三角函数典型例题
三角函数的图象和性质典型例题

三角函数的图象和性质·典型例题于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分k∈Z}【说明】学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的部分;⑤写出角的范围的表达式,注意加周期.【例3】求下列函数的定义域:解:(1)为使函数有意义,需满足2sin2x+cosx-1≥0【说明】求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成.【说明】求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围.【例4】求下列函数的值域:∴此函数的值域为{y|0≤y<1}【说明】求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性.【例5】判断下列函数的奇偶性:【分析】先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性.∵f(1-x)=-sin(-2x)=sin2x=-f(x)【例8】求下列各函数的最大值、最小值,并且求使函数取得最大值、最小值的x的集合.∴使y取得最大值的x的集合为{x|x=(2kπ+1)π,k∈Z}∴使y取得最小值的x的集合为{x|x=2kπ,k∈Z}当cosx=1,即x=2kπ(k∈Z)时,y取得最大值3.【说明】求三角函数的最值的类型与方法:1.形如y=asinx+b或y=acosx+b,可根据sinx,cosx的有界性来求最值;2.形如y=asin2x+bsinx+c或y=acos2x+bcosx+c看成是关于sinx或cosx的二次函数,变为y=a(sinx+m)2+k或y=a(cosx+m)2+k,但要注意它与二次函数求最值的区别,此时|sinx|≤1,|cosx|≤1【例9】求下列函数的单调区间:【分析】复杂三角函数的单调区间是运用基本函数的单调性及单调区间得出的.【说明】象本例这种解析式中含字母系数的函数研究其性质,常常要运用分类讨论的思想,其中为什么要分类,怎么分类和讨论是两个基本问题.【例11】函数f(x)=Asin(ωx+ )的图象如图2-15,试依图指出(1)f(x)的最小正周期;(2)使f(x)=0的x的取值集合;(3)使f(x)<0的x的取值集合;(4)f(x)的单调递增区间和递减区间;(5)求使f(x)取最小值的x的集合;(6)图象的对称轴方程;(7)图象的对称中心.【分析】这是一道依图象读出相应函数性质的典型例题,本身就是数形结合思想的体现,它根据f(x)=Asin(ωx+ )的图象与函数y=sinx的图象的关系得出.注:得出函数f(x)的最小正周期之后,研究f(x)的其他性质,总是先在包含锐角在内的一个周期中研究,再延伸到整个定义域中.注:实际上f(x)图象的对称轴方程为x=x0,而其中x0使f(x0)=1或f(x0)=-1注:f(x)的图象的对称中心为(x0,0),其中x0使f(x0)=0【说明】这种依图读性的问题是提高数形结合能力的重要训练题,其中有两点要注意反思:①周期性在研究中的化简作用,②三角函数的“多对一”性.A.sinθ<cosθ<ctgθB.cosθ<sinθ<ctgθC.sinθ<ctgθ<cosθD.cosθ<ctgθ<sinθ【说明】 y=Asin(ωx+ϕ)(A>0,ω>0)x∈R的图象可由y=sinx的图象经下列各种顺序变换得到的.(1)先平移,后伸缩:①把y=sinx的图象向左(ϕ>0)或向右(ϕ<0)沿x轴方向平移|ϕ|个单位;(相位变换)(周期变换)③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍,横坐标不变(振幅变换)(2)先伸缩,后平移①把y=sinx图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原(相位变换)③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍横坐标不变(振幅变换)再把横坐标缩小到原来的一半,纵坐标扩大到原来的4倍,则所得的图象的解析式是 [ ]∴选A.【例18】设函数f(x)是定义在R上的周期为3的奇函数,且f(1)=2,则f(5)=____ 解:∵f(x)是奇函数,且f(1)=2,∴f(-1)=-2又∵f(x)是周期为3的函数.∴f(3+x)=f(x)∴f(-1+3)=f(-1)=-2 即f(2)=-2f(2+3)=f(2)=-2 即f(5)=-2。
三角函数总结经典例题

第三章 三角函数3.1任意角三角函数一、知识导学1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值rl=α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制.3.弧度与角度的换算:rad π2360=;rad 1745.01801≈=π;130.57180≈⎪⎭⎫ ⎝⎛=πrad .用弧度为单位表示角的大小时,弧度(rad )可以省略不写.度()不可省略.4.弧长公式、扇形面积公式:,r l α=2||2121r lr S α==扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形.5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是)0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是yrx r y x x y r x r y ======ααααααc s c ,s e c ,c o t ,t a n ,c o s ,s i n .这六个函数统称为三角函数.7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值)可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析1.在直角坐标系内讨论角(1)角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就称这个角是第几象限角(或说这个角属于第几象限).它的前提是“角的顶点为原点,角的始边为x 轴的非负半轴.否则不能如此判断某角为第几象限.若角的终边落在坐标轴上,就说这个角不属于任何象限.(2)与α角终边相同的角的集合表示.{}Z k k ∈+⋅=,360αββ,其中α为任意角.终边相同的角不一定相等,相等的角终边一定相同,终边相同的角有无数多个,它们相差360整数倍. 2.值得注意的几种范围角的表示法“0 ~ 90间的角”指 900<≤θ;“第一象限角”可表示为{}Z k k k ∈+⋅<<⋅,90360360θθ;“小于90的角”可表示为{}90<θθ. 3.在弧度的定义中rl与所取圆的半径无关,仅与角的大小有关. 4.确定三角函数的定义域时,主要应抓住分母为零时比值无意义这一关键.当终边在坐标轴上时点P 坐标中必有一个为0.5.根据三角函数的定义可知:(1)一个角的三角函数值只与这个角的终边位置有关,即角α与)(360Z k k ∈⋅=β的同名三角函数值相等;(2)r y r x ≤≤,,故有1sin ,1cos ≤≤αα,这是三角函数中最基本的一组不等关系. 6.在计算或化简三角函数关系式时,常常需要对角的范围以及相应三角函数值的正负情况进行讨论.因此,在解答此类问题时要注意:(1)角的范围是什么?(2)对应角的三角函数值是正还是负?(3)与此相关的定义、性质或公式有哪些?三、经典例题导讲[例1] 若A 、B 、C 是ABC ∆的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的个数是( )①.C A sin sin < ②.C A cot cot < ③.C A tan tan < ④.C A cos cos <A .1 B.2 C.3 D.4错解:C A < ∴ C A sin sin <,C A tan tan <故选B错因:三角形中大角对大边定理不熟悉,对函数单调性理解不到位导致应用错误 正解:法1C A < 在ABC ∆中,在大角对大边,A C a c sin sin ,>∴>法2 考虑特殊情形,A 为锐角,C 为钝角,故排除B 、C 、D ,所以选A . [例2]已知βα,角的终边关于y 轴对称,则α与β的关系为 . 错解:∵βα,角的终边关于y 轴对称,∴22πβα=++πk 2,()z k ∈错因:把关于y 轴对称片认为关于y 轴的正半轴对称.正解:∵βα,角的终边关于y 轴对称 ∴)(,22Z k k ∈+=+ππβα即)(,2z k k ∈+=+ππβα说明:(1)若βα,角的终边关于x 轴对称,则α与β的关系为)(,2Z k k ∈=+πβα(2)若βα,角的终边关于原点轴对称,则α与β的关系为)(,)12(Z k k ∈++=πβα (3)若βα,角的终边在同一条直线上,则α与β的关系为)(,Z k k ∈+=παβ[例3] 已知542cos ,532sin-==θθ,试确定θ的象限. 错解:∵0542cos ,0532sin <-=>=θθ,∴2θ是第二象限角,即.,222z k k k ∈+<<ππθπ从而.,244z k k k ∈+<<ππθπ故θ是第三象限角或第四象限角或是终边在y 轴负半轴上的角.错因:导出2θ是第二象限角是正确的,由0542cos ,0532sin <-=>=θθ即可确定, 而题中542cos ,532sin -==θθ不仅给出了符号,而且给出了具体的函数值,通过其值可进一步确定2θ的大小,即可进一步缩小2θ所在区间.正解:∵0542cos ,0532sin <-=>=θθ,∴2θ是第二象限角,又由43sin 22532sinπθ=<=知z k k k ∈+<<+,22432ππθππ z k k k ∈+<<+,24234ππθππ,故θ是第四象限角. [例4]已知角α的终边经过)0)(3,4(≠-a a a P ,求ααααcot ,tan ,cos ,sin 的值. 错解:a y x r a y a x 5,3,422=+=∴=-=3434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===∴a a a a a a a a αααα错因:在求得r 的过程中误认为a >0正解:若0>a ,则a r 5=,且角α在第二象限3434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===∴a a a a a a a a αααα若0<a ,则a r 5-=,且角α在第四象限3434cot ,4343tan ,5454cos ,5353sin -=-=-=-==--=-=-=∴a a a a a a a a αααα 说明:(1)给出角的终边上一点的坐标,求角的某个三解函数值常用定义求解; (2)本题由于所给字母a 的符号不确定,故要对a 的正负进行讨论. [例5] (1)已知α为第三象限角,则2α是第 象限角,α2是第 象限角; (2)若4-=α,则α是第 象限角. 解:(1)α 是第三象限角,即Z k k k ∈+<<+,2322ππαππZ k k k ∈+<<+∴,4322ππαππ,Z k k k ∈+<<+,34224ππαππ当k 为偶数时,2α为第二象限角当k 为奇数时,2α为第四象限角而α2的终边落在第一、二象限或y 轴的非负半轴上. (2)因为ππ-<-<-423,所以α为第二象限角. 点评:α为第一、二象限角时,2α为第一、三象限角,α为第三、四象限角时,2α为第二、四象限角,但是它们在以象限角平分线为界的不同区域.[例6]一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少? 解:设扇形的半径为rcm ,则扇形的弧长cm r l )220(-=扇形的面积25)5()220(212+--=⋅-=r r r S 所以当cm r 5=时,即2,10===rl cm l α时2max 25cm S =.点评:涉及到最大(小)值问题时,通常先建立函数关系,再应用函数求最值的方法确定最值的条件及相应的最值. [例7]已知α是第三象限角,化简ααααsin 1sin 1sin 1sin 1+---+。
完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos()cos cossin sincoscossin sincos()(3) tan(tan tan去分母得tan tan i tan()(1 tantan )1 tan tantantantan()(1 tantan 、倍角公式的推导及其变形:(1) sin 2sin( ) sin coscos sin2 sin cossin1 .cos— sin 2221 sin 2(sincos(2) cos 2cos() cos cos sin sin cos 2 sin 2cos 2cos 2 sin 2 (cossin )(cossin )cos 22• 2 cos 厶 sin2 2COS (1 cos )把1移项得 1 cos22 cos 2或 -4- GQS -2-c2 cos 212【因为 是-的两倍,所以公式也可以写成2cos2 cos 2一 1 或 1 cos 2 cos 2或 - 1 cos —cos 22222因为4 是2的两倍,所以公式也可以写成cos 42 cos 221 或 1 2Once 厶或nee? O12cos 2 22 cossin(1 sin 2) sin 2把1移项得1cos 22s in 2或 -4-1 2sin 22【因为是—的两倍,所以公式也可以写成2cos1 2 sin 2—或1 cos2 sin 2或 4 ---- eos-sin 22222因为4 是2 的两倍,所以公式也可以写成21、和差公式及其变形: 2) )2sin 2、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如(),(4 (1)已知,都是锐角,sin -,cos(5) , (-4)_5 ,求sin的值13)(—)等等4 5(2)已知COS(—) 1,—,sin( )U,0 —,求sin( )的值4 5 4 4 4 13 4. 3(提不:(——)(—) ,只要求出sin( )即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,sin —,cos5,求角的弧度103、T()公式的应用(2) A ABC 中,角A、B 满足(1 tan A)(l tan B) 2 ,求A+B 的弧度4、弦化切,即已知tan ,求与sin, cos相关的式子的值:化为分式,分子分母同时除以cos 或cos? 等(1)已知tansin2 ,求SmQ 1Q in 9 rnQ 7,3sin 2cos2 的值3sin cos 1 sin 2 cos 25、切化弦,再通分,再弦合一(1)、化简:① sin 50° (13 t#TiO°)sin 35°sin 2x x(2)、证明: ________ (1 tan x tan _) tan x2 cos x 26、综合应用,注意公式的灵活应用与因式分解结合②(tan 10 01) cos-100...化简(2 sin2 2 cos4cos 20° sin 40° 的值等于()3cos cos2 的值等于( )——5 511A .C. 2D ・ 4424、已知0AiL cos A 3 那么卡in 2A 等于()2547-_ 12 24A.B .C ・D ・25252525215已知tan ()——,tan( ),则)的值等升( : )544413313 3A •B.—c.-一D.182222186、sinl65o= ()——1A •B.3C. 62 D. 62 22,4J广 47sinl4ocos 16o+sin76ocos74o 的值是 ()1、sin 20°cos40°A. 1B. 3c.1 D. 342r 244 72、若 tan3 , tan,则 tan()等于()31 1 A. 3B. 3-c.D.33A・3 B . 18、已知2x ( ,0),£,COS X24 一,则tan 2x (A . 7 2B —579、化简242s in (JI—x) —• sin (24n:+x), 其结果是4 4A. sin2x cos2x —10 、sin —3 cos 的值是( )12 12A . 0 £-211 、1 tan 2 75 的值为()ji V tan 753 1c. D.2 J 2)24 24C・ D .7 7( )C .—cos2x D. —sin2x5c. 2 D . 2 sin12A. 2 3。
第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。
【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。
【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。
【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。
②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。
【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。
三角函数典型例题

三角函数典型例题
1. 已知直角三角形中,一条直角边的长度为3,斜边的长度为5,求另一条直角边的长度。
解:设另一条直角边的长度为x,根据勾股定理可得:3^2 + x^2 = 5^2
化简得:x^2 = 25 - 9 = 16
因此,x = 4 ,所以另一条直角边的长度为4。
2. 在一个直角三角形中,已知一条直角边的长度为10,另一条直角边的长度为8,求斜边的长度。
解:设斜边的长度为x,根据勾股定理可得:10^2 + 8^2 = x^2 化简得:x^2 = 100 + 64 = 164
因此,x = √164 ≈ 12.81,所以斜边的长度约为12.81。
3. 已知一个直角三角形的斜边长度为7,其中一个锐角的正弦值为0.6,求另一个锐角的正弦值。
解:设另一个锐角的正弦值为x,根据正弦定理可得:x/0.6 = 7/7 化简得:x = 0.6
因此,另一个锐角的正弦值为0.6。
三角函数化简求值典型例题

三角函数化简求值典型例题三角函数,哎呀,这可真是个既神秘又有趣的世界!我们在生活中,常常能看到三角函数的身影,像是在建筑、导航,甚至是音乐中,都有它的身影。
你有没有想过,三角函数其实就像一个调皮的小孩,时不时就会给你带来一些意想不到的挑战。
今天,我们就来聊聊这些三角函数的化简与求值,带你一起深挖这个“秘密花园”。
咱们得了解一下三角函数的基本概念。
最常见的,可能就是正弦、余弦和正切了。
别看它们名字听起来复杂,其实它们就是个“角”的游戏。
就像在游乐园里,正弦和余弦这对好朋友总是一起玩耍。
你想象一下,正弦就像是一个在过山车上尖叫的小孩,余弦则是那个在旁边冷静地观察的朋友。
他们的关系其实很微妙,正弦的最高点和余弦的最低点,总是能碰到一起,真是有趣得很!我们来说说这些三角函数的化简。
化简就像是把一个复杂的拼图变得简单明了。
比如说,咱们有一个表达式,像是sin²(x) + cos²(x),这看起来是不是有点复杂?但它有个神秘的特性,就是总能化简成1。
这就好比你在忙碌的一天中,突然发现原来生活中的小确幸其实一直都在。
每次看到这个化简,我都忍不住想笑,真是简单又快乐!再看看这个正切函数,tanj = sinj/cosj。
这个家伙有点特别,常常让人捉摸不透。
有时候它显得那么高深莫测,但只要你理解了正弦和余弦的关系,正切就乖乖听话了。
比如说,当你求一个角的正切值时,记得去找它的对边和邻边,这样你就能轻松地求出结果。
这种感觉,就像是揭开了一个谜底,瞬间明亮了许多。
不过,三角函数不仅仅是计算,它背后有个更深层次的故事。
比如,当我们在计算某个角的值时,其实是在寻找这个角在生活中的意义。
它就像一个指引,让我们能在复杂的世界中找到方向。
记得有一次,我在爬山的时候,忽然想到三角函数,心里有种说不出的亲切感。
仿佛每一步的攀登,都与这些函数息息相关。
山的高度、斜率,甚至每一个呼吸,都与三角函数有着千丝万缕的联系。
特殊角的三角函数值典型例题
作业: 归纳结果 0° 30° 45° 60° 90° sinA cosA tanA cotA当锐角α越来越大时, α的正弦值越来___________,α的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值.(1)cos 260°+sin 260°. (2)cos 45sin 45︒︒-tan45°.2:(1)如图(1),在Rt △ABC 中,∠C=90,AB=6,BC=3,求∠A 的度数.(2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 的3倍,求a .一、应用新知:1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= .2.在△ABC 中,∠A=75°,2cosB=2,则tanC= . 3.求下列各式的值.(1)o 45cos 230sin 2-︒ (2)tan30°-sin60°·sin30°(3)cos45°+3tan30°+cos30°+2sin60°-2tan45°(4)︒+︒+︒+︒-︒45sin 30cos 30tan 130sin 145cos 2224.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α(3)222sin =α(4)33)16cos(6=- α(5)(6)6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长.7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 形状是________________.8. 在△ABC 中,∠C=90°,sinA= ,则cosB=_______,tanB=_______ 9.已知α为锐角,且sin α=53,则sin(90°-α)=_ 二、选择题.1.已知:Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ).A .3B .6C .9D .12 2.计算2sin30°-2cos60°+tan45°的结果是( ).|tanB-3|+(2sinA-3)2=002sin 2=-α01tan 3=-α3A .2B .3C .2D .13.已知∠A 为锐角,且cosA ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A<90°C .0°<∠A ≤30°D .30°≤∠A<90°4.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB= 32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定5.如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4,设∠BCD=a ,则tanA•的值为( ).A .34B .43C .35D .456.在△ABC 中,三边之比为a :b :c=1:3:2,则sinA+tanA 等于( ).A .32313331.3..6222B C D +++7.若( 3 tanA-3)2+│2cosB- 3 │=0,则△ABC ( ). A .是直角三角形 B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 三、填空题.1.已知,等腰△ABC•的腰长为4 3 ,•底为30•°,•则底边上的高为_____,•周长为___.2.在Rt △ABC 中,∠C=90°,已知tanB= 52 ,则cosA=________.3.已知:α是锐角,tan α=724,则sin α=_____,cos α=_______ 四、计算: (5)sin 45cos3032cos 60︒+︒-︒-sin60°(1-sin30°).(6)sin 45tan 30tan 60︒︒-︒+cos45°·cos30°(7)101(32)4cos30|12|3-⎛⎫-++-- ⎪⎝⎭° (8)2cos602sin 302︒︒-;◆拓展训练在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,•根据勾股定理有公式a 2+b 2=c 2,根据三角函数的概念有sinA=ac,cosA=b c ,sin2A+cos2A=2222222a b a bc c c++==1,sincosAA=ac÷bc=ab=tanA,•其中sin2A+cos2A=1,sin cos AA=tanA可作为公式来用.例如,△ABC中,∠C=90°,sinA=45,求cosA,tanA的值.。
三角函数y=Asin(ωx+φ)中的对称轴
三角函数y=Asin (ωx+φ)中的对称轴江苏 韩文美正弦函数y=sinx 的对称轴是x=k π+2π(k ∈Z ),它的对称轴总是经过它图象的最高点或者最低点。
由于三角函数y=)sin(ϕω+⋅x A 是由正弦函数y=sinx 复合而成的,所以令ϕω+x =k π+2π,就能得到y=)sin(ϕω+⋅x A 的对称轴方程x=ωϕππ-+2k (k ∈Z )。
通过类比可以得到三角函数y=)cos(ϕω+⋅x A 的对称轴方程x=ωϕππ-+k (k ∈Z )。
下面通过几道典型例题来谈一谈如何应用它们的对称轴解题。
1.解析式问题例1.设函数)(x f = )2sin(ϕ+x (0<<-ϕπ),)(x f 图像的一条对称轴是直线8π=x ,求ϕ的值。
分析:正弦函数y=sinx 的对称轴是x=k π+2π,令2x+ϕ=k π+2π,结合条件0<<-ϕπ求解。
解析:∵8π=x 是函数y=)(x f 的图像的对称轴,∴1)82sin(±=+⨯ϕπ,∴24ππππ+=+k ,k ∈Z ,而0<<-ϕπ,则43πϕ-=。
点评:由于对称轴都是通过函数图像的最高点或者最低点的直线,所以把对称轴的方程代入到函数解析式,函数此时可能取得最大值或最小值。
易错点就在于很多同学误认为由于正弦函数y=sinx 的周期是2k π,所以会错误的令ϕω+⋅x =2k π+2π。
2.参数问题例2.如果函数y =sin2x +acos2x 的图象关于直线x =-8π对称,则a 的值为( ) A .2 B .-2 C .1 D .-1 分析:由于本题是选择题,所以解法多种多样,可以带入验证;也可以根据对称轴的通式求解,还可以根据最值求解。
解法一:y =sin2x +acos2x=21a +sin (2x +ϕ),其中cos ϕ=211a+,sin ϕ=21aa +,由函数的图象关于x=-8π对称知,函数y =sin2x +acos2x 在x=-8π处取得最大值或最小值,∴sin (-4π)+acos (-4π)=±21a +, 即22(1-a )=±21a +,解得a =-1,所以应选择答案:D 。
高考数学三角函数典型例题
三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C ,∴(2sin A -sin C )cos B =sin B cos C .即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21. ∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π) 设sin A =t ,那么t ∈]1,0(.那么m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值.依题意得,-2+4k +1=5,∴k =23. 3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++CB A . I.试判断△ABC 的形状;II.假设△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin2sinππ+=+=+-C C C C C2242πππ==+∴C C 即,所以此三角形为直角三角形. II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos =A, (1)求B C cos ,cos 的值; (2)假设227=⋅BC BA ,求边AC 的长。 【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C47sin ,43cos ;873sin ,81cos ====A A C C 得由得由()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BC BA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.5 .在ABC ∆中,A B >,且A tan 及B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值; (Ⅱ)假设AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==.∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯(Ⅱ)∵180=++C B A ,∴)(180B A C +-=.由(Ⅰ)知,1)tan(tan =+-=B A C ,∵C 为三角形的内角,∴sin C =∵tan 3A =,A 为三角形的内角,∴sin A =, 由正弦定理得:sin sin AB BCC A=∴2BC ==6 .在ABC ∆中,内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1)//m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,b=2,由余弦定理,得:4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴a c≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)假设b =2,求△ABC 面积的最大值.【解析】:(1) 由余弦定理:cosB=142sin 2A C ++cos2B= 41-(2)由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号)故S △ABC 的最大值为3158 .)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】aa -12;9 .()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(I)化简()fα(II)假设α是第三象限角,且31cos 25πα⎛⎫-=⎪⎝⎭,求()f α的值。 【解析】10.函数f(x)=sin 2x+3sinxcosx+2cos 2x,x ∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x ∈R)的图象经过怎样的变换得到?【解析】:(1)1cos 23()2(1cos 2)2x f x x x -=+++132cos 22223sin(2).62x x x π=++=++()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈ 即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)先把sin 2y x =图象上所有点向左平移12π个单位长度, 得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度, 就得到3sin(2)62y x π=++的图象。11.⎪⎪⎭⎫ ⎝⎛-=23,23a,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)假设函数)(x g y =及)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。【解析】:(1))34sin(34cos 234sin 23)(ππππ-=-=x x x x f ∴当]223,22[34ππππππk k x ++∈-时,)(x f 单调递减 解得:]8322,8310[k k x ++∈时,)(x f 单调递减。(2)∵函数)(x g y =及)(x f y =关于直线1=x 对称 ∴⎥⎦⎤⎢⎣⎡--=-=34)2(sin 3)2()(ππx x f x g⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡--=34cos 3342sin 3πππππx x∵]34,0[∈x ∴⎥⎦⎤⎢⎣⎡∈+32,334ππππx∴]21,21[34cos -∈⎪⎭⎫⎝⎛+ππx ∴0=x 时,23)(max =x g12.cos 2sin αα=-,求以下各式的值; (1)2sin cos sin 3cos αααα-+; (2)2sin2sin cos ααα+【解析】:1cos 2sin ,tan 2ααα=-∴=-(1)1212sin cos 2tan 1421sin 3cos tan 3532αααααα⎛⎫⨯-- ⎪--⎝⎭===-++-+(2)2222sin 2sin cos sin 2sin cos sin cos αααααααα++=+ 2222112tan 2tan 322tan 15112ααα⎛⎫⎛⎫-+⨯- ⎪ ⎪+⎝⎭⎝⎭===-+⎛⎫-+ ⎪⎝⎭13.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值及最小正周期; (II)求使不等式3()2f x ≥成立的x 的取值集合。 【解析】14.向量)1,32(cos --=αm ,)1,(sin α=n ,m 及n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值;(Ⅱ)求αααcos sin 2sin -的值.。【解析】:(Ⅰ) m 及n 为共线向量, 0sin )1(1)32(cos =⨯--⨯-∴αα, 即32cos sin =+αα (Ⅱ) 92)cos (sin 2sin 12=+=+ααα ,972sin -=∴α 2)cos (sin )cos (sin 22=-++αααα ,916)32(2)cos (sin 22=-=-∴αα 又]0,2[πα-∈ ,0cos sin <-∴αα,34cos sin -=-αα 因此, 127cos sin 2sin =-ααα15.如图,A,B,C,D 都在同一个及水平面垂直的平面内,B,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=。试探究图中B,D 间距离及另外哪两点距离相等,然后求B,D 的距离(计算结果准确到,2≈1.414,6≈2.449)【解析】:在ACD ∆中,DAC ∠=30°,ADC ∠=60°-DAC ∠=30°,又BCD ∠=180°-60°-60°=60°,故CB 是CAD ∆底边AD 的中垂线,所以BD=BA 在ABC ∆中,ABCACBCA AB ∠=∠sin sin , 即AB=2062351sin 60sin +=︒︒AC因此,km 33.020623≈+=BD故 B .D 的距离约为。16.函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象及x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域.【解析】: (1)由最低点为2(,2)3M π-得A=2.由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ===由点2(,2)3M π-在图像上的242sin(2)2,)133ππϕϕ⨯+=-+=-即sin(故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]17.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进展测量,50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值。【解析】:作//DMAC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=, 2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯18.51cos sin =+θθ,),2(ππθ∈,求〔1〕sin cos θθ-〔2〕33sincos θθ-〔3〕44sin cos θθ+【解析】:〔1〕3344791337sin cos (2)sin cos (3)sin cos 5125625θθθθθθ-=-=+=19.函数)sin(ϕω+=x A y 〔0>A , 0ω>,πϕ<||〕的一段图象如下图,〔1〕求函数的解析式;〔2〕求这个函数的单调递增区间。
三角函数典型例题分析
目录1、0°~360°间的三角函数.典型例题分析 (2)2、弧度制.典型例题分析 (2)3、任意角的三角函数.典型例题分析一 (3)4、任意角的三角函数.典型例题精析二 (5)5、同角三角函数的基本关系式.典型例题分析 (12)6、诱导公式.典型例题分析 (17)7、用单位圆中的线段表示三角函数值.典型例题分析 (18)8、三角公式总表 (19)9、正弦函数、余弦函数的图象和性质.典型例题分析 (22)10、函数y=Asin(wx+j)的图象.典型例题分析 (27)11、正切函数、余切函数的图象和性质.典型例题分析 (29)12、已知三角函数值求角.典型例题分析 (30)全章小结 (31)高考真题选讲 (31)1、0°~360°间的三角函数·典型例题分析例1已知角α的终边经过点P(3a,-4a)(a<0,0°≤α≤360°),求解α的四个三角函数.解如图2-2:∵x=3a,y=-4a,a<0例2求315°的四个三角函数.解如图2-3,在315°角的终边上取一点P(x,y)设OP=r,作PM垂直于x轴,垂足是M,可见∠POM=45°注:对于确定的角α,三角函数值的大小与P点在角α的终边上的位置无关,如在315°的角的终边上取点Q(1,-1),计算出的结果是一样的.2、弧度制·典型例题分析角度与弧度的换算要熟练掌握,见下表.例2将下列各角化成2kπ+α(k∈Z,0≤α<2π)的形式,并确定其所在的象限。
∴它是第二象限的角.注意:用弧度制表示终边相同角2kπ+α(k∈Z)时,是π的偶数倍,而不是π的整数倍.A.第一象限 B.第二象限C.第三象限 D.第四象限∴sinα>0,tgα<0 因此点P(sinα,tgα)在第四象限,故选D.解∵M集合是表示终边在第一、二、三、四象限的角平分线上的角的集合.N集合是表示终边在坐标轴(四个位置)上和在第一、二、三、四象限的角平分线上的角的集合.3、任意角的三角函数·典型例题分析一例1已知角α的终边上一点P(-15α,8α)(α∈R,且α≠0),求α的各三角函数值.分析根据三角函数定义来解A.1 B.0C.2 D.-2例3若sin2α>0,且cosα<0,试确定α所在的象限.分析用不等式表示出α,进而求解.解∵sin2α>0,∴2α在第一或第二象限,即2kπ<2α<2kπ+π,k∈Z)当k为偶数时,设k=2m(m∈Z),有当k为奇数时,设k=2m+1(m∈Z)有∴α为第一或第三象限的角,又由cosα<0可知α在第二或第四象限.综上所述,α在第三象限.义域为{x|x∈R且x≠kπ,k∈Z},∴函数y=tgx+ctgx的定义域是说明本例进一步巩固终边落在坐标轴上角的集合及各三角函数值在每一象限的符号,三角函数的定义域.例5计算(1)a2sin(-1350°)+b2tg405°-(a-b)2ctg765°-2abcos(-1080°)分析利用公式1,将任意角的三角函数化为0~2π间(或0°~360°间)的三角函数,进而求值.解(1)原式=a2sin(-4×360°+90°)+b2tg(360°+45°)-(a-b)2ctg(2×360°+45°)-2abcos(-3×360°)=a2sin90°+b2tg45°-(a-b)2ctg45°-2abcos0°=a2+b2-(a-b)2-2ab=04、任意角的三角函数·典型例题精析二例1下列说法中,正确的是 [ ]A.第一象限的角是锐角B.锐角是第一象限的角C.小于90°的角是锐角D.0°到90°的角是第一象限的角【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键.【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B).(90°-α)分别是第几象限角?【分析】由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的【解】(1)由题设可知α是第二象限的角,即90°+k·360°<α<180°+k·360°(k∈Z),的角.(2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角.(3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z),所以-180°-k·360°<-α<-90°-k·360°(k∈Z).故-90°-k·360°<90°-α<-k·360°(k∈Z).因此90°-α是第四象限的角.解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内.【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的.例3已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间[ ]【分析】解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易.【解法一】由正、余弦函数的性质,【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当应选(A).可排除(C),(D),得(A).【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,可自己练习.例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;【分析】利用三角函数的定义进行三角式的求值、化简和证明,是三两个象限,因此必须分两种情况讨论.【解】(1)因为x=3k,y=-4k,例5一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.【分析】解答本题,需灵活运用弧度制下的求弧长和求面积公式.本题是求扇形面积的最大值,因此应想法写出面积S以半径r为自变量的函数表达式,再用配方法求出半径r和已知周长l的关系.【解】设扇形面积为S,半径为r,圆心角为α,则扇形弧长为l-2r.所以【说明】在学习弧度制以后,用弧度制表示的求弧长与扇形面积公形的问题中,中心角用弧度表示较方便.本例实际上推导出一个重要公式,即当扇形周长为定值时,怎样选取中心角可使面积得到最大值.本题也可将面积表示为α的函数式,用判别式来解.【分析】第(1)小题因α在第二象限,因此只有一组解;第(2)小题给了正弦函数值,但没有确定角α的象限,因此有两组解;第(3)小题角α可能在四个象限或是轴线角,因此需分两种情况讨论.【解】(3)因为sinα=m(|m|<1),所以α可能在四个象限或α的终边在x轴上.例7(1)已知tanα=m,求sinα的值;【分析】(1)已知tanα的值求sinα或cosα,一般可将tanα母都是sinα和cosα的同次式,再转化为关于tanα的式子求值,转化的方法是将分子、分母同除以cosα(或cos2α,这里cosα≠0),即可根据已知条件求值.【说明】由tanα的值求sinα和cosα的值,有一些书上利用公很容易推出,所以不用专门推导和记忆这些公式,这类问题由现有的关系式和方法均可解决.函数的定义来证明.由左边=右边,所以原式成立.【证法三】(根据三角函数定义)设P(x,y)是角α终边上的任意一点,则左边=左边,故等式成立.例9化简或求值:【分析】解本题的关键是熟练地应用正、余弦的诱导公式和记住特殊角的三角函数值.=-sinα-cosα(因为α为第三象限角).例10 (1)若 f(cos x)=cos9x,求f(sin x)的表达式;【分析】在(1)中理解函数符号的含义,并将f(sin x)化成f(cos(90°-x))是充分利用已知条件和诱导公式的关键.在(2)中必须正确掌握分段函数求值的方法.【解】(1)f(sin x)=f(cos(90°-x))=cos9(90°-x)=cos(2×360°+90°-9x)=cos(90°-9x)=sin9x;=1.5、同角三角函数的基本关系式·典型例题分析1)已知某角的一个三角函数值,求该角的其他三角函数值.解∵sinα<0∴角α在第三或第四象限(不可能在y轴的负半轴上)(2)若α在第四象限,则说明在解决此类问题时,要注意:(1)尽可能地确定α所在的象限,以便确定三角函数值的符号.(2)尽可能地避免使用平方关系(在一般情况下只要使用一次).(3)必要时进行讨论.例2 已知sinα=m(|m|≤1),求tgα的值.(2)当m=±1时,α的终边在y轴上,tgα无意义.(3)当α在Ⅰ、Ⅳ象限时,∵cosα>0.当α在第Ⅱ、Ⅲ象限时,∵cosα<0,说明 (1)在对角的范围进行讨论时,不可遗漏终边在坐标轴上的情况.(2)本题在进行讨论时,为什么以cosα的符号作为分类的标准,而不按sinα的符号(即m的符号)来分类讨论呢?你能找到这里的原因并概括出所用的技巧吗?2)三角函数式的化简三角函数式的化简的结果应满足下述要求:(1)函数种类尽可能地少.(2)次数尽可能地低.(3)项数尽可能地少.(4)尽可能地不含分母.(5)尽可能地将根号中的因式移到根号外面来.化简的总思路是:尽可能地化为同类函数再化简.例3 化简sin2α·tgα+cos2α·ctgα+2sinαcosα=secα·cscα解2 原式=(sin2α·tgα+sinα·cosα)+(cos2α·ctgα+sinαcosα)=tgα·(sin2α+cos2α)+ctgα(sin2α+cos2α)=tgα+ctgα=secα·cscα说明 (1)在解1中,将正切、余切化为正弦、余弦再化简,仍然是循着减少函数种类的思路进行的.(2)解2中的逆用公式将sinα·cosα用tgα表示,较为灵活,解1与解2相比,思路更自然,因而更实用.例4 化简:分析将被开方式配成完全平方式,脱去根号,进行化简.3)三角恒等式的证明证明三角恒等式的过程,实际上是化异为同的过程,即化去形式上的异,而呈现实质上的同,这个过程,往往是从化简开始的——这就是说,在证明三角恒等式时,我们可以从最复杂处开始.例5 求证 cosα(2secα+tgα)(secα-2tgα)=2cosα-3tgα.分析从复杂的左边开始证得右边.=2cosα-3tgα=右边例6 证明恒等式(1)1+3sin2αsec4α+tg6α=sec6α(2)(sinA+ secA)3+(cosA+cscA)2=(1+secAcscA)2分析 (1)的左、右两边均较复杂,所以可以从左、右两边同时化简证明 (1)右边-左边=sec6α-tg6α-3sin2αsec4α-1=(sec2α-tg2α)(sec4α+sec2α·tg2α+tg2α)-3sin2αsec4α-1=(sec4α-2sec2αtg2α+tg2α)-1=(sec2α-tg2α)2-1=0∴等式成立.=sin2A+cos2A=1故原式成立在解题时,要全面地理解“繁”与“简”的关系.实际上,将不同的角化为同角,以减少角的数目,将不同的函数名称,化为同名函数,以减少函数的种类,都是化繁为简,以上两点在三角变换中有着广泛的应用.分析1 从右端向左端变形,将“切”化为“弦”,以减少函数的种类.分析2 由1+2sinxcosx立即想到(sinx+cosx)2,进而可以约分,达到化简的目的.说明 (1)当题目中涉及多种名称的函数时,常常将切、割化为弦(如解法1),或将弦化为切(如解法2)以减少函数的种类.(2)要熟悉公式的各种变形,以便迅速地找到解题的突破口,请看下列.=secα+tgα∴等式成立说明以上证明中采用了“1的代换”的技巧,即将1用sec2α-tg2α代换,可是解题者怎么会想到这种代换的呢?很可能,解题者在采用这种代换时,已经预见到代换后,分子可以因式分解,可以约分,而所有这一切都是建立在熟悉公式的各种变形的基础上的,当然,对不熟练的解题者而言,还有如下的“一般证法”——即证明“左边-右边=0”∴左边=右边6、诱导公式·典型例题分析例1 求下列三角函数值:解 (1)sin(-1200°)=-sin1200°=-sin(3×360°+120°)=-sin120°=-sin(180°-60°)(2)tg945°=tg(2×360°+225°)=tg225°=tg(108°+45°)=tg45°=1例4 求证(1)sin(nπ+α)=(-1)n sinα;(n∈Z)(2)cos(nπ+α)=(-1)n cosα.证明:1°当n为奇数时,设n=2k-1(k∈Z)则(1)sin(nπ+α)=sin[(2k-1)π+α]=sin(-π+α)=-sinα=(-1)n sinα (∵(-1)n=-1)(2)cos(nπ+α)=cos[(2k-1)π+α]=cos(-π+α)=-cosα=(-1)n cosα2°当n为偶数时,设n=2k(k∈Z),则(1)sin(nπ+α)=sin(2kπ+α)=sinα=(-1)n sinα(∵(-1)n=1)(2)cos(nπ+α)=cos(2kπ+α)=cosα=(-1)n cosα由1°,2°,本题得证.例5 设A、B、C是一个三角形的三个内角,则在①sin(A+B)-sinC ② cos(A+B)+cosC③tg(A+B)+tgC ④ctg(A+B)-ctgCA.1个 B.2个C.3个 D.4个解由已知,A+B+C=π,∴A+B=π-C,故有①sin(A+B)-sinC=sin(π-C)-sinC=sinC-sinC=0为常数.②cos(A+B)+cosC=cos(π-C)+cosC=-cosC+cosC=0为常数.③ tg(A+B)+tgC=tg(π-C)+tgC=-tgC+tgC=0为常数.④ctg(A+B)-ctgC=ctg(π-C)-ctgC=-ctgC-ctgC=-2ctgC不是常数.从而选(C).7、用单位圆中的线段表示三角函数值·典型例题分析例1 利用三角函数线,求满足下列条件的角或角的范围.P′,则(2)如图2-11,过点(1,-1)和原点作直线交单位圆于点p和p′,则∴满足条件的所有角是8、三角公式总表1、L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π 2、正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 3、余弦定理:a 2=b2+c2-2bc A cos b2=a2+c2-2ac B cos c2=a2+b2-2ab C cosbca cb A 2cos 222-+=4、S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径) 5、同角关系: ⑴ 商的关系:①θtg =x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵ 倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶ 平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且abtg =ϕ)6、函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T=ωπ2, 频率f=T1,相位ϕω+⋅x ,初相ϕ7、五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限 9、和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =±③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg 10、二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=11、三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg 12、半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±=④2cos 12cos2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=± ⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg13、积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin14、和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- ⒗最简单的三角方程方程方程的解集a x =sin1=a {}Z k a k x x ∈+=,arcsin 2|π1<a (){}Z k a k x x k ∈-+=,arcsin 1|π a x =cos1=a {}Z k a k x x ∈+=,arccos 2|π1<a{}Z k a k x x ∈±=,arccos 2|π a tgx ={}Z k arctga k x x ∈+=,|π a ctgx ={}Z k arcctga k x x ∈+=,|π、正弦函数、余弦函数的图象和性质·典型例题分析例1 用五点法作下列函数的图象 (1)y=2-sinx ,x ∈[0,2π]解 (1)(图2-14)名称 函数式 定义域 值域性质反正弦函数 x y arcsin = []1,1-增 ⎥⎦⎤⎢⎣⎡-2,2ππ -arcsinx arcsin(-x)= 奇 反余弦函数 x y arccos = []1,1-减[]π,0x x arccos )arccos(-=-π 反正切函数 arctgx y = R 增 ⎪⎭⎫ ⎝⎛-2,2ππ arctgx - arctg(-x)= 奇反余切函数arcctgx y = R 减()π,0arcctgx x arcctg -=-π)((2)(图2-15)描点法作图:例2 求下列函数的定义域和值域.解 (1)要使lgsinx有意义,必须且只须sinx>0,解之,得 2kπ<x<(2k+1)π,k∈Z.又∵0<sinx≤1,∴-∞<lgsinx≤0.∴定义域为(2kπ,(2k+1)π)(k∈Z),值域为(-∞,0].的取值范围,进而再利用三角函数线或函数图象,求出x的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9课时 三角函数的最值
典型例题
例1. 求下列函数的最值. ⑴ y =
x x x cos 1sin 2sin -⋅;⑵ y =2 cos(3π
+x)+2cosx ;⑶ x
x y cos 3sin 1++=.
解:(1) y =x x x
x x x cos 2cos 2cos 1sin cos sin 22+=-⋅⋅=2
1)2
1(cos 22-+x ∴ 当cosx =2
1-时,y min =2
1-∵ cosx ≠1∴ 函数y 没有最大值。
(2) y =2cos(x +3
π
)+2cosx=2cos
x x x cos 2sin 3
sin
2cos 3
+-π
π
=3cosx -3sinx=23cos(6
π
+
x )
∴当cos(6
π+x )=-1时,y min =-3
2
当cos(6
π+
x )=1时,y max =32
(3) 由x
x
y cos 3sin 1++=
得sinx -ycosx =3y -1∴)sin(12ϕ++x y =3y -1 (tan ϕ=-y)
∵|sin(x +ϕ)|≤1 ∴|3y -1|≤12+y 解得0≤y≤43 故x x y cos 3sin 1++=的值域为[0,4
3
]
注:此题也可用其几何意义在求值域. 变式训练1:求下列函数的值域: (1)y=
x x x cos 1sin 2sin -;(2)y=sinx+cosx+sinxcosx;(3)y=2cos )3
(x +π
+2cosx.
解 (1)y=x x x x cos 1sin cos sin 2-=x
x x cos 1)cos 1(cos 22--=2cos 2x+2cosx=22)21
(cos +x -21.
于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-21
,当且仅当cosx=-2
1时取得.
故函数值域为⎪⎭
⎫⎢⎣⎡-4,21.(2)令t=sinx+cosx,则有t 2=1+2sinxcosx,即sinxcosx=212-t .
有y=f(t)=t+2
12-t =1)1(21
2-+t .又t=sinx+cosx=2sin )4(π+x ,∴-2≤t≤2.
故y=f(t)=
1)1(212-+t (-2≤t≤2),从而知:f(-1)≤y≤f(2),即-1≤y≤2+21.即函数的值域为⎥⎦⎤⎢⎣
⎡
+-212,1.
(3)y=2cos )3
(x +π
+2cosx=2cos
3πcosx-2sin 3π
sinx+2cosx=3cosx-3sinx=23⎪⎪⎭
⎫ ⎝⎛-x x sin 21cos 23=23cos )6(π+x . ∵)6
cos(π
+x ≤1∴该函数值域为[-23,23].
例2. 试求函数y =sinx +cosx +2sinxcosx +2的最大值与最小值,又若]2
,0[π
∈x 呢?
解: 令t =sinx +cosx 则t ∈[-2,2]又2sinx +cosx =(sinx +cosx)2-1=t 2-1 ∴y =t 2+t +1=(t +2
1)2+4
3,显然y max =3+2若x ∈[0,2
π
] 则t ∈[1,2] y =(t +2
1
)+4
3在[1,2]单调递增.当t =1即x =0或x =2π时,y 取最小值3.当t =2即x =4
π
时,y 取最大值3+2.
变式训练2:求函数3()cos (sin cos )
,44f x x x x x x ππ⎡⎤
=-+∈-⎢⎥⎣⎦
的最大值和最小值.
点拔:三角函数求最值一般利用三角变形求解,此题用常规方法非常困难,而用导数求最值既方便又简单. 解:f(x)=x -2
1(sin2x +cos2x)-2
1∴f´(x)=1+2sin(2x -4π)∵x ∈[-4π,43π] ∴2x -4π∈[-43π,π4
5] 令f´(x)=0 得sin(2x -
4π)=-2
2
∴x =0,-4π,π43∵f(0)=-1,而f(-4π)=-4π f(π43)=43π ∴当x =π4
3
时,[f(x)]max =
4
3π
当x =0时,[f(x)]min =-1 例3. 已知sinx +siny =31
,求siny -cos 2x 的最大值.
解:∵sinx +siny =3
1 ∴siny =x sin 3
1-∴siny -cos 2x =x sin 31--(1-sin 2x)=x x 2sin sin 3
2+--
=12
11
)21(sin 2-
-x 又∵-1≤sin y ≤1 ∴1sin 311≤-≤-x 而-1≤sin x ≤1
∴3
2-≤sin x ≤1∴当sinx =3
2-时,siny -cos 2x 取得最大值9
4。
变式训练3:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若b 2=ac ,求y =B
B B
cos sin 2sin 1++的取值范围.
解:y =
)4
sin(2cos sin cos sin )cos (sin 2π
+=+=++B B B B B B B 又
cosB =ac
ac
c a ac b c a
2222222
-+=
-+≥2
1
∴ 0<B≤
3
π
∴4π<B +4π≤127π∴ 1<2sin(B +4π)≤2即1<y ≤2
例4.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、
最小值时的x 值.
解:原函数变形为y =-4
1)2
(sin 2
2
a b a x ++++∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时
y max =1+b +
4
2a =0 ①当sinx =1时,y min =-4
1)21(2
2a b a ++++=-a +b =-4 ②
联立①②式解得a =2,b =-2y 取得最大、小值时的x 值分别为:x =2kπ-2
π(k ∈Z),x =2kπ+2
π(k ∈Z)若a
>2时,2
a ∈(1,+∞)∴y max =-
b a a b a
+=+
++-4
1)2
1(2
2=0 ③y min =-441)21(2
2-=+-=+
+++b a a b a ④ 由③④得a =2时,而2
a =1 (1,+∞)舍去. 故只有一组解a =2,
b =-2.
变式训练4:设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π.(1)求ω的值;(2)如果)(x f 在区间]6
5,3[x
π-的最小值为3,求a 的值. 解:(1) f(x)=
23cos ωx +21sin2ωx +23+a =sin(2ωx +3π)+2
3+a 依题意得2ω·6π+3π=2π解得ω=21
(2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦
⎤
⎢⎣⎡67,0π故-21≤sin(x +3π)≤1 从而f(x)在⎥⎦
⎤
⎢⎣⎡-65,
3
ππ上取得最小值-2
1
+
23+a 因此,由题设知-21+23+a =3故a =2
1
3+
1.求三角函数最值的方法有:① 配方法;②化为一个角的三角函数;③ 数形结合;④ 换元法;⑤ 基本不
等式法.2.三角函数的最值都是在给定区间上取得的.因而特别要注意题设所给出的区间.
3.求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有意义的条件和弦函数的有界性.4.含参数函数的最值,解题要注意参数的作用.。