高中三角函数典型例题(教用)

合集下载

苏教版必修四第一章三角函数1.6 三角函数的周期性 (习题+解析)

苏教版必修四第一章三角函数1.6 三角函数的周期性 (习题+解析)

苏教版必修四第一章三角函数1.6 三角函数的周期性(习题+解析)②从f (x +T )=f (x )来看,应强调是自变量x 本身加的常数才是周期,如f (2x +T )=f (2x )中,T 不是周期,而应写成(2)2()(2)2T f x T f x f x ⎡⎤+=+=⎢⎥⎣⎦,则2T 是f (x )的周期。

③对于一个周期函数()f x ,如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做()f x 的最小正周期。

今后提到的三角函数的周期,如未特别指明,一般都是它的最小正周期。

④并不是所有的周期函数都存在最小正周期。

例如常数函数()(f x C C =为常数),其周期T 是任意实数,没有最小正数。

⑤周期函数的周期不是唯一的,如果T 是函数f (x )的周期,那么kT (k ∈Z ,k ≠0)也一定是函数的周期。

【核心归纳】如何利用定义判断函数是不是周期函数?(1)首先看定义域若x 是定义域D 内的一个值,则且,(Z k kT x ∈+)0≠k 也一定属于定义域D ,因此周期函数的定义域D 一定是无限集,而且定义域D 一定无上界且无下界。

(2)其次看恒等式是否成立对于定义域D 内任意一个x ,是否有()()f x f x T =+恒成立。

如果成立,则是周期函数。

否则,不是周期函数。

二、sin()(0,0)y A x A ωϕω=+≠>的周期一般地,函数y =A sin (ωx +φ)和y =A cos (ωx +φ)(其中A ,ω,φ为常数,且A ≠0,ω>0)的周期T =ωπ2。

【规律总结】求三角函数的周期,通常有三种方法。

(1)定义法;(2)公式法,对y =A sin (ωx +φ)或y =A cos (ωx +φ)(A ,ω,φ是常数,且A ≠0,ω≠0),T =||2ωπ; (3)图象法。

三种方法各有所长,要根据函数式的结构特征,选择适当方法求解,为了避免出现错误,求周期之前要尽可能将函数化为同名同角的三角函数,且函数的次数为1。

第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。

【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。

【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。

【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。

②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。

【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。

4.3三角函数的图象及性质应用

4.3三角函数的图象及性质应用

科 目数学 年级 高三 备课人 高三数学组 第 课时 4.3三角函数的图象及性质应用考纲定位 理解三角函数的性质,并利用其性质解决一些简单问题;【典型例题】1、如图所示,它是sin(),(0,0),||<y A x A ωϕωϕπ=+>>的图象,由图中条件,写出该函数的解析式.小结:根据图象如何求函数sin(),(0,0)y A x b A ωϕω=++>>中的参数,,,A b ωϕ.(1)A = ;(2)ω= ;(3)b = ;(4)ϕ【高考真题】2、(2010四川)将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )(A )sin(2)10y x π=- (B )sin(2)5y x π=- (C )1sin()210y x π=- (D )1sin()220y x π=-3、(2010全国)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位 4、(2010辽宁)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )(A )23 (B ) 43 (C ) 32(D ) 3 5、(2010重庆)已知函数sin()(0,||)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则( )A.ω=1,ϕ=6π B.ω=1,ϕ=-6π C.ω=2,ϕ=6π D.ω=2,ϕ=-6π6、(2010浙江)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7、(2010福建)已知函数f(x)=3sin(x-)(>0)6πωω和g(x)=2cos(2x+)+1ϕ的图象的对称轴完全相同。

高考数学三角函数知识点总结及练习

高考数学三角函数知识点总结及练习

高考数学三角函数知识点总结及练习集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]三角函数总结及统练一. 教学内容:三角函数总结及统练 (一)基础知识1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值3. 三角函数的符号——口诀:一正二弦,三切四余弦。

4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan5. 同角三角函数的关系平方关系:商数关系:倒数关系:1cot tan =⋅αα 1csc sin =⋅αα 1sec cos =⋅αα 口诀:凑一拆一;切割化弦;化异为同。

6.正弦余弦正切 余切7. 8. 二倍角公式——代换:令αβ=降幂公式⎪⎪⎩⎪⎪⎨⎧+=-=22cos 1cos 22cos 1sin 22αααα半角公式:2cos 12sinαα-±=;2cos 12cos αα+±=;αααcos 1cos 12tan +-±= 函数图10. 函数)sin(ϕω+=x A y 的图象变换 0,0>>ωA函数)sin(ϕω+=x A y 的图象可以通过下列两种方式得到:(1)−−−−−−−−−→−+=−−−−→−=倍横坐标缩短到原来的图象左移ωϕϕ1)sin(sin x y x y(2)−−−−→−=−−−−−−−−−→−=ωϕωω图象左移倍横坐标缩短到原来的)sin(sin 1x y x y(二)数学思想与基本解题方法1. 式子变形原则:凑一拆一;切割化弦;化异为同。

2. 诱导公式原则:奇变偶不变,符号看象限。

3. 估用公式原则:一看角度,二看名称,三看特点。

4. 角的和与差的相对性如:)(βαβ+=-α 角的倍角与半角的相对性 如:422,22αααα==5. 升幂与降幂:升幂角减半,降幂角加倍。

6. 数形结合:心中有图,观图解题。

【系统集成】高中数学 第五章 三角函数(教师用书)理

【系统集成】高中数学 第五章 三角函数(教师用书)理

第五章三角函数高考导航知识网络5.1 任意角的三角函数的概念典例精析题型一 象限角与终边相同的角【例1】若α是第二象限角,试分别确定2α、2α的终边所在的象限.【解析】因为α是第二象限角,所以k ∙360°+90°<α<k ∙360°+180°(k ∈Z ).因为2k ∙360°+180°<2α<2k ∙360°+360°(k ∈Z ),故2α是第三或第四象限角,或角的终边在y 轴的负半轴上.因为k ∙180°+45°<α2<k ∙180°+90°(k ∈Z ),当k =2n (n ∈Z )时,n ∙360°+45°<α2<n ∙360°+90°,当k =2n +1(n ∈Z )时,n ∙360°+225°<α2<n ∙360°+270°.所以α2是第一或第三象限角.【点拨】已知角α所在象限,应熟练地确定α2所在象限.如果用α1、α2、α3、α4分别表示第一、二、三、四象限角,则α12、α22、α32、α42分布如图,即第一象限角的半角是第一或第三象限角(其余略),熟记右图,解有关问题就方便多了.【变式训练1】若角2α的终边在x 轴上方,那么角α是( )A.第一象限角B.第一或第二象限角C.第一或第三象限角D.第一或第四象限角【解析】由题意2k π<2α<2k π+π,k ∈Z , 得k π<α<k π+π2,k ∈Z .当k 是奇数时,α是第三象限角. 当k 是偶数时,α是第一象限角.故选C. 题型二 弧长公式,面积公式的应用【例2】已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形的面积有最大值?并求出这个最大值.【解析】(1)设弧长为l ,弓形面积为S 弓,因为α=60°=π3,R =10 cm ,所以l =10π3cm ,S 弓=S 扇-S Δ=12³10³10π3-12³102³sin 60°=50(π3-32) cm 2. (2)因为C =2R +l =2R +αR ,所以R =C2+α,S 扇=12αR 2=12α(C 2+α)2=C 22∙αα2+4α+4=C22∙1α+4α+4≤C216, 当且仅当α=4α时,即α=2(α=-2舍去)时,扇形的面积有最大值为C216.【点拨】用弧长公式l = |α| R 与扇形面积公式S =12lR =12R 2|α|时,α的单位必须是弧度.【变式训练2】已知一扇形的面积为定值S ,当圆心角α为多少弧度时,该扇形的周长C 有最小值?并求出最小值.【解析】因为S =12Rl ,所以Rl =2S ,所以周长C =l +2R ≥22Rl =24S =4S , 当且仅当l =2R 时,C =4S ,所以当α=l R=2时,周长C 有最小值4S .题型三 三角函数的定义,三角函数线的应用【例3】(1)已知角α的终边与函数y =2x 的图象重合,求sin α;(2)求满足sin x ≤32的角x 的集合.【解析】(1)由⎩⎨⎧=+=1222y x x y ⇒交点为(-55,-255)或(55,255), 所以sin α=±255.(2)①找终边:在y 轴正半轴上找出点(0,32),过该点作平行于x 轴的平行线与单位圆分别交于P 1、P 2两点,连接OP 1、OP 2,则为角x 的终边,并写出对应的角.②画区域:画出角x 的终边所在位置的阴影部分.③写集合:所求角x 的集合是{x |2k π-4π3≤x ≤2k π+π3,k ∈Z }.【点拨】三角函数是用角α的终边与单位圆交点的坐标来定义的,因此,用定义求值,转化为求交点的问题.利用三角函数线证某些不等式或解某些三角不等式更简洁、直观.【变式训练3】函数y =lg sin x +cos x -12的定义域为 .【解析】⇒2k π<x ≤2k π+π3,k ∈Z .所以函数的定义域为{x |2k π<x ≤2k π+π3,k ∈Z }.总结提高1.确定一个角的象限位置,不仅要看角的三角函数值的符号,还要考虑它的函数值的大小.2.在同一个式子中所采用的量角制度必须相一致,防止出现诸如k ²360°+π3的错误书写.3.三角函数线具有较好的几何直观性,是研究和理解三角函数的一把钥匙.5.2 同角三角函数的关系、诱导公式典例精析题型一 三角函数式的化简问题【点拨】运用诱导公式的关键是符号,前提是将α视为锐角后,再判断所求角的象限.【变式训练1】已知f (x )=1-x ,θ∈(3π4,π),则f (sin 2θ)+f (-sin 2θ)= .【解析】f (sin 2θ)+f (-sin 2θ)=1-sin 2θ+1+sin 2θ=(sin θ-cos θ)2+(sin θ+cos θ)2=|sin θ-cos θ|+|sin θ+cos θ|.因为θ∈(3π4,π),所以sin θ-cos θ>0,sin θ+cos θ<0.所以|sin θ-cos θ|+|sin θ+cos θ|=sin θ-cos θ-sin θ-cos θ=-2cos θ.题型二 三角函数式的求值问题【例2】已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值;(2)若|a|=|b|,0<θ<π,求 θ的值.【解析】(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a|=|b|知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1,于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4或2θ+π4=7π4.因此θ=π2或θ=3π4.【变式训练2】已知tan α=12,则2sin αcos α+cos 2α等于( )A.45B.85C.65D.2【解析】原式=2sin αcos α+cos 2αsin 2α+cos 2α=2tan α+11+tan 2α=85.故选B. 题型三 三角函数式的简单应用问题【例3】已知-π2<x <0且sin x +cos x =15,求:(1)sin x -cos x 的值;(2)sin 3(π2-x )+cos 3(π2+x )的值.【解析】(1)由已知得2sin x cos x =-2425,且sin x <0<cos x ,所以sin x -cos x =-(sin x -cos x )2=-1-2sin x cos x =-1+2425=-75. (2)sin 3(π2-x )+cos 3(π2+x )=cos 3x -sin 3x =(cos x -sin x )(cos 2x +cos x sin x +sin 2x )=75³(1-1225)=91125. 【点拨】求形如sin x ±cos x 的值,一般先平方后利用基本关系式,再求sin x ±cos x 取值符号.【变式训练3】化简1-cos 4α-sin 4α1-cos 6α-sin 6α. 【解析】原式=1-[(cos 2α+sin 2α)2-2sin 2αcos 2α]1-[(cos 2α+sin 2α)(cos 4α+sin 4α-sin 2αcos 2α)]=2sin 2αcos 2α1-[(cos 2α+sin 2α)2-3sin 2αcos 2α]=23. 总结提高1.对于同角三角函数基本关系式中“同角”的含义,只要是“同一个角”,那么基本关系式就成立,如:sin 2(-2α)+cos 2(-2α)=1是恒成立的.2.诱导公式的重要作用在于:它揭示了终边在不同象限且具有一定对称关系的角的三角函数间的内在联系,从而可化负为正,化复杂为简单.5.3 两角和与差、二倍角的三角函数典例精析题型一 三角函数式的化简【例1】化简θθθθθ cos 22)2 cos 2 )(sin cos sin 1(+-++(0<θ<π). 【解析】因为0<θ<π,所以0<θ2<π2,所以原式=2cos 2)2 cos 2 )(sin 2 cos 22 cos 2 sin 2(22θθθθθθ-+ =2cos 2)2 cos 2 (sin 2 sin 222θθθθ-=-cos θ. 【点拨】先从角度统一入手,将θ化成θ2,然后再观察结构特征,如此题中sin 2θ2-cos2θ2=-cos θ.【变式训练1】化简2cos 4x -2cos 2x +122tan(π4-x )sin 2(π4+x ).【解析】原式=12(2cos 2x -1)22tan(π4-x )cos 2(π4-x )=cos 22x 4cos(π4-x )sin(π4-x )=cos 22x 2sin(π2-2x )=12cos 2x .题型二 三角函数式的求值【例2】已知sin x 2-2cos x2=0.(1)求tan x 的值;(2)求cos 2x2cos(π4+x )sin x的值.【解析】(1)由sin x 2-2cos x 2=0⇒tan x 2=2,所以tan x =2tan 12 tan 22x x -=2³21-22=-43. (2)原式=cos 2x -sin 2x2(22cos x -22sin x )sin x=(cos x -sin x )(cos x +sin x )(cos x -sin x )sin x =cos x +sin x sin x =1tan x +1=(-34)+1=14.【变式训练2】2cos 5°-sin 25°sin 65°= .【解析】原式=2cos(30°-25°)-sin 25°cos 25°=3cos 25°cos 25°= 3.题型三 已知三角函数值求解【例3】已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.【解析】因为tan 2(α-β)=2tan(α-β)1-tan 2(α-β)=43, 所以tan(2α-β)=tan[2(α-β)+β]=tan2(α-β)+tan β1-tan 2(α-β)tan β=1,又tan α=tan[(α-β)+β]=tan(α-β)+tan β1-tan(α-β)tan β=13,因为α∈(0,π),所以0<α<π4,又π2<β<π,所以-π<2α-β<0,所以2α-β=-3π4. 【点拨】由三角函数值求角时,要注意角度范围,有时要根据三角函数值的符号和大小将角的范围适当缩小.【变式训练3】若α与β是两锐角,且sin(α+β)=2sin α,则α与β的大小关系是( )A.α=βB.α<βC.α>βD.以上都有可能【解析】方法一:因为2sin α=sin(α+β)≤1,所以sin α≤12,又α是锐角,所以α≤30°.又当α=30°,β=60°时符合题意,故选B.方法二:因为2sin α=sin(α+β)=sin αcos β+cos αsin β<sin α+sin β, 所以sin α<sin β.又因为α、β是锐角,所以α<β,故选B. 总结提高1.两角和与差的三角函数公式以及倍角公式等是三角函数恒等变形的主要工具. (1)它能够解答三类基本题型:求值题,化简题,证明题; (2)对公式会“正用”、“逆用”、“变形使用”; (3)掌握角的演变规律,如“2α=(α+β)+(α-β)”等.2.通过运用公式,实现对函数式中角的形式、升幂、降幂、和与差、函数名称的转化,以达到求解的目的,在运用公式时,注意公式成立的条件.5.4 三角恒等变换典例精析题型一 三角函数的求值【例1】已知0<α<π4,0<β<π4,3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值.【解析】由4tan α2=1-tan 2α2,得tan α=2tan 12tan 22αα-=12. 由3sin β=sin(2α+β)得3sin[(α+β)-α]=sin[(α+β)+α],所以3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,即2sin(α+β)cos α=4cos(α+β)sin α,所以tan(α+β)=2tan α=1. 又因为α、β∈(0,π4),所以α+β=π4.【点拨】三角函数式的化简与求值的主要过程是三角变换,要善于抓住已知条件与目标之间的结构联系,找到解题的突破口与方向.【变式训练1】如果tan(α+β)=35,tan(β-π4)=14,那么tan(α+π4)等于( )A.1318B.1322C.723D.318【解析】因为α+π4=(α+β)-(β-π4),所以tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=723.故选C.题型二 等式的证明【例2】求证:sin βsin α=sin(2α+β)sin α-2cos(α+β).【证明】证法一: 右边=sin [(α+β)+α]-2cos(α+β)sin αsin α=sin(α+β)cos α-cos(α+β)sin αsin α=sin [(α+β)-α]sin α=sin βsin α=左边.证法二:sin(2α+β)sin α-sin βsin α=sin(2α+β)-sin βsin α=2cos(α+β)sin αsin α=2cos(α+β),所以sin(2α+β)sin α-2cos(α+β)=sin βsin α.【点拨】证法一将2α+β写成(α+β)+α,使右端的角形式上一致,易于共同运算;证法二把握结构特征,用“变更问题法”证明,简捷而新颖.【变式训练2】已知5sin α=3sin(α-2β),求证:tan(α-β)+4tan β=0.【证明】因为5sin α=3sin(α-2β),所以5sin[(α-β)+β]=3sin[(α-β)-β],所以5sin(α-β)cos β+5cos(α-β)sin β=3sin(α-β)cos β-3cos(α-β)sin β,所以2sin(α-β)cos β+8cos(α-β)sin β=0. 即tan(α-β)+4tan β=0. 题型三 三角恒等变换的应用【例3】已知△ABC 是非直角三角形.(1)求证:tan A +tan B +tan C =tan A tan B tan C ; (2)若A >B 且tan A =-2tan B ,求证:tan C =sin 2B3-cos 2B ;(3)在(2)的条件下,求tan C 的最大值.【解析】(1)因为C =π-(A +B ),所以tan C =-tan(A +B )=-(tan A +tan B )1-tan A tan B,所以tan C -tan A tan B tan C =-tan A -tan B , 即tan A +tan B +tan C =tan A tan B tan C .(2)由(1)知tan C =-(tan A +tan B )1-tan A tan B =tan B 1+2tan 2B =sin B cos Bcos 2B +2sin 2B =)2cos 2(22 sin B B-∙ =sin 2B 2(2-1+cos 2B 2)=sin 2B 3-cos 2B .(3)由(2)知tan C =tan B 1+2tan 2B =12tan B +1tan B≤122=24, 当且仅当2tan B =1tan B ,即tan B =22时,等号成立.所以tan C 的最大值为24. 【点拨】熟练掌握三角变换公式并灵活地运用来解决与三角形有关的问题,要有较明确的目标意识.【变式训练3】在△ABC 中,tan B +tan C +3tan B tan C =3,3tan A +3tan B +1=tan A tan B ,试判断△ABC 的形状.【解析】由已知得tan B +tan C =3(1-tan B tan C ), 3(tan A +tan B )=-(1-tan A tan B ), 即tan B +tan C 1-tan B tan C =3,tan A +tan B 1-tan A tan B =-33.所以tan(B +C )=3,tan(A +B )=-33. 因为0<B +C <π,0<A +B <π,所以B +C =π3,A +B =5π6.又A +B +C =π,故A =2π3,B =C =π6.所以△ABC 是顶角为2π3的等腰三角形.总结提高三角恒等式的证明,一般考虑三个“统一”:①统一角度,即化为同一个角的三角函数;②统一名称,即化为同一种三角函数;③统一结构形式.5.5 三角函数的图象和性质典例精析题型一 三角函数的周期性与奇偶性【例1】已知函数f (x )=2sin x 4cos x 4+3cos x2.(1)求函数f (x )的最小正周期;(2)令g (x )=f (x +π3),判断g (x )的奇偶性.【解析】(1)f (x )=2sin x 4cos x 4+3cos x 2=sin x 2+3cos x 2=2sin(x 2+π3),所以f (x )的最小正周期T =2π12=4π.(2)g (x )=f (x +π3)=2sin[12(x +π3)+π3]=2sin(x 2+π2)=2cos x2.所以g (x )为偶函数.【点拨】解决三角函数的有关性质问题,常常要化简三角函数.【变式训练1】函数y =sin 2x +sin x cos x 的最小正周期T 等于( )A.2πB.πC.π2D.π3【解析】y =1-cos 2x 2+12sin 2x =22(22sin 2x -22cos 2x )+12=22sin(2x -π4)+12,所以T =2π2=π.故选B. 题型二 求函数的值域 【例2】求下列函数的值域: (1)f (x )=sin 2x sin x1-cos x ;(2)f (x )=2cos(π3+x )+2cos x .【解析】(1)f (x )=2sin x cos x sin x 1-cos x =2cos x (1-cos 2x )1-cos x=2cos 2x +2cos x=2(cos x +12)2-12,当cos x =1时,f (x )max =4,但cos x ≠1,所以f (x )<4,当cos x =-12时,f (x )min =-12,所以函数的值域为[-12,4).(2)f (x )=2(cos π3cos x -sin π3sin x )+2cos x=3cos x -3sin x =23cos(x +π6),所以函数的值域为[-23,23].【点拨】求函数的值域是一个难点,分析函数式的特点,具体问题具体分析,是突破这一难点的关键.【变式训练2】求y =sin x +cos x +sin x cos x 的值域.【解析】令t =sin x +cos x ,则有t 2=1+2sin x cos x ,即sin x cos x =t 2-12.所以y =f (t )=t +t 2-12=12(t +1)2-1. 又t =sin x +cos x =2sin(x +π4),所以-2≤t ≤ 2.故y =f (t )=12(t +1)2-1(-2≤t ≤2),从而f (-1)≤y ≤f (2),即-1≤y ≤2+12.所以函数的值域为[-1,2+12].题型三 三角函数的单调性【例3】已知函数f (x )=sin(ωx +φ)(φ>0,|φ|<π)的部分图象如图所示.(1)求ω,φ的值;(2)设g (x )=f (x )f (x -π4),求函数g (x )的单调递增区间.【解析】(1)由图可知,T =4(π2-π4)=π,ω=2πT=2.又由f (π2)=1知,sin(π+φ)=1,又f (0)=-1,所以sin φ=-1.因为|φ|<π,所以φ=-π2. (2)f (x )=sin(2x -π2)=-cos 2x .所以g (x )=(-cos 2x )[-cos(2x -π2)]=cos 2x sin 2x =12sin 4x .所以当2k π-π2≤4x ≤2k π+π2,即k π2-π8≤x ≤k π2+π8(k ∈Z )时g (x )单调递增.故函数g (x )的单调增区间为[k π2-π8,k π2+π8](k ∈Z ). 【点拨】观察图象,获得T 的值,然后再确定φ的值,体现了数形结合的思想与方法. 【变式训练3】使函数y =sin(π6-2x )(x ∈[0,π])为增函数的区间是( )A.[0,π3]B.[π12,7π12]C.[π3,5π6]D.[5π6,π]【解析】利用复合函数单调性“同增异减”的原则判定,选C. 总结提高1.求三角函数的定义域和值域应注意利用三角函数图象.2.三角函数的最值都是在给定区间上得到的,因而特别要注意题设中所给的区间.3.求三角函数的最小正周期时,要尽可能地化为三角函数的一般形式,要注意绝对值、定义域对周期的影响.4.判断三角函数的奇偶性,应先判定函数定义域的对称性.5.6 函数y =A sin (ωx + )的图象和性质典例精析题型一 “五点法”作函数图象【例1】设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换得到.【解析】(1)f (x )=sin ωx +3cos ωx =2(12sin ωx +32cos ωx )=2sin(ωx +π3),又因为T =π,所以2πω=π,即ω=2,所以f (x )=2sin(2x +π3),所以函数f (x )=sin ωx +3cos ωx (ω>0)的振幅为2,初相为π3.(2)列出下表,并描点画出图象如图所示.(3)把y =sin x 图象上的所有点向左平移π3个单位,得到y =sin(x +π3)的图象,再把y =sin(x +π3)的图象上的所有点的横坐标缩短到原来的12(纵坐标不变),得到y =sin(2x +π3)的图象,然后把y =sin(2x +π3)的图象上的所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin(2x +π3)的图象.【点拨】用“五点法”作图,先将原函数化为y =A sin(ωx +φ)(A >0,ω>0)形式,再令ωx +φ=0,π2,π,3π2,2π求出相应的x 值及相应的y 值,就可以得到函数图象上一个周期内的五个点,用平滑的曲线连接五个点,再向两端延伸即可得到函数在整个定义域上的图象.【变式训练1】函数的图象如图所示,则( )A.k =12,ω=12,φ=π6B.k =12,ω=12,φ=π3C.k =12,ω=2,φ=π6D.k =-2,ω=12,φ=π3【解析】本题的函数是一个分段函数,其中一个是一次函数,其图象是一条直线,由图象可判断该直线的斜率k =12.另一个函数是三角函数,三角函数解析式中的参数ω由三角函数的周期决定,由图象可知函数的周期为T =4³(8π3-5π3)=4π,故ω=12.将点(5π3,0)代入解析式y =2sin(12x +φ),得12³5π3+φ=k π,k ∈Z ,所以φ=k π-5π6,k ∈Z .结合各选项可知,选项A 正确.题型二 三角函数的单调性与值域【例2】已知函数f (x )=sin 2ωx +3sin ωx sin(ωx +π2)+2cos 2ωx ,x ∈R (ω>0)在y 轴右侧的第一个最高点的横坐标为π6.(1)求ω的值;(2)若将函数f (x )的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )的最大值及单调递减区间.【解析】(1)f (x )=32sin 2ωx +12cos 2ωx +32=sin(2ωx +π6)+32. 令2ωx +π6=π2,将x =π6代入可得ω=1.(2)由(1)得f (x )=sin(2x +π6)+32,经过题设的变化得到函数g (x )=sin(12x -π6)+32, 当x =4k π+43π,k ∈Z 时,函数g (x )取得最大值52.令2k π+π2≤12x -π6≤2k π+32π,即[4k π+4π3,4k π+103π](k ∈Z )为函数的单调递减区间.【点拨】本题考查三角函数恒等变换公式的应用、三角函数图象性质及变换.【变式训练2】若将函数y =2sin(3x +φ)的图象向右平移π4个单位后得到的图象关于点(π3,0)对称,则|φ|的最小值是( ) A.π4 B.π3 C.π2D.3π4【解析】将函数y =2sin(3x +φ)的图象向右平移π4个单位后得到y =2sin[3(x -π4)+φ]=2sin(3x -3π4+φ)的图象.因为该函数的图象关于点(π3,0)对称,所以2sin(3³π3-3π4+φ)=2sin(π4+φ)=0,故有π4+φ=k π(k ∈Z ),解得φ=k π-π4(k ∈Z ).当k =0时,|φ|取得最小值π4,故选A.题型三 三角函数的综合应用【例3】已知函数y =f (x )=A sin 2(ωx +φ)(A >0,ω>0,0<φ<π2)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求φ的值;(2)求f (1)+f (2)+…+f (2 008).【解析】(1)y =A sin 2(ωx +φ)=A 2-A2cos(2ωx +2φ),因为y =f (x )的最大值为2,又A >0, 所以A 2+A2=2,所以A =2,又因为其图象相邻两对称轴间的距离为2,ω>0, 所以12³2π2ω=2,所以ω=π4.所以f (x )=22-22cos(π2x +2φ)=1-cos(π2x +2φ),因为y =f (x )过点(1,2),所以cos(π2+2φ)=-1.所以π2+2φ=2k π+π(k ∈Z ),解得φ=k π+π4(k ∈Z ),又因为0<φ<π2,所以φ=π4.(2)方法一:因为φ=π4,所以y =1-cos(π2x +π2)=1+sin π2x ,所以f (1)+f (2)+f (3)+f (4)=2+1+0+1=4, 又因为y =f (x )的周期为4,2 008=4³502. 所以f (1)+f (2)+…+f (2 008)=4³502=2 008. 方法二:因为f (x )=2sin 2(π4x +φ), 所以f (1)+f (3)=2sin 2(π4+φ)+2sin 2(3π4+φ)=2,f (2)+f (4)=2sin 2(π2+φ)+2sin 2(π+φ)=2,所以f (1)+f (2)+f (3)+f (4)=4, 又因为y =f (x )的周期为4,2 008=4³502. 所以f (1)+f (2)+…+f (2 008)=4³502=2 008.【点拨】函数y =A cos(ωx +φ)的对称轴由ωx +φ=k π,可得x =k π-φω,两相邻对称轴间的距离为周期的一半,解决该类问题可画出相应的三角函数的图象,借助数形结合的思想解决.【变式训练3】已知函数f (x )=A cos 2ωx +2(A >0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f (2)+f (4)+f (6)+…+f (20)= .【解析】f (x )=A cos 2ωx +2=A ³1+cos 2ωx 2+2=A cos 2ωx 2+A 2+2,则由题意知A +2=6,2π2ω=8,所以A =4,ω=π8,所以f (x )=2cos π4x +4,所以f (2)=4,f (4)=2,f (6)=4,f (8)=6,f (10)=4,…观察周期性规律可知f (2)+f (4)+…+f (20)=2³(4+2+4+6)+4+2=38.总结提高1.用“五点法”作y =A sin(ωx +φ)的图象,关键是五个点的选取,一般令ωx +φ=0,π2,π,3π2,2π,即可得到作图所需的五个点的坐标,同时,若要求画出给定区间上的函数图象时,应适当调整ωx +φ的取值,以便列表时能使x 在给定的区间内取值.2.在图象变换时,要注意相位变换与周期变换的先后顺序改变后,图象平移的长度单位是不同的,这是因为变换总是对字母x 本身而言的,无论沿x 轴平移还是伸缩,变化的总是x .3.在解决y =A sin(ωx +φ)的有关性质时,应将ωx +φ视为一个整体x 后再与基本函数y =sin x 的性质对应求解.5.7 正弦定理和余弦定理典例精析题型一 利用正、余弦定理解三角形【例1】在△ABC 中,AB =2,BC =1,cos C =34.(1)求sin A 的值;(2)求∙的值.【解析】(1)由cos C =34得sin C =74.所以sin A =BC sin C AB=1³742=148. (2)由(1)知,cos A =528.所以cos B =-cos(A +C )=-cos A cos C +sin A sin C=-15232+7232=-24.所以BC ²CA =BC ²(CB +BA )=BC ∙CB +BC ∙BA =-1+1³2³cos B =-1-12=-32.【点拨】在解三角形时,要注意灵活应用三角函数公式及正弦定理、余弦定理等有关知识.【变式训练1】在△ABC 中,已知a 、b 、c 为它的三边,且三角形的面积为a 2+b 2-c 24,则∠C = .【解析】S =a 2+b 2-c 24=12ab sin C .所以sin C =a 2+b 2-c22ab=cos C .所以tan C =1,又∠C ∈(0,π),所以∠C =π4.题型二 利用正、余弦定理解三角形中的三角函数问题【例2】设△ABC 是锐角三角形,a 、b 、c 分别是内角A 、B 、C 所对的边长,并且sin 2A =sin(π3+B )sin(π3-B )+sin 2B .(1)求角A 的值;(2)若∙=12,a =27,求b ,c (其中b <c ). 【解析】(1)因为sin 2A =(32cos B +12sin B )(32cos B -12sin B )+sin 2B =34cos 2B -14sin 2B +sin 2B =34,所以sin A =±32.又A 为锐角,所以A =π3.(2)由∙=12可得cb cos A =12.①由(1)知A =π3,所以cb =24.②由余弦定理知a 2=c 2+b 2-2cb cos A ,将a =27及①代入得c 2+b 2=52.③ ③+②³2,得(c +b )2=100,所以c +b =10. 因此,c ,b 是一元二次方程t 2-10t +24=0的两个根. 又b <c ,所以b =4,c =6.【点拨】本小题考查两角和与差的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.【变式训练2】在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,且满足(2a -c )cos B =b cos C .(1)求角B 的大小;(2)若b =7,a +c =4,求△ABC 的面积. 【解析】(1)在△ABC 中,由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入(2a -c )cos B =b cos C ,整理得2sin A cos B =sin B cos C +sin C ∙cos B , 即2sin A cos B =sin(B +C )=sin A , 在△ABC 中,sin A >0,2cos B =1, 因为∠B 是三角形的内角,所以B =60°.(2)在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac ∙cos B =(a +c )2-2ac -2ac ∙cos B ,将b =7,a +c =4代入整理,得ac =3. 故S △ABC =12ac sin B =32sin 60°=334.题型三 正、余弦定理在实际问题中的应用【例3】(2010陕西)如图所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,则该救援船到达D 点需要多长时间?【解析】由题意知AB =5(3+3)(海里),∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理得DB sin ∠DAB =ABsin ∠ADB ,所以DB =ADBDAB AB ∠∠∙sin sin =︒︒+∙105 sin 45 sin )33(5=︒︒+︒︒︒+∙60 sin 45 cos 60 cos 45 sin 45 sin )33(5=53(3+1)3+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203海里, 在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ∙BC ∙cos ∠DBC =300+1 200-2³103³203³12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以,救援船到达D 点需要1小时.【点拨】应用解三角形知识解决实际问题的基本步骤是: (1)根据题意,抽象地构造出三角形;(2)确定实际问题所涉及的数据以及要求解的结论与所构造的三角形的边与角的对应关系;(3)选用正弦定理或余弦定理或者二者相结合求解; (4)给出结论.【变式训练3】如图,一船在海上由西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进m km 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围n km 范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件 时,该船没有触礁危险.【解析】由题可知,在△ABM 中,根据正弦定理得BMsin(90°-α)=msin(α-β),解得BM =m cos αsin(α-β),要使船没有触礁危险需要BM sin(90°-β)=m cos αcos βsin(α-β)>n .所以α与β的关系满足m cos αcos β>n sin(α-β)时,船没有触礁危险. 总结提高1.正弦定理、余弦定理体现了三角形中角与边存在的一种内在联系,如证明两内角A >B 与sin A >sin B 是一种等价关系.2.在判断三角形的形状时,一般将已知条件中的边角关系转化,统一转化为边的关系或统一转化为角的关系,再用恒等变形(如因式分解、配方)求解,注意等式两边的公因式不要随意约掉,否则会漏解.3.用正弦定理求角的大小一定要根据题中所给的条件判断角的范围,以免增解或漏解.5.8 三角函数的综合应用典例精析题型一 利用三角函数的性质解应用题【例1】如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是一半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在上,相邻两边CQ 、CR 分别落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.【解析】如图,连接AP ,过P 作PM ⊥AB 于M .设∠PAM =α,0≤α≤π2,则PM =90sin α,AM =90cos α,所以PQ =100-90cos α,PR =100-90sin α, 于是S 四边形PQCR =PQ ²PR=(100-90cos α)(100-90sin α)=8 100sin αcos α-9 000(sin α+cos α)+10 000. 设t =sin α+cos α,则1≤t ≤2,sin αcos α=t 2-12.S 四边形PQCR =8 100²t 2-12-9 000t +10 000=4 050(t -109)2+950 (1≤t ≤2).当t =2时,(S 四边形PQCR )max =14 050-9 000 2 m 2; 当t =109时,(S 四边形PQCR )min =950 m 2.【点拨】同时含有sin θcos θ,sin θ±cos θ的函数求最值时,可设sin θ±cos θ=t ,把sin θcos θ用t 表示,从而把问题转化成关于t 的二次函数的最值问题.注意t 的取值范围.【变式训练1】若0<x <π2,则4x 与sin 3x 的大小关系是( )A.4x >sin 3xB.4x <sin 3xC.4x ≥sin 3xD.与x 的值有关【解析】令f (x )=4x -sin 3x ,则f ′(x )=4-3cos 3x .因为f ′(x )=4-3cos 3x >0,所以f (x )为增函数.又0<x <π2,所以f (x )>f (0)=0,即得4x -sin 3x >0.所以4x >sin 3x .故选A.题型二 函数y =A sin(ωx +φ)模型的应用【例2】已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时的浪花高度数据.经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b .(1)根据以上数据,求出函数y =A cos ωt +b 的最小正周期T 、振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放. 请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪者进行运动?【解析】(1)由表中数据知,周期T =12,所以ω=2πT =2π12=π6.由t =0,y =1.5,得A +b =1.5,由t =3,y =1.0,得b =1.0, 所以A =0.5,b =1,所以振幅为12.所以y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放, 所以12cos π6t +1>1,所以cos π6t >0,所以2k π-π2<π6t <2k π+π2,即12k -3<t <12k +3.①因为0≤t ≤24,故可令①中k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24. 故在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午15:00.【点拨】用y =A sin(ωx +φ)模型解实际问题,关键在于根据题目所给数据准确求出函数解析式.【变式训练2】如图,一个半径为10 m 的水轮按逆时针方向每分钟转4圈,记水轮上的点P 到水面的距离为d m(P 在水面下则d 为负数),则d (m)与时间t (s)之间满足关系式:d =A sin(ωt +φ)+k (A >0,ω>0,-π2<φ<π2),且当点P 从水面上浮现时开始计算时间,有以下四个结论:①A =10;②ω=2π15;③φ=π6;④k =5.其中正确结论的序号是 . 【解析】①②④.题型三 正、余弦定理的应用【例3】为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图所示),飞机能测量的数据有俯角和A 、B 之间的距离,请设计一个方案,包括:(1)指出需测量的数据(用字母表示,并在图中标示);(2)用文字和公式写出计算M 、N 间距离的步骤.【解析】(1)如图所示:①测AB 间的距离a ;②测俯角∠MAB =φ,∠NAB =θ,∠MBA =β,∠NBA =γ.(2)在△ABM 中 ,∠AMB =π-φ-β,由正弦定理得BM =AB sin φsin ∠AMB =a sin φsin(φ+β),同理在△BAN 中,BN =AB sin θsin ∠ANB =a sin θsin(θ+γ),所以在△BMN 中,由余弦定理得MN =MBN BN BM BN BM ∠-+∙cos 222=a 2sin 2φsin 2(φ+β)+a 2sin2θsin 2(θ+γ)-2a 2sin θsin φcos(γ-β)sin(φ+β)sin(θ+γ). 【变式训练3】一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是 海里/小时.【解析】本题考查实际模型中的解三角形问题.依题意作出简图,易知AB =10,∠OCB =60°,∠OCA =75°.我们只需计算出OC 的长,即可得出船速.在直角三角形OCA 和OCB 中,显然有OB OC =tan ∠OCB =tan 60°且OA OC=tan ∠OCA =tan 75°,因此易得AB =OA -OB =OC (tan 75°-tan 60°),即有OC =ABtan 75°-tan 60°=10tan 75°-tan 60°=10tan(30°+45°)-tan 60°=10tan 30°+tan 45°1-tan 30°tan 45°-tan 60°=1013+11-13-3=5.由此可得船的速度为5海里÷0.5小时=10海里/小时.总结提高1.解三角形的应用题时应注意:(1)生活中的常用名词,如仰角,俯角,方位角,坡比等;(2)将所有已知条件化入同一个三角形中求解;(3)方程思想在解题中的运用.2.解三角函数的综合题时应注意:(1)与已知基本函数对应求解,即将ωx+φ视为一个整体X;(2)将已知三角函数化为同一个角的一种三角函数,如y=A sin(ωx+φ)+B或y=a sin2x +b sin x+c;(3)换元方法在解题中的运用.。

三角函数的图像和性质 典型例题精讲

三角函数的图像和性质 典型例题精讲

(本题满分10分)
如为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )
A. 向左平移
3π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变 B. 向左平移
3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C. 向左平移
6π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变 D. 向左平移6π
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
思路分析:
先根据函数的周期和振幅确定w 和A 的值,再代入特殊点可确定φ的一个值,进而得到函数的解析式,再进行平移变换即可.
解答过程:
由图象可知函数的周期为π,振幅为1,
所以函数的表达式可以是y =sin (2x +φ).
代入(-6π,0)可得φ的一个值为3
π, 故图象中函数的一个表达式是y =sin (2x +3π
),
所以只需将y =sin x (x ∈R )的图象上所有的点向左平移

个单位长度, 再把所得各点的横坐标缩短到原来的
21倍,纵坐标不变.
答案:A
拓展提升:
本题考查三角函数的图象与图象变换的基础知识,灵活运用三角函数的平移是解题的关键
.。

高考数学百大经典例题 三角函数的图象和性质 试题

高考数学百大经典例题 三角函数的图象和性质 试题

智才艺州攀枝花市创界学校高考数学百大经典例题——三角函数的图象和性质解:在单位圆中,作出锐角α在正弦线MP,如图2-9所示在△MPO中,MP+OM>OP=1即MP+OM>1∴sinα+cosα>1于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分k∈Z}【说明】学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的局部;⑤写出角的范围的表达式,注意加周期.【例3】求以下函数的定义域:解:(1)为使函数有意义,需满足2sin2x+cosx-1≥0由单位圆,如图2-12所示k∈Z}【说明】求函数的定义域通常是解不等式组,利用“数形结合〞,借助于数轴画线求交集的方法进展.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合〞,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成.(4)为使函数有意义,需满足:取k=0和-1时,得交集为-4<x≤-π或者0≤x≤π∴函数的定义域为(-4,-π]∪[0,π]【说明】求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或者不等式组后要注意三角函数的符号及单调性,在进展三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围.【例4】求以下函数的值域:∴此函数的值域为{y|0≤y<1}∵1+sinx+cosx≠0 ∴t≠-1【说明】求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性.【例5】判断以下函数的奇偶性:【分析】先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性.∵f(1-x)=-sin(-2x)=sin2x=-f(x)(2)函数的定义域为R,且f(-x)=sin[cos(-x))=sin(cosx)=f(x)∴函数f(x)=sin(cosx)是偶函数.(3)因1+sinx≠0,∴sinx≠-1,函数的定义域为{x|x∈R且x≠2k既不是奇函数,也不是偶函数.【例6】求以下函数的最小正周期:【分析】欲求三角函数的周期,一般是把三角函数f(x)化成易求周期的函数y=Asin(ωx+)+b或者y=Acos(ωx+)+b的等形式.函数y=Asin(ω“多个化一个,高次化一次〞,将所给函数化成单角单函数.(2)y=cos4x+sin4x=(cos2x+sin2x)2-2sin2xcos2x=|cosx|+|sinx|=f(x)正周期.(x+T)|+|cos(x+T)|=|sinx|+|cosx|都成立.特别当x=0时,有|sinT|+|cosT|=sinT【例8】求以下各函数的最大值、最小值,并且求使函数获得最大值、最小值的x的集合.∴使y获得最大值的x的集合为{x|x=(2kπ+1)π,k∈Z}∴使y获得最小值的x的集合为{x|x=2kπ,k∈Z}当cosx=1,即x=2kπ(k∈Z)时,y获得最大值3.【说明】求三角函数的最值的类型与方法:1.形如y=asinx+b或者y=acosx+b,可根据sinx,cosx的有界性来求最值;2.形如y=asin2x+bsinx+c或者y=acos2x+bcosx+c看成是关于sinx或者cosx的二次函数,变为y=a(sinx+m)2+k或者y=a(cosx+m)2+k,但要注意它与二次函数求最值的区别,此时|sinx|≤1,|cosx|≤1【例9】求以下函数的单调区间:【分析】复杂三角函数的单调区间是运用根本函数的单调性及单调区间得出的.(2)函数y=sin2x-2sinx+2,是由y=u2-2u+2及u=sinx及复合而成,∴|u|≤1【例10】当a≥0,求函数f(x)=(sinx+a)(cosx+a)的最大值、最小值,及相应的x的取值.【分析】此题对f(x)解析式的变换关键在于认识解析式中两项间的内在联络,从而断定f(x)解析式中的平方关系,另外此题含字母系数,要分清常数和变量,还要有对字母a作分类讨论的准备.解:f(x)=(sinx+a)(cosx+a)=sinxcosx+a(sinx+cosx)+a2由于a是常数,故这里只要求y=(sinx+cosx+a)2的最大值、最小值.合物线的图象如图2-14所示两种可能.【说明】象本例这种解析式中含字母系数的函数研究其性质,常常要运用分类讨论的思想,其中为什么要分类,怎么分类和讨论是两个根本问题.【例11】函数f(x)=Asin(ωx+)的图象如图2-15,试依图指出(1)f(x)的最小正周期;(2)使f(x)=0的x的取值集合;(3)使f(x)<0的x的取值集合;(4)f(x)的单调递增区间和递减区间;(5)求使f(x)取最小值的x的集合;(6)图象的对称轴方程;(7)图象的对称中心.【分析】这是一道依图象读出相应函数性质的典型例题,本身就是数形结合思想的表达,它根据f(x)=Asin(ωx+)的图象与函数y=sinx的图象的关系得出.注:得出函数f(x)的最小正周期之后,研究f(x)的其他性质,总是先在包含锐角在内的一个周期中研究,再延伸到整个定义域中.注:实际上f(x)图象的对称轴方程为x=x0,而其中x0使f(x0)=1或者f(x0)=-1注:f(x)的图象的对称中心为(x0,0),其中x0使f(x0)=0【说明】这种依图读性的问题是进步数形结合才能的重要训练题,其中有两点要注意反思:①周期性在研究中的化简作用,②三角函数的“多对一〞性.【例12】求如图2-16所示的函数解析式.(ω>0,θ∈[0,2π])【分析】由图象确定函数的解析式,就要观察图象的特性,形状位置和所给的条件.通过判断、分析和计算确定A,ω、θ得到函数的解析式.【例13】设y=Asin(ωx+)(A>0,ω>0,||<π)最高点D的标为(6,0),(1)求A、ω、的值;(2)求出该函数的频率,初相和单调区间.y单调递增故递增区间为[16k-6,16k+2],k∈Zy单调递减故递减区间为[16k+2,16k+10],k∈ZA.sinθ<cosθ<ctgθB.cosθ<sinθ<ctgθC.sinθ<ctgθ<cosθD.cosθ<ctgθ<sinθ解一(直接法):应选A.解二(图解法):作出三角函数线,如图2-17MP=sinθ,OM=cosθ,BS=ctgθ通过观察和度量得MP<OM<BS从而有sinθ<cosθ<ctgθ∴应选A∴cosθ>sinθ从而可剔除B、D.再由sinθ<ctgθ,故可剔除C应选A解四(特殊值法):B、C、D,应选A.【说明】此例题用多种方法求解选项,指出3种选择题的技巧.∴应选Dx轴交点中在原点右边最接近原点的交点,而在原点左边与x轴交点中最的图象.∴选D【说明】y=Asin(ωx+)(A>0,ω>0)x∈R的图象可由y=sinx的图象经以下各种顺序变换得到的.(1)先平移,后伸缩:①把y=sinx的图象向左(>0)或者向右(<0)沿x轴方向平移||个单位;(相位变换)(周期变换)③把所有各点纵坐标伸长(A>1)或者缩短(0<A<1)到原来的A倍,横坐标不变(振幅变换)(2)先伸缩,后平移①把y=sinx图象上各点的横坐标缩短(ω>1)或者伸长(0<ω<1)到原(相位变换)③把所有各点纵坐标伸长(A>1)或者缩短(0<A<1)到原来的A倍横坐标不变(振幅变换)再把横坐标缩小到原来的一半,纵坐标扩大到原来的4倍,那么所得的图象的解析式是[ ]∴选A.【例17】方程sin2x=sinx在区间(0,2π)内解的个数是[ ]A.1 B.2 C.3 D.4【分析】此题有两类解法(1)求出方程在(0,2π)内的所有解,再数其解的个数.而决定选项,对于选择题,此法一般不用.(2)在同一坐标系中作出函数y=sin2x和y=sinx的图象,如图2-18所示.它们在(0,2π)内交点个数,即为所求方程解的个数,从而应选C.它表达了数、形的结合.【例18】设函数f(x)是定义在R上的周期为3的奇函数,且f(1)=2,那么f(5)=____解:∵f(x)是奇函数,且f(1)=2,∴f(-1)=-2又∵f(x)是周期为3的函数.∴f(3+x)=f(x)∴f(-1+3)=f(-1)=-2 即f(2)=-2f(2+3)=f(2)=-2 即f(5)=-2【例19】有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或者弧上,求这个内接矩形的最大面积.【分析】此题入手要解决好两个问题.(1)内接矩形的放置有两种情况,如图2-19所示,应该分别予以处理.(2)求最大值问题这里应构造函数,怎么选择便于以此表达矩形面积的自变量.解:如图2-19(1)设∠FOA=θ,那么FG=Rsinθ又设矩形EFGH的面积为S,那么又∵0°<θ<60°,故当cos(2θ-60°)=1,即θ=30′时,如图2-19(2),设∠FOA=θ,那么EF=2Rsin(30°-θ),在△OFG中,∠OGF=150°设矩形的面积为S.那么S=EFFG=4R2sinθsin(30°-θ)=2R2[cos(2θ-30°)-cos30°]又∵0<θ<30°,故当cos(2θ-30°)=1。

高中三角函数典型例题(教用)

高中三角函数典型例题(教用)

【典型例题】:1、已知2tan =x ,求x x cos ,sin 的值.解:因为2cos sin tan ==xxx ,又1cos sin 22=+a a , 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2、求)330cos()150sin()690tan()480sin()210cos()120tan(οοοοοο----的值。

解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o οοοοοοοοοο--+---++-=.3330cos )150sin (30tan )120sin )(30cos (60tan -=---=οοοοοο3、若,2cos sin cos sin =+-xx xx ,求x x cos sin 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以)cos (sin 2cos sin x x x x +=-得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以)cos (sin 2cos sin x x x x +=-,所以22)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,所以有⋅-=103cos sin x x 4、求证:x x x x 2222sin tan sin tan -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型例题】:
1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan ==
x
x
x ,又1cos sin 22=+a a , 联立得⎩⎨⎧=+=,1
cos sin cos 2sin 2
2x x x
x 解这个方程组得.55cos 5
52sin ,55cos 552sin ⎪⎪⎩
⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x
2、求)
330cos()150sin()690tan()
480sin()210cos()120tan(οοοοοο----的值。

解:原式)
30360cos()150sin()30720tan()
120360sin()30180cos()180120tan(o ο
οοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο
οοοοο
3、若
,2cos sin cos sin =+-x
x x
x ,求x x cos sin 的值.
解:法一:因为
,2cos sin cos sin =+-x
x x
x
所以)cos (sin 2cos sin x x x x +=-
得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得
,,⎪⎪⎩
⎪⎪⎨
⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10
103sin 1010cos 10103sin x x x x 所以⋅-
=10
3
cos sin x x 法二:因为,2cos sin cos sin =+-x
x x
x
所以)cos (sin 2cos sin x x x x +=-,
所以2
2)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,
所以有⋅-
=10
3cos sin x x 4、求证:x x x x 2
2
2
2
sin tan sin tan -=。

5、求函数)6
π
2
sin(2+
=x
y 在区间]2,0[π上的值域。

解:因为]20π≤≤x ,所以π≤≤20x ,6
7626π
ππ≤+≤x 由正弦函数的图象,
得到
⎥⎦⎤
⎢⎣⎡-∈+=1,21)6π2sin(2x y ,所以[]
2,1)6π2sin(2-∈+∈x y
6、求下列函数的值域.
(1)2cos sin 2
+-=x x y ; (2))cos (sin cos sin 2x x x x y +-=)
解:(1)2cos sin 2
+-=x x y
=3)cos (cos 2cos cos 122++-=+--x x x x
令x t cos =,则,413)21(413)2
1
(3)(],1,1[22
2
++-=++-=++-=-∈t t t t y t
利用二次函数的图象得到].4
13,
1[∈y (2) )cos (sin cos sin 2x x x x y +-=
=)cos (sin 1)cos (sin 2
x x x x +--+
令x x t cos sin +=2=
)4
π
sin(+x ,则]2,2[-∈t
则,12
--=t t y 利用二次函数的图象得到].21,4
5[+-∈y
7、若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式。

解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴
交点的间隔是
41
个周期,这样求得44=T ,T =16,所以⋅=8
πω 又由)28π
sin(22ϕ+⨯=,得到可以取).4
π8πsin(2.4π+=∴=x y ϕ
8、已知函数f (x )=cos 4
x -2sin x cos x -sin 4
x .
(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2
π
,0[∈x 求f (x )的最大值、最小值.数
x
x
y cos 3sin 1--=
的值域.
解:(Ⅰ)因为f (x )=cos 4
x -2sin x cos x -sin4x =(cos 2
x -sin 2
x )(cos 2
x +sin 2
x )-sin2x )4
π
2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x
所以最小正周期为π.
(Ⅱ)若]2π,0[∈x ,则]4
π
3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为
;1)4πsin(2=--当8
π
3=
x 时,f (x )取最小值为.2-
9、已知2tan =θ,求(1)θ
θθ
θsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.
解:(1)
2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-
+
=++θθθ
θθθ
θθθθ; (2) θ
+θθ+θθ-θ=θ+θθ-θ22222
2cos sin cos 2cos sin sin cos 2cos sin sin
3
24122221cos sin 2cos sin cos sin 2222-=++-=+θ
θ+θθ
-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过 程简化。

10、求函数2
1sin cos (sin cos )y x x x x =++++的值域。

解:设sin cos )[4
π
t x x x =+=
+∈,则原函数可化为
2213
1()24
y t t t =++=++
,因为[t ∈,所以
当t =
时,max 3y =12t =-时,min 3
4
y =,
所以,函数的值域为3
[34
y ∈,。

11、已知函数2
()4sin 2sin 22f x x x x R =+-∈,;(1)求()f x 的最小正周期、()
f x
的最大值及此时x 的集合;(2)证明:函数()f x 的图像关于直线8
π
x =-对称。

解:2
2
()4sin 2sin 222sin 2(12sin )f x x x x x =+-=--
2sin 22cos 2)4
πx x x =-=- (1)所以()f x 的最小正周期T π=,因为x R ∈,
所以,当2242ππx k π-=+,即38
π
x k π=+时,()f x 最大值为 (2)证明:欲证明函数()f x 的图像关于直线8
π
x =-对称,只要证明对任意x R ∈,有
()()88
ππ
f x f x --=-+成立,
因为())]2)28842ππππ
f x x x x --=---=--=-,
())]2)28842ππππ
f x x x x -+=-+-=-+=-,
所以()()88ππf x f x --=-+成立,从而函数()f x 的图像关于直线8
π
x =-对称。

12 、已知函数y=
2
1cos 2
x+23sinx ·cosx+1 (x ∈R ),
(1)当函数y 取得最大值时,求自变量x 的集合;
(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?
解:(1)y=
21cos 2x+23sinx ·cosx+1=41 (2cos 2
x -1)+ 41+43(2sinx ·cosx )+1
=41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+4
5
=21sin(2x+6π)+4
5 所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6
π
+k π,(k ∈Z )。

所以当函数y 取最大值时,自变量x 的集合为{x|x=6
π
+k π,k ∈Z}
(2)将函数y=sinx 依次进行如下变换:
(i )把函数y=sinx 的图像向左平移
6π,得到函数y=sin(x+6
π
)的图像; (ii )把得到的图像上各点横坐标缩短到原来的2
1
倍(纵坐标不变),得到函数
y=sin(2x+6
π
)的图像;
(iii )把得到的图像上各点纵坐标缩短到原来的2
1
倍(横坐标不变),得到函数
y=
21sin(2x+6
π
)的图像; (iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+4
5
的图像。

综上得到y=
2
1cos 2
x+23sinxcosx+1的图像。

相关文档
最新文档