高中数学典型例题任意角的三角函数1新课标
1.2.1任意角的三角函数(新授课)

1.2.1任意角的三角函数(新授课)【教学目标】1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
4.掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
5.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;.【教学重点】任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一)【教学难点】任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解..【教学过程】 一、知识回顾初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b===.角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、预习自学1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; (2)x 叫做α的余弦(cossine),记做cos α,即cos x α=; (3)y x叫做α的正切(tangent),记做tan α,即tan (0)y x xα=≠.注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点P在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r=,那么sinα=cosα=,tanyxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)x y,它与原点的距离为(0)r r==>,那么(1)比值yr叫做α的正弦,记作sinα,即sinyrα=;(2)比值xr叫做α的余弦,记作cosα,即cosxrα=;(3)比值yx叫做α的正切,记作tanα,即tanyxα=;2.三角函数的定义域、值域三.典型例题例1.求53π的正弦、余弦和正切值.例2.已知角α的终边过点0(3,4)P--,求角α的正弦、余弦和正切值.例3.求证:当且仅当不等式组sin0{tan0θθ<>成立时,角θ为第三象限角.四、课堂练习6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:五、课堂小结、本节课你学了哪些知识?有哪些收获?你已经正确理解、掌握它们了吗?六、课后作业1.确定下列三角函数值的符号,然后用计算器验证:(1)cos 250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan 3π2.求下列三角函数值:(1)'sin148010︒; (2)9cos 4π; (3)11tan()6π-。
2021_2022学年新教材高中数学第7章三角函数7.27.2.1任意角的三角函数学案苏教版必修第一

7.2 三角函数概念7.2.1任意角的三角函数学习任务核心素养1.理解三角函数的定义,会使用定义求三角函数值.(重点、易错点)2.会判断给定角的三角函数值的符号.(重点)3.会利用三角函数线比较两个同名三角函数值的大小及表示角的范围.(难点)1.通过三角函数的概念,培养数学抽象素养.2.借助公式的运算,提升学生的数学运算素养.在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?若以单位圆的圆心O为原点,你能用角的终边与单位圆的交点来表示锐角三角函数吗?那么,角的概念推广之后,三角函数的概念又该怎样定义呢?知识点1任意角三角函数的定义在平面直角坐标系中,设α的终边上异于原点的任意一点P的坐标为(x,y),它与原点的距离是r(r=x2+y2>0),那么名称定义定义域正弦sin α=yr R余弦cos α=xr R正切tan α=yx⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+kπ,k∈Z1.对于确定的角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?[提示]不会.因为三角函数值是比值,其大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.2.若P(x,y)为角α与单位圆的交点,sin α,cos α,tan α的值怎样表示?[提示]sin α=y,cos α=x,tan α=yx.1.若角α的终边经过点P ⎝ ⎛⎭⎪⎫22,-22,则sin α=________;cos α=________;tan α=________.-2222-1 [由题意可知 |OP |=⎝⎛⎭⎫22-02+⎝⎛⎭⎫-22-02=1, ∴sin α=-221=-22;cos α=221=22;tan α=-2222=-1.]知识点2 三角函数在各象限的符号2.(1)若α在第三象限,则sin αcos α________0;(填“>”或“<”)(2)cos 3tan 4________0.(填“>”或“<”) (1)> (2)< [(1)∵α在第三象限, ∴sin α<0,cos α<0,∴sin αcos α>0. (2)∵π2<3<π,π<4<3π2,∴3是第二象限角,4是第三象限角. ∴cos 3<0,tan 4>0.∴cos 3tan 4<0.] 知识点3 三角函数线(1)有向线段:规定了方向(即规定了起点和终点)的线段;有向直线:规定了正方向的直线;有向线段的数量:若有向线段AB 在有向直线l 上或与有向直线l 平行,根据有向线段AB 与有向直线l 的方向相同或相反,分别把它的长度添上正号或负号,这样所得的数,叫作有向线段的数量,记为AB .(2)三角函数线3.思考辨析(正确的打“√”,错误的打“×”)(1)α一定时,单位圆的正弦线一定.( ) (2)在单位圆中,有相同正弦线的角必相等.( ) [答案] (1)√ (2)×类型1 三角函数的定义及应用【例1】 (1)在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值.(2)当α=-π3时,求sin α,cos α,tan α的值.[解] (1)当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =(-1)2+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+(-2)2=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.(2) 当α=-π3时,设α的终边与单位圆的交点坐标为P (x ,y ),(x >0,y <0)根据直角三角形中锐角π3的邻边是斜边的一半,得x=12,由勾股定理得⎝⎛⎭⎫122+y2=1,y<0,解得y=-32,所以P⎝⎛⎭⎫12,-32.因此sin α=-321=-32,cos α=121=12,tan α=-3212=- 3.1.将本例(1)的条件“y=-2x”改为“3x+y=0”其他条件不变,结果又如何?[解]直线3x+y=0,即y=-3x,当α的终边在第二象限时,在α的终边上取一点P(-1,3),则r=2,所以sin α=32,cos α=-12,tan α=-3;当α的终边在第四象限时,在α终边上取一点P′(1,-3),则r=2,所以sin α=-32,cos α=12,tan α=- 3.2.将本例(1)的条件“在直线y=-2x上”,改为“过点P(-3a,4a)(a≠0)”,求2sin α+cos α.[解]因为r=(-3a)2+(4a)2=5|a|,①若a>0,则r=5a,角α在第二象限,sin α=yr=4a5a=45,cos α=xr=-3a5a=-35,所以2sin α+cos α=85-35=1.②若a<0,则r=-5a,角α在第四象限,sin α=4a-5a=-45,cos α=-3a-5a=35,所以2sin α+cos α=-85+35=-1.1.已知角α终边上任意一点的坐标求三角函数值的方法(1)先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应的三角函数值.(2)在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=y r ,cos α=xr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.2.已知特殊角α,求三角函数值的方法(1)先设出角α的终边与单位圆交点坐标,由锐角三角形的定义结合勾股定理求出该点的坐标.(2)利用三角函数的定义,求出α的三角函数值.(此时P 到原点的距离r =1)3.当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[跟进训练]1.已知角θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. [解] 由题意知r =x 2+9,由三角函数定义得cos θ=xr=x x 2+9.又∵cos θ=1010x , ∴xx 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010, tan θ=31=3.当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.2. 当α=4π3时,求sin α,cos α,tan α的值.[解] 当α=4π3时,设α的终边与单位圆的交点坐标为P (x ,y ),(x <0,y <0)根据直角三角形中锐角π3的邻边是斜边的一半,得x =-12,由勾股定理得⎝⎛⎭⎫-122+y 2=1,y <0,解得y =-32, 所以P ⎝⎛⎭⎫-12,-32.因此sin α=-321=-32,cos α=-121=-12,tan α=-32-12= 3.类型2 三角函数值的符号【例2】 (1)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)判断下列各式的符号. ①sin 2 015° cos 2 016° tan 2 017°; ②tan 191°-cos 190°; ③sin 2 cos 3 tan 4.(1)D [由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.](2)[解] ①∵2 015°=1 800°+215°=5×360°+215°, 2 016°=5×360°+216°,2 017°=5×360°+217°, ∴它们都是第三象限角,∴sin 2 015°<0,cos 2 016°<0,tan 2 017°>0, ∴sin 2 015° cos 2 016° tan 2 017°>0.②∵191°角是第三象限角,∴tan 191°>0,cos 191°<0, ∴tan 191°-cos 191°>0.③∵π2<2<π,π2<3<π,π<4<3π2,∴2是第二象限角,3是第二象限角,4是第三象限角, ∴sin 2>0,cos 3<0,tan 4>0, ∴sin 2 cos 3 tan 4<0.判断三角函数值在各象限符号的攻略(1)基础:准确确定三角函数值中各角所在象限. (2)关键:准确记忆三角函数在各象限的符号.(3)注意:用弧度制给出的角常常不写单位,不要误认为角度制导致象限判断错误.[跟进训练]3.判断下列式子的符号:(1)tan 108°·cos 305°;(2)cos 5π6·tan11π6sin2π3;(3)tan 120°·sin 269°.[解] (1)∵108°是第二象限角,∴tan 108°<0. ∵305°是第四象限角,∴cos 305°>0. 从而tan 108°·cos 305°<0.(2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角,∴cos5π6<0,tan 11π6<0,sin 2π3>0. 从而cos 5π6·tan11π6sin2π3>0.(3)∵120°是第二象限角,∴tan 120°<0, ∵269°是第三象限角,∴sin 269°<0. 从而tan 120°·sin 269°>0.类型3 应用三角函数线解三角不等式【例3】 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合: (1)sin α≥32;(2)cos α≤-12.1.在单位圆中,满足sin α=32的正弦线有几条?试在图中明确. [提示] 两条,如图1所示,MP 1与NP 2都等于32. 2.在单位圆中,满足cos α=-12的余弦线有几条?在图中明确.[提示] 一条,如图2所示,OM =-12.图1 图2[解] (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(图①阴影部分)即为角α的终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图②阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .利用三角函数线解三角不等式的方法(1)正弦、余弦型不等式的解法对于sin x ≥b ,cos x ≥a (sin x ≤b ,cos x ≤a ),求解的关键是恰当地寻求点,只需作直线y =b 或x =a 与单位圆相交,连接原点与交点即得角的终边所在的位置,此时再根据方向即可确定相应的范围.(2)正切型不等式的解法对于tan x ≥c ,取点(1,c ),连接该点和原点并反向延长,即得角的终边所在的位置,结合图象可确定相应的范围.[跟进训练]4.求函数f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22的定义域. [解] 由题意,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.则不等式组的解的集合如图(阴影部分)所示,∴函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x <2k π+34π,k ∈Z .1.若sin α<0,tan α>0,则α终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [由sin α<0可知α的终边落在第三、四象限及y 轴的负半轴上. 由tan α>0可知α的终边落在第一、三象限内. 故同时满足sin α<0,tan α>0的角α为第三象限角.] 2.(多选题)下列三角函数判断错误的是( ) A .sin 165°>0 B .cos 280°<0 C .tan 170°>0D .tan 310°>0BCD[∵90°<165°<180°∴sin 165°>0.又270°<280°<360°,∴cos 280°>0.又270°<310°<360°.∴tan310°<0,90°<170°<180°∴tan 170°<0.]3.已知角α终边过点P (1,-1),则tan α的值等于________. -1 [由三角函数定义知tan α=-11=-1.]4.已知角α终边过P ⎝⎛⎭⎫32,12,则cos α等于________.32 [由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32.] 5.已知sin θ·tan θ<0,那么θ是第________象限角.二或三 [因为sin θ·tan θ<0,所以sin θ<0,tan θ>0或sin θ>0,tan θ<0,若sin θ>0,tan θ<0,所以θ在第二象限.若sin θ<0,tan θ>0,则θ在第三象限.]回顾本节知识,自我完成以下问题.1.三角函数值的大小与取点有关吗?与什么有关?[提示] 三角函数值的大小与终边所在的位置有关,与取点无关. 2.求一个角的三角函数值需确定几个量?分别是什么?[提示] 确定三个量,角的终边上异于原点的点的横、纵坐标及其到原点的距离. 3.已知角的大小,怎样利用定义求三角函数值? [提示] 确定出角的终边与单位圆的交点坐标.。
高考数学专题《任意角和弧度制及任意角的三角函数》习题含答案解析

专题5.1 任意角和弧度制及任意角的三角函数1.(2021·宁夏高三三模(文))已知角α终边经过点()1,2,P-则cosα=()A.12B.12-C D.【答案】D【解析】直接利用三角函数的定义即可.【详解】由三角函数定义,cos5α==-.故选:D.2.(2021·中牟县教育体育局教学研究室高一期中)已知角α的终边经过点()3,1P-,则cosα=()A B.C.D【答案】C【解析】由三角函数的定义即可求得cosα的值.【详解】角α的终边经过点(3,1)P-,cosα∴==故选:C.3.(2020·全国高一课时练习)若α=-2,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】练基础根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1 rad≈57.30°,所以-2 rad≈-114.60°,故α的终边在第三象限.故选:C.4.(2021·江苏高一期中)下列命题:①钝角是第二象限的角;②小于90︒的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,时针转过的角度为60︒;⑥若5α=,则α是第四象限角.其中正确的题的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】结合象限角和任意角的概念逐个判断即可.【详解】对于①:钝角是大于90小于180的角,显然钝角是第二象限角. 故①正确;对于②:锐角是大于0小于90的角,小于90的角也可能是负角. 故②错误;对于③:359-显然是第一象限角. 故③错误;对于④:135是第二象限角,361是第一象限角,但是135361<. 故④错误;对于⑤:时针转过的角是负角. 故⑤错误;对于⑥:因为157.3rad≈,所以5557.3=286.5rad≈⨯,是第四象限角. 故⑥正确.综上,①⑥正确.故选:B.5.(2021·辽宁高三其他模拟)装饰公司制作一种扇形板状装饰品,其圆心角为23π,并在扇形弧上正面等距安装7个发彩光的小灯泡且在背面用导线将小灯泡串连(弧的两端各一个灯泡,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线大致需要的长度约为()A.55厘米B.63厘米C.69厘米D.76厘米【答案】B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为在弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小, 所以可以用弧长近似代替弦长, 所以导线的长度为23020633ππ⨯=≈(厘米). 故选:B6.(2021·上海格致中学高三三模)半径为2,中心角为3π的扇形的面积等于( ) A .43π B .πC .23π D .3π 【答案】C 【解析】根据扇形的面积公式即可求解. 【详解】解:因为扇形的半径2r ,中心角3πα=,所以扇形的面积2211222233S r ππα==⨯⨯=, 故选:C.7.(2021·辽宁高三其他模拟)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,其中OA =20cm ,∠AOB =120°,M 为OA 的中点,则扇面(图中扇环)部分的面积是( )A .50πcm 2B .100πcm 2C .150πcm 2D .200πcm 2【答案】B 【解析】根据扇形面积公式计算可得; 【详解】解:扇环的面积为22211332400100222883r S r r παααπ⎛⎫=-==⨯⨯= ⎪⎝⎭.故选:B8.(2021·重庆八中高三其他模拟)如图所示,扇环ABCD 的两条弧长分别是4和10,两条直边AD 与BC 的长都是3,则此扇环的面积为( )A .84B .63C .42D .21【答案】D 【解析】设扇环的圆心角为α,小圆弧的半径为r ,依题意可得4αr =且()310αr +=,解得α、r ,进而可得结果. 【详解】设扇环的圆心角为α,小圆弧的半径为r ,由题可得4αr =且()310αr +=,解得2α=,2r ,从而扇环面积()221252212S =⨯⨯-=. 故选:D .9.(2021·浙江高二期末)已知角α的终边过点(1,)P y ,若sin 3α=,则y =___________.【答案】【解析】利用三角函数的定义可求y . 【详解】由三角函数的定义可得sin α==y =故答案为:10.(2021·山东日照市·高三月考)已知函数()3sin,06log ,0xx f x x x π⎧≤⎪=⎨⎪>⎩,则13f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭______. 【答案】12- 【解析】利用分段函数直接进行求值即可. 【详解】∵函数()3,06log ,0xsinx f x x x π⎧≤⎪=⎨⎪>⎩, ∴311log 133f ⎛⎫=- ⎪⎝⎭=, ∴611(1)sin 32f f f π⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:12-.1.(2021·河南洛阳市·高一期中(文))点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A .1,2⎛ ⎝⎭B .12⎛- ⎝⎭C .21⎛⎫⎪ ⎪⎝⎭D .122⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】先求出旋转角,就可以计算点的坐标了. 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(,22P '-. 故选:B.2.(2021·上海高二课时练习)若A 是三角形的最小内角,则A 的取值范围是( )练提升A .0,2π⎛⎫⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,32ππ⎛⎫ ⎪⎝⎭D .0,3π⎛⎤ ⎥⎝⎦【答案】D 【解析】由给定条件结合三角形三内角和定理即可作答. 【详解】设B ,C 是三角形的另外两个内角,则必有,A B A C ≤≤,又A B C π++=, 则3A A A A A B C π=++≤++=,即3A π≤,当且仅当3C B A π===,即A 是正三角形内角时取“=”,又0A >,于是有03A π<≤,所以A 的取值范围是(0,]3π.故选:D3.(2021·北京清华附中高三其他模拟)已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】求解出sin 2sin 2αβ=成立的充要条件,再与,k k Z αβπ=+∈分析比对即可得解. 【详解】,R αβ∈,sin 2sin 2sin[()()]sin[()()]αβαβαβαβαβ=⇔++-=+--⇔2cos()sin()0αβαβ+-=,则sin()0αβ-=或cos()0αβ+=,由sin()0αβ-=得,k k k Z αβπαβπ-=⇔=+∈, 由cos()0αβ+=得,22k k k Z ππαβπαβπ+=+⇔=-+∈,显然s ,in 2sin 2k k Z απαββ=+∈=⇒,sin 2s ,in 2k k Z αβαβπ=+=∈,所以“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的充分不必要条件. 故选:A4.(2021·安徽池州市·池州一中高三其他模拟(理))已知一个半径为3的扇形的圆心角为()02θθπ<<,面积为98π,若()tan 3θϕ+=,则tan ϕ=( ) A .12-B .34C .12D .43【答案】C 【解析】由扇形的面积公式得4πθ=,进而根据正切的和角公式解方程得1tan 2ϕ=. 【详解】解:由扇形的面积公式212S r θ=得9928πθ=,解得4πθ=, 所以()tan tan 1tan tan 31tan tan 1tan θϕϕθϕθϕϕ+++===--,解得1tan 2ϕ=故选:C5.(2021·新蔡县第一高级中学高一月考)一个圆心角为60的扇形,它的弧长是4π,则扇形的内切圆(与扇形的弧和半径的相切)的半径等于( ) A .2 B .4 C .2π D .4π【答案】B 【解析】设扇形内切圆的半径为x ,扇形所在圆的半径为r ,求得3r x =,结合弧长公式,列出方程,即可求解. 【详解】如图所示,设扇形内切圆的半径为x ,扇形所在圆的半径为r , 过点O 作OD CD ⊥, 在直角CDO 中,可得2sin 30ODCO x ==,所以扇形的半径为23r x x x =+=, 又由扇形的弧长公式,可得343x ππ⨯=,解得4x =,即扇形的内切圆的半径等于4. 故选:B.6.(2021·安徽合肥市·合肥一中高三其他模拟(文))已知顶点在原点的锐角α,始边在x 轴的非负半轴,始终绕原点逆时针转过3π后交单位圆于1(,)3P y -,则sin α的值为( )A .6B C .16D .16【答案】B 【解析】根据任意角的三角函数的定义求出1cos()33πα+=-,然后凑角结合两角差的正弦公式求出sin α. 【详解】由题意得1cos()33πα+=-(α为锐角) ∵α为锐角,∴5336πππα,∴sin()03πα+>sin()sin sin ()3333πππααα⎡⎤⇒+=⇒=+-⎢⎥⎣⎦1132326⎛⎫=⨯--⨯=⎪⎝⎭ 故选:B7.(2020·安徽高三其他模拟(文))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边经过点A (1,-3),则tan()4πα+=( )A .12B .12-C .1D .-1【解析】根据终边上的点求出tan 3α=-,再结合正切和公式求解即可. 【详解】由题知tan 3α=-,则tan tan3114tan()41321tan tan 4παπαπα+-++===-+-. 故选:B8.(2021·合肥一六八中学高三其他模拟(理))已知顶点在原点,始边在x 轴非负半轴的锐角α绕原点逆时针转π3后,终边交单位圆于P x ⎛ ⎝⎭,则sin α的值为( ) ABCD. 【答案】C 【解析】设锐角α绕原点逆时针转π3后得角β,由2113x +=,则x =,分x 的值结合三角函数的定义,求解即可,根据条件进行取舍. 【详解】设锐角α绕原点逆时针转π3后得角β,则3πβα=+,由α为锐角, 根据题意角β终边交单位圆于,3P x ⎛ ⎝⎭,则2113x +=,则3x =±若3x =,则sin ,cos 33ββ==所以sin sin sin cos cos sin 03336πππαβββ⎛⎫=-=-=< ⎪⎝⎭,与α为锐角不符合.若x =,则sin ββ==所以sin sin sin cos cos sin 0333πππαβββ⎛⎫=-=-=> ⎪⎝⎭,满足条件.9.(2021·安徽宣城市·高三二模(文))刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想.运用此思想,当π取3.1416时,可得sin 2︒的近似值为( )A .0.00873B .0.01745C .0.02618D .0.03491【答案】D 【解析】由圆的垂径定理,求得2sin 2AB =︒,根据扇形对应的弦长之和近似于单位圆的周长,列出方程,即可求解. 【详解】将一个单位圆分成90个扇形,则每个扇形的圆心角度数均为4︒由圆的垂径定理,可得每个圆心角所对的弦长221sin 22sin 2AB AC ==⨯⨯︒=︒, 因为这90个扇形对应的弦长之和近似于单位圆的周长, 所以9021sin 2180sin 22π⨯⨯⨯︒=︒≈, 所以22 3.1416sin 20.03491180180π⨯︒≈=≈. 故选:D .10.(2021·江苏南通市·高三其他模拟)某设计师为天文馆设计科普宣传图片,其中有一款设计图如图所示.QRT 是一个以点O 为圆心、QT 长为直径的半圆,QT =.QST 的圆心为P ,2dm PQ PT ==.QRT与QST 所围的灰色区域QRTSQ 即为某天所见的月亮形状,则该月亮形状的面积为___________2dm .6π 【解析】连接PO ,可得PO QT ⊥,求出23QPT π∠=,利用割补法即可求出月牙的面积. 【详解】解:连接PO ,可得PO QT ⊥,因为sin 2QO QPO PQ ∠==, 所以3QPO π∠=,23QPT π∠=,所以月牙的面积为2221121(21)dm 22326S πππ=⨯⨯-⨯⨯-⨯=.6π.1.(全国高考真题)已知角α的终边经过点(−4,3),则cosα=( )A .45B .35C .−35D .−45 练真题【答案】D【解析】由题意可知x=-4,y=3,r=5,所以cosα=x r =−45.故选D. 2.(2020·全国高考真题(理))若α为第四象限角,则( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0 【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.3.(2015·上海高考真题(文))已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ). A . B . C . D .【答案】D【解析】由题意,设OA 与x 轴所成的角为,显然,,故,故纵坐标为4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1 , a),B(2 , b),且cos2α=23,则|a −b |= A .15 B .√55 C .2√55D .1 【答案】B【解析】由O,A,B 三点共线,从而得到b =2a ,因为cos2α=2cos 2α−1=2⋅(√a 2+1)2−1=23, 解得a 2=15,即|a |=√55, 所以|a −b |=|a −2a |=√55,故选B.5.(2017·北京高考真题(理))在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则()cos αβ-=___________. 【答案】79- 【解析】因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 6.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___. 【答案】512π(满足5,12k k Z πθπ=+∈即可) 【解析】根据,P Q 在单位圆上,可得,6πθθ+关于y 轴对称,得出2,6k k Z πθθππ++=+∈求解. 【详解】(cos ,sin )P θθ与cos ,sin66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称, 即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈, 则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可).。
2020-2021学年第一学期高中数学新教材必修第一册苏教版第七章第3课时 任意角的三角函数(1)

第3课时任意角的三角函数(1)一、学习目标1.掌握任意角的正弦、余弦、正切的定义.2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号.二、问题导引预习教材P166——170的内容,思考下面的问题.在前面的学习中,我们在初中角的基础上将角的概念进行了推广,得到了任意角的概念,另外,还学习了角的另一种度量方法——弧度制.在初中学习了锐角后,我们研究了锐角的三角函数,现在,学习了任意角,那么我们能研究任意角的三角函数吗?如果能,又该如何研究呢?能通过锐角的三角函数来研究任意角的三角函数吗?三、即时体验1.填表:角正弦余弦正切2.已知角α的终边过点P(-3, 4),则sinα=, cosα=, tanα=.3.角-1328°的正弦值、余弦值、正切值的符号分别是、、.四、导学过程类型1由角的终边上的点求三角函数值【例1】已知角α的终边经过点P(2, -5),求α的正弦值、余弦值、正切值.类型2三角函数值的符号的判定【例2】确定下列三角函数值的符号:(1) cos; (2) sin(-565°); (3) tan.类型3由三角函数值求角的终边上的点的坐标【例3】已知角θ的顶点为坐标原点,始边为x轴的正半轴,若P(4, y)是角θ终边上一点, 且sinθ=-,求y的值.五、课堂练习1. (多选)若sinθcosθ<0,则角θ的终边在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若<θ<π,则点P(cosθ, sinθ)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知角α的终边经过点P(5, 12),则sinα+cosα=.4. sin1 cos2 tan3值的符号是.5.已知角α的终边经过点P(5t, 12t)(t≠0),求sinα+cosα的值.六、课后作业1. 若-<θ<-π,则点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若角α的终边过点P(2sin30°, -2cos30°),则sinα的值等于 ()A. B. - C. - D. -3.若sinαcosα>0, cosαtanα<0,则角α的终边落在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. (多选)已知θ是第二象限角,则下列判断中正确的是()A. sin cos>0B. sin<0C. cos<0D. tan>05.已知角α的终边经过点P,则sinα=, tanα=.6. sin cos tan的值的符号是(填“正”或“负”).7. 已知角α的终边落在射线y=2x(x≥0)上,那么sinα·cosα=.8.设是第一象限角,且|cosα|=-cosα,则α可能是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. (多选)函数y=++的可能取值为()A. -3B. -1C. 1D. 310.已知角θ的终边过点P(x, 3)(x≠0),且cosθ=x,那么tanθ=.11.若角α的终边过点P(-4m, 3m)(m≠0),求2sinα+cosα的值.12.已知角α的终边在直线y=kx上,若sinα=-,且cosα<0,试求k的值.13.已知角α的终边上一点P到x轴、y轴的距离之比为4∶3,且cosα<0,求cosα-sinα的值.。
高中数学第一章知识点总结及典型例题

高中数学必修四 第一章知识点归纳第一:任意角的三角函数一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边相同的角的集合}{|2,k k z ββπα=+∈ ,弧度制,弧度与角度的换算,弧长l r α=、扇形面积21122s lr r α==,二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切xya =tan ,它们都是以角为自变量,以比值为函数值的函数。
三:同角三角函数的关系式与诱导公式: 1.平方关系:22sin cos 1αα+=2. 商数关系:sin tan cos ααα=3.诱导公式——口诀:奇变偶不变,符号看象限。
正弦 余弦正切第二、三角函数图象和性质 基础知识:1、三角函数图像和性质1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyx解析式 y=sinxy=cosxtan y x =定义域值域和最值y ∈ 当x = ,1y 取最小值-当x = ,1y 取最大值y ∈当x = ,1y 取最小值-当x = ,1y 取最大值y ∈无最值周期性 π2=Tπ2=Tπ=T奇偶性奇函数 偶函数奇函数单调性在[]2222ππππ+-k k ,k Z ∈上是增函数在[]23222ππππ++k k ,k Z ∈上是减函数 在[]πππk k 22,-k Z ∈上是增函数在 []πππ+k k 22,k Z ∈上是减函数在⎪⎭⎫⎝⎛+-2,2ππππk k k Z ∈上为增函数对称性对称中心(,0) k k Z π∈对称轴方程2x k ππ=+,k Z ∈对称中心2(,0)k ππ+ k Z ∈对称轴方程x k π= , k Z ∈对称中心(,0) k k Z π∈ 或者 对称中心2(,0)k ππ+k Z ∈2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作sin()y A x ωϕ=+简图:五点分别为:、 、 、 、 。
高中数学第一章三角函数1.2.1任意角的三角函数(1)课时提升作业1新人教A版必修4

任意角的三角函数(一)(15分钟30分)一、选择题(每小题4分,共12分)1。
求值sin750°=( )A。
- B. — C.D。
【解析】选C.sin 750°= sin(2×360°+ 30°)=sin 30°=。
2.(2015·晋江高一检测)如果角θ的终边经过点(,-1),那么cosθ的值是( )A.—B。
- C. D.【解析】选C。
点(,-1)到原点的距离r==2,所以cosθ=.【延伸探究】将本题中点的坐标改为(—1,),求sinθ-cosθ。
【解析】点(-1,)到原点的距离r==2,所以sinθ=,cosθ=-,所以sinθ-cosθ=—=。
3.(2015·北京高一检测)已知α∈(0,2π),且sinα<0,cosα〉0,则角α的取值范围是( )A。
B.C. D.【解析】选D。
因为sinα〈0,cosα〉0,所以角α是第四象限角,又α∈(0,2π),所以α∈.二、填空题(每小题4分,共8分)4。
求值:cosπ+tan=______【解析】cosπ=cos=cos=,tan=tan=tan=,所以cosπ+tan=+.答案:+5.(2015·南通高一检测)若角135°的终边上有一点(—4,a),则a的值是________.【解析】因为角135°的终边与单位圆交点的坐标为,所以tan 135°==-1,又因为点(—4,a)在角135°的终边上,所以tan 135°=,所以=-1,所以a=4.答案:4【补偿训练】如果角α的终边过点P(2sin 30°,—2cos 30°),则cosα的值等于________。
【解析】2sin 30°=1,—2cos 30°=—,所以r=2,所以cosα=.答案:三、解答题6.(10分)判断下列各式的符号.(1)sinα·cosα(其中α是第二象限角)。
《任意角的三角函数》知识点总结及典型例题

任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。
(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。
集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。
(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。
②角的集合表示形式是不唯一的。
要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。
要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。
区域角是无数个区间角的集合。
注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。
考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。
(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。
第5章-5.2.1-任意角三角函数的定义高中数学必修第一册湘教版

+ 2
2
3
cos sin = ± .
4
1
− ,
2
=−
= 1,解得 = ±
3
,即cos
2
3
,即sin
2
=
=±
1
1
− .因为点 ,
2
2
3
,所以
2
在单
题型2 三角函数值的符号的判断
例7 判断下列各式的符号:
(1)tan 120∘ sin 269∘ ;
【解析】∵ 120∘ 是第二象限角,∴ tan 120∘ < 0.
方法帮丨关键能力构建
题型1 利用定义求三角函数值
例4 已知角 的终边经过点 2, −3 ,则sin
−
____.
−
=_______,cos
=_____,tan
=
【解析】因为 = 2, = −3,所以点到原点的距离 =
sin =
=
−3
13
=
3 13
(2)tan >
3
.
3
【解析】如图5.2.1-8,过单位圆与轴正半轴的交点作轴的
3
,过点和作一条直线,
3
3
此时终边落在直线上的角的正切值为 .在[0,2π)内,
3
π
7π
3
tan = tan = ,
6
6
3
垂线,在垂线上取一点,使得 =
由图可知,满足条件的角的终边在图中阴影部分(不包括边
π
由题意,知−
2
D.sin 2 < 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学新课标典型例题:任意角的三角函数 1
例1下列说法中,正确的是
[ ] A.第一象限的角是锐角
B.锐角是第一象限的角
C.小于90°的角是锐角
D.0°到90°的角是第一象限的角
【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清
楚这些概念及它们之间的区别,是正确解答本题的关键.
【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B).
(90°-α)分别是第几象限角?
【分析】由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的
【解】(1)由题设可知α是第二象限的角,即
90°+k·360°<α<180°+k·360°(k∈Z),
的角.
(2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角.
(3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z),
所以-180°-k·360°<-α<-90°-k·360°(k∈Z).
故-90°-k·360°<90°-α<-k·360°(k∈Z).
因此90°-α是第四象限的角.
解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.
将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内.
【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;
②确定象限时,α+kπ与α-kπ是等效的.
例3已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间
[ ]
【分析】解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函
数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数
线判断.用代入特殊值排除错误答案的方法解答本题也比较容易.
【解法一】由正、余弦函数的性质,
【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当
应选(A).
可排除(C),(D),得(A).
【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,
可自己练习.
例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;
【分析】利用三角函数的定义进行三角式的求值、化简和证明,是
三两个象限,因此必须分两种情况讨论.
【解】(1)因为x=3k,y=-4k,
例5一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.
【分析】解答本题,需灵活运用弧度制下的求弧长和求面积公式.本题是求扇形面积的最大值,因此应想法写出面积S以半径r为自变量的函数表达式,再用配方法求出
半径r和已知周长l的关系.
【解】设扇形面积为S,半径为r,圆心角为α,则扇形弧长为l-2r.所以
【说明】在学习弧度制以后,用弧度制表示的求弧长与扇形面积公
形的问题中,中心角用弧度表示较方便.本例实际上推导出一个重要公式,即当扇形周长为定值时,怎样选取中心角可使面积得到最大值.本题也可将面积表示为α的函数式,用判别式来解.
【分析】第(1)小题因α在第二象限,因此只有一组解;第(2)小题给了正弦函数值,但没有确定角α的象限,因此有两组解;第(3)小题角α可能在四个象限或是轴线角,因此需分两种情况讨论.
【解】
(3)因为sinα=m(|m|<1),所以α可能在四个象限或α的终边在x轴上.
例7(1)已知 tanα=m,求sinα的值;
【分析】(1)已知tanα的值求sinα或cosα,一般可将tanα
母都是sinα和cosα的同次式,再转化为关于tanα的式子求值,转化的方法是将分子、分母同除以cosα(或cos2α,这里cosα≠0),即可根据已知条件求值.
【说明】由tanα的值求sinα和cosα的值,有一些书上利用公
很容易推出,所以不用专门推导和记忆这些公式,这类问题由现有的关系式和方法均可解决.
函数的定义来证明.
由左边=右边,所以原式成立.
【证法三】(根据三角函数定义)
设P(x,y)是角α终边上的任意一点,则
左边=左边,故等式成立.
例9化简或求值:
【分析】解本题的关键是熟练地应用正、余弦的诱导公式和记住特殊角的三角函数值.
=-sinα-cosα(因为α为第三象限角).
例10 (1)若 f(cos x)=cos9x,求f(sin x)的表达式;
【分析】在(1)中理解函数符号的含义,并将f(sin x)化成f(cos(90°-x))是充分利用已知条件和诱导公式的关键.在(2)中必须正确掌握分段函数求值的方法.
【解】(1)f(sin x)=f(cos(90°-x))=cos9(90°-x)
=cos(2×360°+90°-9x)=cos(90°-9x)
=sin9x;
=1.。