初三数学中考数学专题讲义复习资料归纳第17讲 反比例函数的图象与性质
中考考点反比例函数的定义反比例函数像的性质与变化规律

中考考点反比例函数的定义反比例函数像的性质与变化规律反比例函数是数学中的一个重要概念,也是中考数学考试的一个重要考点。
它具有独特的定义和性质,同时在实际问题中有着广泛的应用。
本文将对反比例函数的定义、性质以及变化规律进行详细阐述。
一、反比例函数的定义反比例函数是指具有形如y=k/x的函数关系的数学函数。
其中,k 是一个常数,并且x≠0。
例如,y=3/x就是一个简单的反比例函数。
当x取不同的值时,y的值会产生相应的变化。
在反比例函数中,x的值为0时,y的值无定义。
这是因为在数学中,除数不能为0。
因此,反比例函数的定义域为x≠0,值域为y≠0。
二、反比例函数的性质反比例函数具有以下几个重要的性质:1. 过原点:反比例函数的图像一定经过坐标原点(0,0)。
这是因为当x取0时,y的值无论为何都是无意义的。
2. 零点:反比例函数在定义域中,存在一个特殊的点使得函数值为0。
该点称为反比例函数的零点。
对于y=k/x的反比例函数来说,当x=k时,y=0。
3. 单调性:反比例函数在其定义域内是单调的。
当x1<x2时,对应的y1和y2之间存在着y1>y2的关系。
4. 变化趋势:反比例函数的图像可以是一个倾斜的曲线。
当x的值增大时,y的值会逐渐减小;当x的值减小时,y的值会逐渐增大。
5. 图像形态:反比例函数的图像一般是一个双曲线。
它在坐标平面上的形态取决于k的正负和绝对值大小。
三、反比例函数的变化规律反比例函数在实际问题中具有一定的变化规律。
以“速度与时间的关系”为例,假设一个运动物体在匀速直线运动中,其行驶距离与时间的关系可以表示为y=d/t,其中,d为距离,t为时间。
可以看出,该关系符合反比例函数的形式。
根据反比例函数的特性,在运动过程中,当时间逐渐增加时,物体所行驶的距离会逐渐减小,即速度会逐渐减小。
反之,当时间逐渐减小时,物体所行驶的距离会逐渐增加,即速度会逐渐增大。
这与我们常规的观察和经验是一致的。
初三数学反比例函数知识点归纳

初三数学反比例函数知识点归纳
反比例函数是指函数的变量之间的关系满足倒数的关系。
1. 反比例函数的定义:如果函数y=k/x,其中k是一个非零常数,x≠0,则y与x的关系是反比例关系,称为反比例函数。
2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形状,即一个双曲线。
曲线在第一象限和第三象限分别向无穷大和无穷小逼近,且过原点。
3. 反比例函数的性质:
- 当x逐渐增大(或减小)时,y逐渐减小(或增大)。
- 当x=0时,函数无定义。
- 当y=k/x中的k为正数时,函数在第一象限、第三象限为正值;当k为负数时,函数在第二象限、第四象限为负值。
- 反比例函数的图像关于y轴和x轴对称。
4. 反比例函数的图像特征:
- 具有一个渐进线,即曲线在接近y轴和x轴时,趋于无穷大或无穷小。
- 曲线在x轴和y轴上有渐进截距。
- 曲线在y轴上有一个渐近良好的对称轴。
5. 反比例函数的应用:
- 反比例函数常用于描述两个变量的关系,如速度与时间、产量与工人、密度与体积等。
- 反比例函数也可以用来解决实际问题中的问题,如求出满足特定条件的变量值。
总结起来,反比例函数是数学中一种特殊的函数形式,其定义和性质都与倒数有关,反比例函数的图像呈现出一种特殊的形
状,具有特定的渐进线和渐近截距,常用于描述两个变量的关系和解决实际问题。
初三反比例函数知识点

初三反比例函数知识点反比例函数是数学中的一种特殊函数,也称为倒数函数。
初三学习反比例函数是为了帮助学生更好地理解函数关系及其图像,在解决实际问题中的应用也非常广泛。
本文将从反比例函数的定义、性质、图像及实际应用等方面进行详细介绍。
一、反比例函数的定义和性质反比例函数是指一个函数与其自变量的乘积为常数的函数。
通常用符号y=k/x表示,其中k为常数。
1. 定义:反比例函数可以定义为y=k/x,其中k为常数,x≠0。
2. 性质:反比例函数的一个重要性质是其定义域和值域都不包括0。
因为当x=0时,函数值无意义,除数不能为0。
此外,反比例函数的图像一般是一个双曲线,具有一个垂直渐近线x=0和一个水平渐近线y=0。
二、反比例函数的图像反比例函数的图像是一个双曲线,在以原点为中心的坐标平面上对称分布。
其图像的特点如下:1. x轴和y轴:反比例函数的图像与x轴和y轴有关,当x趋近于无穷大或无穷小,y趋近于0;当y趋近于无穷大或无穷小,x趋近于0。
2. 渐近线:反比例函数有两条渐近线,水平渐近线和垂直渐近线。
水平渐近线表示y=0,x轴就是一个水平渐近线;垂直渐近线表示x=0,y轴就是一个垂直渐近线。
3. 对称性:反比例函数图像具有关于原点的对称性,即当(x, y)在图像上时,则(-x, -y)也在图像上。
三、反比例函数的实际应用反比例函数在实际生活中具有广泛的应用,特别是与数量关系有关的问题中常会涉及到反比例函数的应用。
1. 比例尺:反比例函数可以用来解决比例尺相关的问题。
比如,当地图缩小为原来的1/1000时,比例尺变为原来的1000倍。
2. 工作时间与工作效率:工作时间和工作效率之间通常存在反比例关系。
如果一项工作需要的时间越长,那么单位时间内的工作效率就会越低。
比如,甲乙两个人共同完成一项任务,甲需要10小时完成,乙需要5小时完成,乙的工作效率就是甲的两倍。
3. 电阻和电流关系:在电路中,电阻和电流之间往往存在反比例关系。
反比例函数的图像及性质

解题技巧归纳
判断函数类型
通过观察函数表达式,判断其是否为反比例 函数。
利用对称性
利用反比例函数图像的对称性,可以简化一 些复杂问题的求解过程。
分析图像特征
根据 $k$ 的正负判断双曲线所在的象限, 并理解其增减性。
结合其他知识点
在解题过程中,可能需要结合一次函数、二 次函数等其他知识点进行综合分析。
表达式
反比例函数的一般表达式为y=k/x( k≠0),其中k是比例系数,x是自变 量,y是因变量。
自变量取值范围
由于分母不能为0,因此反比例函数 的自变量x不能为0,即x的取值范围 是x≠0。
反比例函数的定义域是除去使分母为0 的点以外的所有实数。
函数值变化规律
当x>0时,随着x的增大,y的值逐渐减小,但永远不会等于0;当x<0时 ,随着x的减小,y的值逐渐增大,也永远不会等于0。
综合应用探讨
解决问题类型
反比例函数和一次函数在解决实际问题时具有广泛的应用。例如,反比例函数可用于描述速度、密度等物理量之间的 关系;一次函数则可用于描述线性增长或下降的问题,如直线运动、均匀变化等。
建模方法
在建立反比例函数和一次函数的模型时,需要根据问题的实际背景和条件,确定函数的表达式和参数。通过比较和分 析不同函数的图像和性质,可以选择最合适的函数模型来描述问题的本质和规律。
反比例函数的图像及性质
汇报人:XXX 2024-01-22
contents
目录
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数应用举例 • 反比例函数与一次函数比较 • 总结回顾与拓展延伸
01
反比例函数基本概念
定义与表达式
反比例函数反比例函数的图象与性质

2023-11-06
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数 。
反比例函数的积分特性
反比例函数在区间(-∞,0)和(0,+∞) 上的积分等于常数k。
VS
反比例函数在区间(-∞,x)和(x,+∞)上 的积分等于常数k乘以x。
04
反比例函数的应用
用反比例函数解决实际问题
电力分布
在电力分布问题中,常常 需要使用反比例函数来计 算电力的分布情况,以便 合理规划电力设施。
反比例函数的定义域和值域
定义域为{x|x≠0},值域为{y|y≠0}。
反比例函数的单调性
在区间(-∞,0)和(0,∞)上单调递减。
反比例函数的基本形式
反比例函数的基本形式
01
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。Biblioteka 反比例函数的解析式02
反比例函数通常被表示为y = k / x的形式,其中k是常数且不
热传导
在热传导中,可以使用反比例函数 来描述热量在介质中的传导规律。
在几何中的应用
圆的面积
在计算圆的面积时,可以使用 反比例函数来描述圆的面积与
半径之间的关系。
球的体积
在计算球的体积时,可以使用 反比例函数来描述球的体积与
半径之间的关系。
光线反射
在光线反射问题中,可以使用 反比例函数来描述光线反射的
最新九年级反比例函数经典复习资料

九年级反比例函数经典复习资料知识梳理知识点1.反比例函数的概念一般地,如果两个变量X、y之间的关系可以表示成“上或y二k* (k为常X 数,kHO)的形式,那么称y是x的反比例函数。
反比例函数的概念需注意以下儿点:(1)k是常数,且k不为零;(2)£中分母x的指数为1,如y = 4不是反x •比例函数。
(3)自变量x的取值范围是XH O—切实数.(4)自变量y的取值范围是y = 0一切实数。
知识点2.反比例函数的图象及性质反比例函数y =上的图象是双曲线,它有两个分支,这两个分支分别位于第一、X三象限或第二、■四象限。
它们关于原点对称、反比例函数的图象与X轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范圉是XH O,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。
反比例函数的性质y = -(k^O)的变形形式为xy=k (常数)所以:X(1)其图象的位置是:当k>0时,x、y同号,图象在第一、三象限;当kvO时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y =上的图象上,则点(-m,-n)也在此图象上,X故反比例函数的图象关于原点对称。
(3)当k>0时,在每个象限内,y随x的增大而减小;当kvO时,在每个象限内,y随x的增大而增大;知识点3.反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定难点:山条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式y =-中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只X 需给出一组X、y的对应值或图象上点的坐标,代入y =上中即可求出k的值,从而确定反比例函数的关系式。
初三反比例函数知识点

初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。
2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。
3. 对称性:反比例函数的图象关于原点对称。
三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。
2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。
3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。
四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。
五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。
2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。
六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。
2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。
七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。
八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。
2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。
九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。
九年及数学中考专题(数与代数)-第十七讲《-反比例函数(1)》课件(北师大版)

7的.图在y象平上面2x的直一角上点坐,分标则别系m作=内x、,y从轴反的比.垂例线函段数,y与xkx、(ky轴 0所) 围成的矩形面积是12,那么该函数解析式是 .
五.能力训练
(三)解答题
8. (2005·徐州)已知函数y=y1+y2,y1与x成正比例, y2与x反比例,且当x =1时,y=-1;当x=3时,y=5.求 y关于x的函数关系式. 9. (2005·南通)一定质量的氧气,它的密度ρ (kg/m3)是它的体积V(m3)的反比例函数,当 V求ρ与V的函数关系式;
第十七讲 反比例函数的图象与性质
一.课标链接
反比例函数的图象与性质 反比例函数是初中数学中第二类基本
函数,是数形结合知识的典型之一,与分式 和分式方程联系紧密.理解掌握反比例函数 的意义、解析式的特征,明确图象及性质, 能够确定反比例函数的解析式,能够正确运 用反比例函数的知识解决相关问题,是中考 的测试要点之一.题型有填空、选择与解答 题,其中以填空、选择题居多.
(2)求当V=2m3时氧气的密度ρ.
五.能力训练
(三)解答题 10.(2006·徐州)如图,一次函数 y=kx+b 的图 象与反比例函数 y m 的图象交于A(-2, 1),B(1,n)两点. x (1)求反比例函数和一 次函数的表达式; (2)根据图象写出使一 次函数的值大于反比例 函数的值时x 的取值范围.
三.知识要点
2.反比例函数图象和性质: 双曲线的两个分支都与 x 轴、y 轴无限
接近,但永远不能与两轴相交. 双曲线是关于原点对称的中心对称图形,
也是关于直线y=x(k>0)或y=-x(k<0)对称 的轴对称图形.
随着社会上的就业压力越来越大,很多大学生想要找一份合适的工作都非常的困难。这样一来就导致了只要有某一家用人单位将招聘通知发布出来,就会有大量的求职者前去投递个人简历。这样 得很多的人才被埋没了。 社会上的就业压力如此之大,我们所看到的每一份好工作,都会有大量的求职者和我们竞争。这个时候就要求我们在填写个人简历的时候一定要将自己所有能够展示的填写到个人简历中去,这样 公司更加的了解我们,感受到我们就是他们公司所需要的人才。但是很多求职者认为在个人简历中很多都是没有用途的栏目,也就忽略不写了,其中最容易被求职者忽略的就是政治面貌那一栏了 有很多求职者只是团员的身份,然后就觉得这种政治面貌填不填的又喝工作没有什么太大的关系,又不是员写了也没有用,于是就将政治面貌给忽略掉了。很多人都知道个人简历的填写中要注意 的突出,而如何突出个人的能力呢?就是要将自己所有的正面信息全部的透露给公司,让公司对你的印象全部都是正面的。如果你将政治面貌这一栏给忽略了的话,公司就会认为你这个人连团员 就说明你在学校中不积极的参与学校组织的各种活动,这样一来就会给公司留下了一个不好的印象。 因此在填写个人简历的时候千万不要将政治面貌这一栏给忽略掉,即使你只是一个小小的团员,也要写进去。不为了工作的需要,而是为了不给公司留下你一点的污点。 美术教育加盟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17讲 反比例函数的图象与性质考点·方法·破译1.反比例函数的定义:形如k y x=(或1y kx -=,k ≠0),y 叫做x 的反比例函数. 2.反比例函数的图象特征:反比例函数的图象是双曲线,关于y =x 或y =-x 轴对称,关于原点O 成中心对称,当k >0时,图象的两支分别在第一、三象限,当k <0时,图象的两支分别在第二、四象限,3.反比例函数的性质:当k >0时,在每个象限内,y 随x增大而减小;当k <0时,在每个象限内,y 随x 增大而增大.经典·考题·赏析【例1】(西宁)已知函数ky x=-中,x >0时,y 随x 增大而增大,则y =kx -k 的大致图象为()而一 次函数y A. 01.x,则一次函数y =-ax +a 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 02.(龙岩)函数y =x +m 与my x=(m ≠0)在同一象限内的图象可以是( (2,2);②x 的增大而增大,y 2【例2】如图,A 、B 分别是反比例函数10y x =,6y x=图象上的点,过点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OB 、OA ,OA 交BD 于E点,△BOE 的面积为S 1,四边形ACDE 的面积为S 2,则S 2-S 1= .【解法指导】在反比例函数ky x=中,k 的几何意义为: A BC D AB C DOABC S k =长方形,或2ABO k S ∆=. 题中122121106()()22222ODE OBE k k S S S S S S ∆∆-=+-+=-=-= 【变式题组】01.(宁波)如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .-2 C .4 D .-402.(兰州)如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小yx A .S =2 B .S =4 C .2<S <4 D .S >4 05.(泰安)如图,双曲线ky x=(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为( ) A .1y x =B . 2y x =C . 3y x =D .6y x= 【例3】(成都)如图,一次函数y =kx +b 的图象与反比例函数my x=的图象交于点A (-2,1),B (1,n )两点 ⑴试确定上述反比例函数和一次函数的表达式; ⑵求△AOB 的面积.【解法指导】利用割补法求图形面积. 解:⑴∵点A (-2,1)在反比例函数my x=的图象上, ∴m =(-2)×1=-2,∴反比例函数的表达式为2y x=-. ∵点 B (1,n )也在反比例函数2y x=-图象上,∴n =-2,即B (1,-2) 把点A (-2,1)点B (1,-2)代入一次函数y =kx +b 中,得212k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩ ∴一次函数的表达式为y =-x -1. 第1题图 第2题图 第3题图第4题图第5题图⑵在y =-x -1中,当y =0时,得x =-1,∴直线y =-x -1与x 轴的交点为C (-1,0),∵线段OC 将△AOB 分成△AOC 和△BOC ,∴1113111212222AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=+=.【变式题组】01.(徐州)如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点,直线AB 与y 轴交于点C. ⑴求反比例函数和一次函数的关系式; ⑵求△AOC 的面积; ⑶求不等式kx +b mx-<0的解集(直接写出答案)02.已知反比例函数112k y x =的图象与一次函数22y k x b =+的图象交于A 、B 点,A (1,n ),B (12-,-2).⑴求两函数的解析式;⑵在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,请你直接写出P 点的坐标;若不存在,说明理由. ⑶求AOB △S ;⑷若y 1>y 2,求x 的取值范围.03.如图,A 是反比例函数1ky x=(x >0)上一点,AB ⊥x 轴,C 是OB 的中点,一次函数y 2=ax +b 的图象经过点A 、C 两点,并交y 轴为D (0,-2),AOD S ∆=4. ⑴求两函数的解析式;⑵在y 轴右侧,若y 1>y 2时,求x 的取值范围.04.如图,Rt △ABO 的顶点A 是双曲线ky x=与直线y =-x -(k +1)在第二象限的交点,AB ⊥x 轴于B ,32ABO S ∆=. ⑴求这两个函数的解析式; ⑵求A 、C 两点的坐标;⑶若P 是y 轴上一动点,5PAC S ∆=,求点P 的坐标.【例4】(咸宁)两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确的序号都填上)【解法指导】∵A 、B 两点在1y x=的图象上,根 据反比例函数ky x=中k 的几何意义可知12ODB OAC S S ∆∆==,因而①正确;∵1ODB OAC PDOC PAOB S S S S k ∆∆=--=-矩形四边形,当k 不变时,若P 变动,而四边形PAOB 的面积不变.因而是②正确;若设P (t ,k t ),则A (t ,1t),B (,t k k t ),∴PA =11k k t t t --=,PB =t t k -.若PA =PB ,则有1(1)k t k t k--=.∵k ≠1,∴2t k =,∵t >0,t =,∴当P时,有PA =PB ,并不是PA 与PB 始终相等,因而③不正确;当A 为PC 的中点时,OAC OPA OBD S S S ∆∆∆==,OPC ODP S S ∆∆=,∴ODB OPB S S ∆∆=,∴DB =PB ,因而④正确;故填1x =①,②.④.【变式题组】01.(武汉)如图,已知双曲线ky x=(k >0)经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k = .02.如图,矩形ABCD 对角线BD 中点E 与A 都在反比例函数ky x=的图象上,且3ABCD S =矩形,则k = .03.如图,P 为x 轴正半轴上一点,过点P 作x 轴的垂线,交函数1y x =(x >0)的图象于点A ,交函数4y x =(x >0)的图象于点B ,过点B 作x 轴的平行线,交1y x=(x >0)于点C ,连接AC ,当点P 的坐标为(t ,0)时,△ABC 的面积是否随t 的变化而变化? 04.函数2y x =(x >0)与8y x=(x >0)的图象如图所示,直线x = t (t >0)分别与两个函数图象交于A 、C 两点,经过A 、C 分别作x 轴的平行线,交两个函数图象于B 、D 两点,探索线段AB与CD 的比值是否与t 有关,请说明理由.第1题图第3题图05.如图,梯形AOBC 的顶点A 、C 有反比例函数的图象上,OA ∥BC ,上底OA 在直线y =x 上,下底BC 交x 轴于E (2,0),求四边形AOEC 的面积.演练巩固·反馈提高01.(恩施自治州)如图,一次函数y 1=x -1与反比例函数22y x=的图象点A (2,1)、B (-1,-2),则使y 1>y 2的x 的取值范围是( )A .x >2 B. x >2或-1<x <0 C. -1<x <2 D. x >2或x <-102.(常州)若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-303.(荆州)如图,直线l 是经过点(1,0)且与y 轴平行的直线,Rt △ABC 中直角边AC =4,BC =3,将BC边在直线l 上滑动,使A 、B 在函数ky x=的图象上,那么k 的值是( ) A.3 B.6 C.12 D.154 04.(丽水)点P 在反比例函数1y x=(x >0)的图象上,且横坐标为2,若将点P 先向右平移两个单位,再向上平移一个单位后所得点为P /,则在第一象限内,经过点P /的反比例函数图象的解析式是( ) A. 5y x =-(x >0) B. 5y x =(x >0) C. 6y x =-(x >0) D. 6y x=(x >0) 05.(铁岭)如图所示,反比例函数y 1与正比例函数y 2的图象的一个交点坐标是A (2,1),若y 2>y 1>0,则x的取值范围在数轴上表示为( )06.(泰安)函数1y xx=+图象如图所示,下列对该函数性质的论断不可能正确的是( )A.该函数的图象是中心对称图形B.当x>0时,该函数在x=1时取得上值2C.在每个象限内,y随x的增大而减小D.y的值不可能为107.(芜湖)在平面直角坐标系xOy中,直线y=x向上平移一个单位长度得到直线l, 直线l与反比例函数kyx=的图象的一个交点为A(a,2)则k的值等于.08.(广安)如图,在反比例函数4yx=-(x>0)的图象上有三点P1、P2、P3,它们的横坐标依次为1,2,3,分别过这3个点作x轴、y轴的垂线,设斩中阴影部分的面积依次为S1、S2、S3,则S1+S2+S3=.09.(十堰)已知函数y=-x+1的图象与x轴、y轴分别交于点C、B,与双曲线kyx=交于点A、D,若AB+CD=BC,则k的值为.10.(遵义)如图,在平面直角坐标系中,函数kyx=(x>0,常数k>0)的图象经过点A(1,2),B(m,n),(m>1),过点B作y轴的垂线,垂足为C,若△ABC的面积为2,则点B的坐标为.11.如图,点P的坐标为(2,32),过点P作x轴的平行线交y轴于点A,交双曲线kyx=(x>0)于点N,作PM⊥AN,交双曲线于kyx=(x>0)于点M.连接AM,已知PN=4,⑴求k的值;⑵求△APM的面积.A B C D第5题图第3题图第6题图第8题图12.如图,反比例函数kyx=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标3,D、C为反比例函数图象上的两点,且AD、BC平行于y轴,⑴直接写出k、m的值;⑵求梯形ABCD的面积.13.如图,已知双曲线kyx=(x>0)经过Rt△OAB斜边的中点D,与直角边AB相交于点C,若△OBC的面积为3,求k的值.14.如图,Rt△ABC的直角边BC在x轴的正半轴上,斜边AC边上的中线BD反向延长交y轴负半轴于E,双曲线kyx=(x>0)的图象经过点A,若BECS∆=8,求k的值.15.如图,Rt△ABC中,∠BAC=90°,BC所在直线的解析式为42033y x=-+,AC=3,若AB的D在双曲线ayx=(x>0)上,将三角形向左平移,当点B落在双曲线上时,求三角形平移的距离.16.(荆州)如图,D 为反比例函数ky x=(k <0)图象上一点,过D 作DC ⊥y 轴于C ,DE ⊥x 轴于E ,一次函数y x m =-+与2y x =+的图象都经过点C ,与x 轴分别交于A 、B 两点,若梯形DCAE 有面积为4,求k 的值.17.(四川广安)如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于点A (-1,2)、点B (-4,n )⑴求一次函数和反比例函数的解析式; ⑵求△AOB 的面积.18.(河北省)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A 、C 分别在坐标,顶点B 的坐标为(4,2),过点D (0,3)和E (6,0)的直线分别与AB 、BC 交于点M 、N , ⑴求直线DE 的解析式和点M 的坐标;⑵若反比例函数my x=(x >0)的图象经过点M ,求该反比例例函数的解析式,并通过计算判断点N 是否在该函数的图象上? ⑶若反比例函数my x=(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.培优升级·奥赛检测01.如图,直线l 与反比例函数m y x =与ny x=(m >n >0)的图象分别交于点A 、B ,且直线l ∥x 轴,连接PA 、PB ,小芳与小丽同学针对△PAB 面积的讨论,有以下两种意见:小芳:点P 在x 轴上移动时,△PAB 的面积总保持不变; 小丽:当直线l 上下平移时,△PAB 的面积总保持不变; 那么,你认为她们的说法中( )A.只有小芳正确B.只有小丽正确C.两人都正确D.两人都不正确02.(南昌市八年级竞赛题)在函数21a y x+=-(a 为常数)的图象上有三点:(-1,y 1),(21,4y -),( 31,2y )则函数值y 1、y 2、y 3的大小关系是( ) A. y 1<y 2<y 3 B. y 3<y 2<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 303.(济南)如图,等腰直角三角形ABC 位于第一象限,AB =AC =2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x=(k ≠0)与△ABC 有交点,则k 的取值范围是( ) A.1<k <2 B.1≤k ≤3 C. 1≤k ≤4 D. 1≤k <404.(第十八届“希望杯”初二)直线l 交反比例函数y =的图象于点A ,交x 轴于点B ,点A 、B 与坐标原点O 构等边三角形,则直线l 的函数解析式为 05.(成都)如图,正方形OABC 的面积是4,点B 在反比例函数ky x=(k >0,x <0)的图象上,若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S ,则当S =m (m 为常数,且0<m <4)时,点R 的坐标是 .(用含m 的代数式表示)06.如图,已知直线12y x =与双曲线ky x=(k >0)交于A 点,且点A 的横坐标为4,若双曲线kyx=(k>0)上一点B的纵坐标为8,求△AOB的面积.07.(北京)如图,A、B两点在函数myx=(x>0)的图象上,⑴求m的值及直线AB的解析式;⑵如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中阴影部分(不包括边界)所含格点的个数.08.(温州)如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数myx=在第一象限的图象交于点C(1,6)点D(3,n).过点C作CE⊥y轴于E,过点D作DF⊥x轴于点F,⑴求m、n的值;⑵求直线AB的函数解析式;⑶求证:△AEC≌△DFB.09.如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数k y x =(k >0,x >0)的图象上,点P (m ,n )是函数k y x=(k >0,x >0)的图象上的任意一点,过点P 作x 轴、y 轴的垂线,垂足分别为E 、F ,并设在矩形OEPF 中和正方形OABC 不重合的部分面积为S .⑴求点B 的坐标和k 的值; ⑵当92S =时,求点P 的坐标; ⑶写出S 关于m 的函数关系式.10.如图,已知A (-6,n ),B (3,-4)是一次函数y =kx +b 的图象和反比例函数m y x =图象的两个交点,直线AB 与x 轴和y 轴的交点分别为C 、D.⑴求反比例函数和一次函数的解析式; ⑵求不等式m kx b x+-<0的解集(请直接写出答案); ⑶求证:AC =BD ;⑷若y 轴上有一动点P ,使得△PAB 的面积为18,求P 点的坐标.。