案C解析由已知得⎩⎨⎧ 3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910,则sin α=31010(α为锐角). (2)已知-π<x <0,sin(π+x )-cos x =-15,则sin2x +2sin 2x 1-tan x=. 答案-24175解析由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425. ∴(sin x -cos x )2=1-2sin x cos x =4925, 由-π<x <0知,sin x <0,又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0,故sin x -cos x =-75. ∴sin2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175. 课时精练1.cos ⎝ ⎛⎭⎪⎫-19π3等于()A .-32 B .-12 C.12 D.32答案C解析cos ⎝ ⎛⎭⎪⎫-19π3=cos 19π3=cos ⎝ ⎛⎭⎪⎫6π+π3=cos π3=12.2.若cos165°=a ,则tan195°等于()A.1-a 2B.1-a 2a C .-1-a 2a D .-a 1-a 2答案C解析若cos165°=a ,则cos15°=cos(180°-165°)=-cos165°=-a ,sin15°=1-a 2,所以tan195°=tan(180°+15°)=tan15°=sin15°cos15°=-1-a 2a .3.若cos ⎝ ⎛⎭⎪⎫α-π5=513,则sin ⎝ ⎛⎭⎪⎫7π10-α等于()A .-513 B .-1213 C.1213 D.513 答案D解析因为7π10-α+⎝ ⎛⎭⎪⎫α-π5=π2,所以7π10-α=π2-⎝⎛⎭⎪⎫α-π5, 所以sin ⎝ ⎛⎭⎪⎫7π10-α=cos ⎝⎛⎭⎪⎫α-π5=513. 4.(2022·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tan α等于()A .2 B.12 C .-2 D.-12答案A解析由已知得1+2sin αcos α=2,∴sin αcos α=12,∴tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.5.在△ABC 中,下列结论不正确的是()A .sin(A +B )=sin CB .sin B +C 2=cos A 2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎫C ≠π2D .cos(A +B )=cos C答案D解析在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确.sin B +C 2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确. tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确. cos(A +B )=cos(π-C )=-cos C ,D 错误.6.已知α∈(0,π),且sin α+cos α=15,给出下列结论: ①π2<α<π; ②sin αcos α=-1225; ③cos α=35; ④cos α-sin α=-75. 其中所有正确结论的序号是()A .①②④B .②③④C .①②③D .①③④答案A解析∵sin α+cos α=15, 等式两边平方得(sin α+cos α)2=1+2sin αcos α=125, 解得sin αcos α=-1225,故②正确; ∵α∈(0,π),sin αcos α=-1225<0,∴α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α<0,故①正确,③错误;cos α-sin α<0,且(cos α-sin α)2=1-2sin αcos α=1-2×⎝ ⎛⎭⎪⎫-1225=4925, 解得cos α-sin α=-75,故④正确. 7.sin 21°+sin 22°+sin 23°+…+sin 289°=________.答案44.5解析∵sin1°=cos89°,sin2°=cos88°,…,sin89°=cos1°, ∴sin 21°+sin 22°+sin 23°+…+sin 289°=44.5.8.设f (θ)=2cos 2θ+sin 2(2π-θ)+sin ⎝ ⎛⎭⎪⎫π2+θ-32+2cos 2(π+θ)+cos (-θ),则f ⎝ ⎛⎭⎪⎫17π3=. 答案-512解析∵f (θ)=2cos 2θ+sin 2θ+cos θ-32+2cos 2θ+cos θ=cos 2θ+cos θ-22cos 2θ+cos θ+2, 又cos 17π3=cos ⎝⎛⎭⎪⎫6π-π3 =cos π3=12,∴f ⎝ ⎛⎭⎪⎫17π3=14+12-212+12+2=-512.9.(1)(2022·郑州模拟)已知sin θ=45,求sin (π-θ)cos ⎝ ⎛⎭⎪⎫π2+θcos (π+θ)sin ⎝ ⎛⎭⎪⎫π2-θ的值. 解∵sin θ=45, ∴cos 2θ=1-sin 2θ=925, 则sin (π-θ)cos ⎝ ⎛⎭⎪⎫π2+θcos (π+θ)sin ⎝ ⎛⎭⎪⎫π2-θ=sin θ(-sin θ)(-cos θ)cos θ =sin 2θcos 2θ=169. (2)已知sin x +cos x =-713(0<x <π),求cos x -2sin x 的值. 解∵sin x +cos x =-713(0<x <π), ∴cos x <0,sin x >0,即sin x -cos x >0,把sin x +cos x =-713, 两边平方得1+2sin x cos x =49169, 即2sin x cos x =-120169,∴(sin x -cos x )2=1-2sin x cos x =289169, 即sin x -cos x =1713, 联立⎩⎪⎨⎪⎧ sin x +cos x =-713,sin x -cos x =1713,解得sin x =513,cos x =-1213, ∴cos x -2sin x =-2213. 10.(2022·衡水模拟)已知角α的终边经过点P (3m ,-6m )(m ≠0).(1)求sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2的值; (2)若α是第二象限角,求sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)·cos α-cos ⎝ ⎛⎭⎪⎫π2+α的值. 解(1)∵m ≠0,∴cos α≠0,即sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2 =-sin α-cos αcos α+2sin α=-tan α-11+2tan α. 又∵角α的终边经过点P (3m ,-6m )(m ≠0),∴tan α=-6m 3m=-2,故sin (α+π)+cos (α-π)sin ⎝ ⎛⎭⎪⎫α+π2+2cos ⎝⎛⎭⎪⎫α-π2 =-tan α-11+2tan α=2-11+2×(-2)=-13. (2)∵α是第二象限角,∴m <0,则sin α=-6m (3m )2+(-6m )2 =-6m 35|m |=255, cos α=3m (3m )2+(-6m )2=3m 35|m |=-55, ∴sin 2⎝ ⎛⎭⎪⎫α+3π2+sin(π-α)cos α-cos ⎝ ⎛⎭⎪⎫π2+α =cos 2α+sin αcos α+sin α=⎝ ⎛⎭⎪⎫-552+255×⎝ ⎛⎭⎪⎫-55+255 =-1+255.11.已知角α满足sin α·cos α≠0,则表达式sin (α+k π)sin α+cos (α+k π)cos α(k ∈Z )的取值可能为()A .-2或0B .-1或1C .2或-2D .-2或2或0答案C解析当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2; 当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2. ∴原表达式的取值可能为-2或2.12.(2022·河北六校联考)若sin α是方程5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)等于() A.35 B.53 C.45 D.54答案B解析方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35. 原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53. 13.曲线y =e x +x 2-23x 在x =0处的切线的倾斜角为α,则sin ⎝⎛⎭⎪⎫2α+π2=. 答案45解析由题意得y ′=f ′(x )=e x +2x -23, 所以f ′(0)=e 0-23=13, 所以tan α=13, 所以α∈⎝⎛⎭⎪⎫0,π2, 所以cos α=310, 所以sin ⎝⎛⎭⎪⎫2α+π2 =cos2α=2cos 2α-1=2×910-1=45. 14.函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点Q ,且角α的终边也过点Q ,则3sin 2α+2sin αcos α=.答案75解析由题意可知点Q (4,2),所以tan α=12, 所以3sin 2α+2sin αcos α=3sin 2α+2sin αcos αsin 2α+cos 2α=3tan 2α+2tan α1+tan 2α=3×14+2×121+14=75.15.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,若a =f ⎝⎛⎭⎪⎫sin 12π7,b =f ⎝ ⎛⎭⎪⎫cos 5π7,c =f ⎝⎛⎭⎪⎫tan 2π7,则() A .a >b >c B .c >a >bC .b >a >cD .c >b >a答案B解析根据题意,sin12π7=sin ⎝ ⎛⎭⎪⎫2π-2π7 =-sin2π7, cos 5π7=cos ⎝⎛⎭⎪⎫π-2π7=-cos 2π7, 又由函数f (x )是定义在R 上的偶函数,则a =f ⎝ ⎛⎭⎪⎫sin 12π7=f ⎝ ⎛⎭⎪⎫-sin 2π7=f ⎝⎛⎭⎪⎫sin 2π7, b =f ⎝ ⎛⎭⎪⎫cos 5π7=f ⎝ ⎛⎭⎪⎫-cos 2π7=f ⎝⎛⎭⎪⎫cos 2π7, 又由π4<2π7<π2, 则有0<cos 2π7<sin 2π7<1<tan 2π7, 又由函数在[0,+∞)上单调递增,则有c >a >b .16.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ.由已知得sin θ+cos θ=3+12, 所以sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由已知得sin θcos θ=m2, 因为1+2sin θcos θ=(sin θ+cos θ)2,所以1+m =⎝ ⎛⎭⎪⎫3+122, 解得m =32. (3)联立⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θcos θ=34,解得⎩⎪⎨⎪⎧ sin θ=32,cos θ=12或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.因为θ∈(0,2π),所以θ=π3或π6.。

同角三角函数的基本关系式及诱导公式在高考中的地位

同角三角函数的基本关系式及诱导公式在高考中的地位同角三角函数是数学课程中基础重要的概念,也是高考试题考查的重要内容之一。

本文将重点讨论同角三角函数的基本关系式及诱导公式在高考中的地位,即在考试中对它们加以考查的重要性。

一、同角三角函数的基本关系式同角三角函数的基本关系式是指三角函数的两个函数在同一角度时的关系式,例如sinθ,cosθ,tanθ等。

基本关系式可以从不同的计算方法分析出来,例如从正弦定理,余弦定理及正切定理中,以及在正弦波中对对角线的分析,等等。

基本关系式对于同角三角函数的求值以及使用十分重要,在高考中也是试题的常考内容,考生们在复习备考时要重点认真学习。

二、同角三角函数的诱导公式同角三角函数的诱导公式,是指将三角函数的关系式,通过简单的推导,导出同角三角函数的多对一关系,例如:sin2θ=2sin*cos θcos2θ=cos2θ-sin2θ,tan2θ=2tanθ/(1-tan2θ)等函数之间的关系。

诱导公式是由基本关系式推导出来的,同时又是基本关系式的延伸,在学习和使用同角三角函数方面,诱导公式的作用也十分重要,考生们在理解和掌握基本关系式的基础上,要深入学习诱导公式。

三、同角三角函数的基本关系式及诱导公式在高考中的重要地位同角三角函数的基本关系式及诱导公式,是高考数学课程重要的内容,在学习中占有重要地位。

此外,高考试题中,也会针对同角三角函数的基本关系式及诱导公式进行考查,可以是求解或分析等形式,对考生来说,对这两类关系式的掌握,有助于取得更好的成绩。

四、总结同角三角函数的基本关系式及诱导公式,是数学学科中重要的基础概念,也是高考数学考查的重要内容。

考生在学习备考时,要重点认真学习和掌握基本关系式及诱导公式,以充分备考,提高高考成绩。

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算2.已知,则( )A. B. C D.【答案】B【解析】.【考点】同角三角函数的基本关系.3.化简的结果 .【答案】【解析】,当为奇数时,,原式;当为偶数时,,原式;综上原式【考点】三角函数化简.4.已知,且∥.求值:(1);(2).【答案】(1);(2) .【解析】解题思路:(1)由得出关于的关系,利用求得;(2)利用,分子、父母同除以,得到的式子,再代入求值.规律总结:平面向量与三角函数结合是命题热点,主要借助平面向量平行、垂直的条件推得关于的关系式,然后利用三角函数的有关公式或性质进行变换.试题解析:(1),,.(2).【考点】平面向量平行的判定、同角三角函数基本关系式.5.已知且是第四象限角,则A.B.C.D.【答案】A【解析】∵=,∴,又∵是第四象限角,∴==,故选A.由诱导公式知,=,∴,由是第四象限角知,,结合同角三角函数基本关系中的平方关系得==.【考点】诱导公式;同角三角函数基本关系式;三角函数在各象限的符号6.若则.【答案】【解析】由故【考点】同角三角函数基本关系式7.已知,则的值为.【答案】-11【解析】【考点】弦化切8.化简:.【答案】【解析】此类化简题的关键在于诱导公式的使用,要能够理解诱导公式口决“奇变偶不变,符号看象限”的意义,奇偶指的是的倍数如,中是的偶数倍,4倍,中是的奇数倍,11倍;符号看象限,指的是使用诱导公式时,将看成锐角时的所在的象限,不管题中的范围,如中,为锐角时,为第四象限角,则符号为负,故可知.当然也可用诱导公式层层推进.本题由诱导公式易化简.解:原式=.【考点】诱导公式.9.已知,则=()A.B.C.D.【答案】C【解析】∵,∴,∴.【考点】1.诱导公式;2.同角三角函数基本关系.10.的值等于()A.B.C.D.【答案】C【解析】,故选C.【考点】诱导公式11.已知是第二象限角,()A.B.C.D.【答案】A【解析】由是第二象限角,则.【考点】同角三角函数的基本关系式,三角函数的符号.12.的化简结果是()A.B.C.D.【答案】D【解析】是第二限角,则,所以==.【考点】诱导公式,同角三角函数的基本关系式.13.已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.【答案】;【解析】(1)由角的终边过点求出,利用诱导公式化简即可;(2)由为第三象限角,,可求出,结合(1)求出,利用展开式即可(1)因为的终边过点,所以,而;(2)因为为第三象限角,且,,故【考点】三角函数的定义,诱导公式,同角三角函数基本关系式,两角和与差的三角函数14.已知sinθ=,sin2θ<0,则tanθ等于 ( )A.-B.C.-或D.【答案】A【解析】由题意,∵sinθ=,sin2θ<0,∴cosθ<0∴cosθ=−=−∴tanθ==−,故选A.【考点】同角三角函数间的基本关系.15.已知是第二象限角,()A.B.C.D.-【答案】D【解析】∵是第二象限角,∴,故选D.【考点】同角三角函数基本关系.16.知为锐角,且2,=1,则=()A.B.C.D.【答案】C【解析】诱导公式化简为,解得:,得,故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.17.化简:.【答案】.【解析】本小题主要考查三角函数的诱导公式、同角三角函数的基本关系式及辅助角公式,属于容易题.根据诱导公式及同角三角函数的商数关系:进行展开运算得到,再运用辅助角公式(其中)或运用两角和差公式进行化简即可.试题解析: 4分8分10分.【考点】1.诱导公式;2.同角三角函数的基本关系式;3.辅助角公式(两角和差公式);4.三角恒等变换.18.已知,则()A.B.C.D.【答案】A【解析】法一:由,而,故,;法二:.【考点】同角三角函数的基本关系式.19.已知向量与,其中.(1)问向量能平行吗?请说明理由;(2)若,求和的值;(3)在(2)的条件下,若,求的值.【答案】(1)不能平行;(2),;(3).【解析】(1)先假设,列方程得,然后利用正弦的二倍角公式化简得,再判断此方程是否有解,若有解,可判断、可能平行;若无解,则可判断、不可能平行;(2)将向量的垂直问题转化为向量的数量积问题,得到,联立方程,并结合,即可求出;(3)先由同角三角函数的基本关系式计算出,然后再根据两角和的余弦公式展开计算得的值,最后结合的取值范围确定的值即可.试题解析:解:(1)向量不能平行若平行,需,即,而则向量不能平行 4分(2)因为,所以 5分即又 6分,即,又 8分(3)由(2)知,得 9分则 11分又,则 12分.【考点】1.向量平行、垂直的判定与应用;2.同角三角函数的基本关系式;3.两角和与差的三角函数.20.函数的值域是__ ____.【答案】【解析】正切函数在是单调递增的,所以在处取得最小值,在处取得最大值.【考点】正切函数图像及性质.21.的值为________.【答案】【解析】,故.【考点】1.诱导公式;2.三角恒等变换.22.已知,求下列各式的值:(1);(2).【答案】(1)(2)【解析】(1)利用,对原式分子分母同除以得关于的解析式,代入就可求出代数式的值,(2) 利用分母,将原式化为关于二次齐次式,再利用,对原式分子分母同除以得关于的解析式,代入就可求出代数式的值,本题主要考查利用"弦化切"方法求值.本题也可从出发得代入(1)立得,但代入(2)后只得到,还需结合得出,才可最终求值.试题解析:(1)原式(2)原式12分【考点】同角三角函数关系,弦化切.23.已知,则________________;【答案】.【解析】利用公式,把平方得,从而,由于,则,这类问题中确定它们的正负是我们解题时要特别注意的,于是.【考点】同角三角函数关系(平方关系).24.函数的图象向右平移个单位后,与函数的图象重合,则___ .【答案】【解析】的图象向右平移个单位后,得到函数的图象,所以,,即,故。

高中数学三角函数专题:同角之间的基本关系

高中数学三角函数专题:同角之间的基本关系第一部分:三角函数同角之间的基本关系知识点一:同角之间的基本关系。

关系式一:1cos sin22=+αα。

关系式二:αααcos sin tan =。

推理方法一:如下图所示:根据三角函数的定义得到:||||sin AC BC A =,222||||sin ||||cos AC BC A AC AB A =⇒=,222||||cos AC BC A = 222222222||||||||||||||cos sin AC AB BC AC AB AC BC A A +=+=+⇒,根据勾股定理得:222||||||AC AB BC =+ 1||||cos sin 2222==+⇒AC AC A A 。

根据三角函数的定义得到:||||sin AC BC A =,||||||||||||||||||||cos sin ||||cos AB BC AB AC AC BC AC AB AC BC A A AC AB A =⋅==⇒=根据三角函数的定义得到:||||tan AB BC A =,AAA AB BC A A cos sin tan ||||cos sin =⇒=。

推理方法二:根据三角函数终边上任意点的定义得到:22sin yx y +=α,22cos yx x +=α2222sin y x y +=⇒α,222222222222cos sin cos y x x y x y y x x +++=+⇒+=ααα1cos sin 1222222=+⇒=++=ααyx x y 。

根据三角函数终边上任意点的定义得到:22sin yx y +=α,22cos yx x +=αx y x y xy x yy x y y x y=+⋅+=++=⇒22222222cos sin αα。

根据三角函数终边上任意点的定义得到:x y =αtan ,x y =ααcos sin αααcos sin tan =⇒。

同角三角函数的基本关系典型例题

同角三角函数的基本关系典型例题标题:深入探讨同角三角函数的基本关系典型例题在学习数学的过程中,同角三角函数的基本关系是一个非常重要的概念。

它不仅仅是数学知识中的一个知识点,更是数学世界中的一座重要的桥梁,连接着各种数学概念和方法。

通过深入的学习和理解同角三角函数的基本关系,可以帮助我们更好地掌握数学知识,提高解题能力,甚至可以拓展我们的数学思维。

在本文中,我们将从简到繁地探讨同角三角函数的基本关系,并以典型例题为例,带领读者深入理解这一重要概念。

1. 同角三角函数的基本关系在初步了解同角三角函数时,我们首先需要了解什么是同角三角函数,包括正弦函数、余弦函数和正切函数。

它们之间有着重要的数学关系,可以用数学语言和数学公式表达出来。

对这些公式的理解,是我们深入学习同角三角函数的基础。

2. 典型例题讲解接下来,我们将结合典型例题,逐步演示如何运用同角三角函数的基本关系解题。

通过具体的例子,我们可以更好地理解同角三角函数在实际问题中的应用,以及如何运用基本关系得出结论。

3. 对同角三角函数的个人理解在文章的我会分享我对同角三角函数的个人理解,包括在学习过程中遇到的困惑和解题中的心得体会。

通过我的个人观点和理解,希望能在理论知识之外,给读者带来更多的启发和思考。

在本文中,我们将以精心挑选的典型例题为线索,由浅入深地探讨同角三角函数的基本关系,帮助读者更深入地理解这一重要数学概念。

愿读者能通过本文的阅读和理解,对同角三角函数有一个更全面、深刻和灵活的认识。

4. 深入分析同角三角函数的应用除了单纯的数学理论,同角三角函数在实际生活和工作中也有广泛的应用。

比如在建筑工程中,我们需要通过三角函数来计算建筑物的高度和角度;在天文学中,三角函数可以帮助我们计算天体的运动轨迹和角度;在物理学中,同角三角函数可以帮助我们分析波动、振动等现象。

通过深入分析同角三角函数的应用,我们可以更好地将理论知识与实际问题相结合,提高我们的数学建模能力和解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Time will pierce the surface or youth, will be on the beauty of the ditch dug a shallow groove ; Jane will eat rare!A born beauty, anything to escape his sickle sweep
.-- Shakespeare 同角三角函数的基本关系式·典型例题分析
1.已知某角的一个三角函数值,求该角的其他三角函数值.
解∵sinα<0
∴角α在第三或第四象限(不可能在y轴的负半轴上)
(2)若α在第四象限,则
说明在解决此类问题时,要注意:
(1)尽可能地确定α所在的象限,以便确定三角函数值的符号.
(2)尽可能地避免使用平方关系(在一般情况下只要使用一次).
(3)必要时进行讨论.
例2 已知sinα=m(|m|≤1),求tgα的值.
(2)当m=±1时,α的终边在y轴上,tgα无意义.
(3)当α在Ⅰ、Ⅳ象限时,∵cosα>0.
当α在第Ⅱ、Ⅲ象限时,∵cosα<0,
说明 (1)在对角的范围进行讨论时,不可遗漏终边在坐标轴上的情况.
(2)本题在进行讨论时,为什么以cosα的符号作为分类的标准,而不按sin α的符号(即m的符号)来分类讨论呢?你能找到这里的原因并概括出所用的技巧吗?
2.三角函数式的化简
三角函数式的化简的结果应满足下述要求:
(1)函数种类尽可能地少.
(2)次数尽可能地低.
(3)项数尽可能地少.
(4)尽可能地不含分母.
(5)尽可能地将根号中的因式移到根号外面来.
化简的总思路是:尽可能地化为同类函数再化简.
例3 化简sin2α·tgα+cos2α·ctgα+2sinαcosα
=secα·cscα
解2 原式=(sin2α·tgα+sinα·cosα)+(cos2α·ctgα+sinαcosα)
=tgα·(sin2α+cos2α)+ctgα(sin2α+cos2α)
=tgα+ctgα
=secα·cscα
说明 (1)在解1中,将正切、余切化为正弦、余弦再化简,仍然是循着减少函数种类的思路进行的.
(2)解2中的逆用公式将sinα·cosα用tgα表示,较为灵活,解1与解2相比,思路更自然,因而更实用.
例4 化简:
分析将被开方式配成完全平方式,脱去根号,进行化简.
3.三角恒等式的证明
证明三角恒等式的过程,实际上是化异为同的过程,即化去形式上的异,而呈现实质上的同,这个过程,往往是从化简开始的——这就是说,在证明三角恒等式时,我们可以从最复杂处开始.
例5 求证 cosα(2secα+tgα)(secα-2tgα)=2cosα-3tgα.
分析从复杂的左边开始证得右边.
=2cosα-3tgα=右边
例6 证明恒等式
(1)1+3sin2αsec4α+tg6α=sec6α
(2)(sinA+ secA)3+(cosA+cscA)2=(1+secAcscA)2
分析 (1)的左、右两边均较复杂,所以可以从左、右两边同时化简
证明 (1)右边-左边=sec6α-tg6α-3sin2αsec4α-1
=(sec2α-tg2α)(sec4α+sec2α·tg2α+tg2α)-3sin2αsec4α-1
=(sec4α-2sec2αtg2α+tg2α)-1
=(sec2α-tg2α)2-1=0
∴等式成立.
=sin2A+cos2A=1故原式成立
在解题时,要全面地理解“繁”与“简”的关系.实际上,将不同的角化为同角,以减少角的数目,将不同的函数名称,化为同名函数,以减少函数的种类,都是化繁为简,以上两点在三角变换中有着广泛的应用.
分析1 从右端向左端变形,将“切”化为“弦”,以减少函数的种类.
分析2 由1+2sinxcosx立即想到(sinx+cosx)2,进而可以约分,达到化简的目的.
说明 (1)当题目中涉及多种名称的函数时,常常将切、割化为弦(如解法1),或将弦化为切(如解法2)以减少函数的种类.
(2)要熟悉公式的各种变形,以便迅速地找到解题的突破口,请看下列.
=secα+tgα
∴等式成立
说明以上证明中采用了“1的代换”的技巧,即将1用sec2α-tg2α代换,可是解题者怎么会想到这种代换的呢?很可能,解题者在采用这种代换时,已经预见到代换后,分子可以因式分解,可以约分,而所有这一切都是建立在熟悉公式的各种变形的基础上的,当然,对不熟练的解题者而言,还有如下的“一般证法”——即证明“左边-右边=0”
∴左边=右边。

相关文档
最新文档