树与生成树
5_3树的概念和算法

定理.1(证明(3)(4))
Ⅱ、增加任何新边,得到一个且仅有一个回路
若在连通图T中加入新的边(ui,uj),则该边与T中ui到 uj的一条路构成一个回路,则该回路必是唯一的。 否则(即回路不唯一),若删去此新边,T中必有回 路,得出矛盾。
综述,T连通且e=v-1则T无回路但增加任何新边,得 到一个且仅有一个回路。
第 7页
定理.1(证明(2)(3))
(2) T无回路 且e=v-1 (3) T连通且e=v-1 证明(2)(3): 证明T连通: (反证法) 假设T有s个连通分支, 则每个连通分支都是连通无 回路即树, 所以 e=e1+e2+…+ es=(v1-1)+(v2-1)+…+(vs-1) =v1+v2+…+vs-s=v-s=v-1, 所以s=1,与s>1矛盾, 所以T连通。
第 6页
定理.1(证明(1)(2))
(1) 无回路的连通图 (2) T无回路且e=v-1 证明(1)(2): e=v-1(归纳法):
v=1时,e=0(平凡树)。 设vk-1时成立,即ek-1=vk-1-1。 当v=k时, 要证ek=vk-1。 因为无回路且连通,故至少有一边其一个端点u的度数为 1,设该边为(u,u*)。删除结点u,得到一个k-1个结点的 连通图T’,T’的边数e’=v’-1=(k-1)-1=k-2,于是将结点u 与边(u,v)加入图T’得到原图T,此时T的边数为e=e’+1=k2+1=k-1, 结点数v=v’+1=(k-1)+1=k,故e=v-1。 综上所述, T无回路且e=v-1。
离散数学中的图的树与生成树的计数

在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
离散数学中的生成树与生成树计数

离散数学是计算机科学中的重要学科,其中生成树是一个重要的概念。
在图论中,生成树是一棵树,它包含了图中的所有顶点,并且是由图边组成的无环连通子图。
生成树在图论中有着重要的应用,特别是在计算机网络、运筹学和电路设计等领域。
生成树的概念与基础就是组成它的边是有限的,并且连接图中的所有顶点,但没有形成圈回到起点。
生成树通常是用来描述一个系统的最小连接方式。
生成树可以应用于计算机网络的设计中,用于构建最小生成树算法,以便在网络中选择最小的数据传输路径。
此外,在运筹学中,生成树被用于求解最小生成树问题,即为一个加权图找到一棵包含所有顶点的生成树,使得树中边的权重之和最小。
在离散数学中,生成树计数是一个重要的研究分支。
生成树计数是指对给定图,计算其生成树的数目。
生成树计数的问题可以通过使用基于图论和组合数学的算法来解决。
通常,生成树计数的问题与相应图的特性和性质密切相关。
对于一个简单图来说,如果图中任意两点之间至少有一条边,那么该图一定存在生成树。
对于有 n 个顶点的连通图来说,它的生成树数量可以通过Cayley公式计算得到。
Cayley公式表明,一个有 n 个标号的顶点的完全图的生成树数量等于 n^(n-2)。
而对于非完全图,生成树的计数问题则较为困难。
在处理非完全图的生成树计数问题时,可以使用基于递归和动态规划的算法来解决。
一个常见的方法是使用Kirchhoff矩阵树定理,它将生成树计数的问题转化为计算矩阵的行列式的问题。
Kirchhoff矩阵树定理提供了一种计算给定图的生成树数目的有效算法,通过计算图的基尔霍夫矢量的一个特征值,可以得到图的生成树的数目。
另一个常见的方法是使用Prufer编码,它是一个用于描述无环连通图的序列。
通过Prufer编码,我们可以将计算生成树的问题转化为计数树的问题。
通过对无向图进行Prufer编码,我们可以计算出生成树的数目,并且可以根据生成树的数目来确定该无向图的种类和特征。
《离散数学》课件-第16章树

18
16.3 根树及其应用
19
定义(有向树)设D是有向图,如果D的基图是无向 树,则称D为有向树。
在有向树中最重要的是根树。 定义16.6(根树)一棵非平凡的有向树,如果恰有 一个顶点的入度为O,其余所有顶点的入度均为1,则称该 树为根树。 入度为0的顶点称为树根,入度为1出度为0的顶点称 为树叶,入度为1出度不为0的点称为内点,内点和树根统 称为分支点。 树根到一个顶点的有向通路的长度称为该顶点的层数。 层数最大顶点的层数称为树高。 平凡树也称为根树。
2
16.1 树及其性质
3
定义16.1(树和森林) 连通且无回路的无向图称为无向树,简称为树,常用
T表示树。 平凡图为树,称为平凡树。 非连通且每个连通分支是树的无向图称为森林。 T中度数为1的顶点(悬挂顶点)称为树叶,度数大于
1的顶点称为分支点。 称只有一个分支点,且分支点的度数为n-1的n(n≥3)
定义16.8(子树)设T为一棵根树,则其任一顶点v 及其后代导若将层数相同的顶点都 标定次序,则称T为有序树。
根据每个分支点的儿子数以及是否有序,可将根树 分成如下若干类:
定义(跟树分类)设T为一棵根树 (1)若T的每个分支点至多有r个儿子,则称T为r叉 树。又若r叉树是有序的,则称它为r叉有序树。 (2)若T的每个分支点恰好有r个儿子,则称T为r叉 正则树。又若r叉正则树是有序的,则称它为r叉正则有 序树。 (3)若T为r叉正则树,且每个树叶的层数均为树高, 则称T为r叉完全正则树。又若r叉完全正则树是有序的, 则称它为r叉完全正则有序树。
8
平均编码长度为:L = ∑ P( i )× l( i ) = 2.53bit i=1
生成树的名词解释

生成树的名词解释生成树(Spanning Tree)是图论中的一个重要概念,用来描述在一个无向连通图中连接所有顶点的极小连通子图。
在一个无向连通图中,如果能够找到一颗包含所有顶点且边数最少的子图,那么这个子图就是该图的生成树。
生成树的概念最早由Otto Schönflies于1885年提出,并且在图论研究和实际应用中得到了广泛的运用。
生成树在电网规划、通信网络设计、计算机网络以及城市交通规划等领域都有着重要的应用价值。
生成树的定义可以用简洁的方式表述:在一个无向连通图中,生成树是保留了原图的所有顶点,但只保留了足够的边来使得这个子图连通,并且不包含任何环的一种连通子图。
换句话说,生成树是一个无向连通图中的极小连通子图,它连接了所有的顶点,并且不存在回路。
生成树具有很多重要的性质和应用。
首先,生成树的边数比原图的顶点数少一个。
这是因为生成树是一个连通子图,而且不包含任何环。
因此,生成树中的边数等于原图的顶点数减去1。
这个性质经常用于生成树的构造和推导。
其次,生成树可以用于表示图中的最小连接网络。
在一个无向连通图中,如果存在多个连通子图,那么通过连接这些子图的最少的边,就可以得到一个生成树。
这个生成树可以看作是一个最小的连通网络,其中所有顶点都能够通过最短路径相互到达。
此外,生成树还可以用于网络设计和优化问题。
在电网规划、通信网络设计和计算机网络中,生成树常常被用于实现信息的传输和路由的优化。
通过构造合适的生成树,可以使得信息的传输路径更加简洁和高效。
生成树有多种构造算法,其中最常用的是Prim算法和Kruskal算法。
Prim算法是一种贪心算法,它从一个任意选定的顶点开始,逐步构建生成树。
具体地,Prim算法每次选择与已有的生成树连接边权值最小的顶点,并将其加入生成树。
重复这个过程,直到生成树包含了所有的顶点。
Kruskal算法是一种基于边的方法,它首先将图中的边按照权值从小到大排序,然后依次将边加入生成树,直到生成树包含了所有的顶点为止。
第八章 图论8.4树及其应用.ppt

⑥ G中每一对结点之间有惟一一条基本通路。(n≥2)
2017/10/10 82-9
定理4.2.1 分析
直接证明这 6 个命题两两等价工作量太大,一 般采用循环论证的方法,即证明
(1) (2) (3) (4) (5) (6) (1) 然后利用传递行,得到结论。
2017/10/10
证明 TG = <VT, ET> 是 G = <V, E> 的生 分析 必要性:假设 必要性由树的定义即得,充分性利用构造性 成树,由定义 4.2.1 , TG 是连通的,于是 G 也是连通的。 方法,具体找出一颗生成树即可
充分性:假设G = <V, E>是连通的。如果G中无回 路, G 本身就是生成树。如果 G 中存在回路 C1 ,可删除 C1中一条边得到图G1,它仍连通且与G有相同的结点集。 如果G1中无回路,G1就是生成树。如果G1仍存在回路C2, 可删除 C2 中一条边,如此继续,直到得到一个无回路 的连通图H为止。因此,H是G的生成树。
2017/10/10 82-22
思考题
1、一个图的生成树是不是唯一的呢?
2、如果不是唯一的,3个顶点的无向完全图有几棵 生成树?4个顶点的无向完全图又有几棵生成树?n 个顶点的无向完全图又有几棵生成树?
完全图是边数最 多的简单无向图
2017/10/10
82-23
定理4.2.3
一个图G = <V, E>存在生成树TG = <VT, ET>的充分 必要条件是G是连通的。
由定理4.2.1(4) 在结点给定的无向图中, 由定理4.2.1(5) 树是边数最多的无回路图 树是边数最少的连通图 由此可知,在无向图G = (n, m)中, 若m<n-1,则G是不连通的 若m>n-1,则G必含回路
代数结构-树

384
(1,2,5,6) (8,3,4,3)
6
7
离散数学 中国地质大学 计算机学院
18
生成树 (Spanning TCaryeleey定) 理:n个顶点的标号完全图Kn有nn-2棵生成树
384 7
(1,2,5,6,3) (8,3,4,3,8)
离散数学 中国地质大学 计算机学院
19
生成树 (Spanning TCaryeleey定) 理:n个顶点的标号完全图Kn有nn-2棵生成树
w(e1)<=w(e1’),从而w(T1)<=w(T*)。 依此进行,可以将ek加入到Tk-1中,将形成环,此环中必然然存在边ek’在T*中而不在T中,于是,删除ek’, 则得到生成树Tk。而显然,两边序列e1e2e3…ek 与 e1e2e3…ek’均不构成环,而按kruskal算法,必然有 w(ek)<=w(ek’), 从而 w(Tk)<= w(Tk-1)<=w(T*) ……, 最后可以将em加入到Tm-1中,得到生成树Tm,且w(Tm)<=…<=w(Tk)<= w(Tk-1)<=… <=w(T1)<=w(T*)。 而此时, T所有边都加入到Tm中,即Tm=T。故w(T)<=w(T*) 因此,T为最小生成树。
(3,2,2,3,4,1)
S:(5,6,7,2,3,4)
5
1
32 6
4
8
7
因此,序列集合{t1,t2,…,tn}与Kn的生成树集合存在双射关系。
离散数学 中国地质大学 计算机学院
29
2 生成树(Spanning Tree) 最小生成树(minimum spanning tree)
算法? Kruskal算法
离散数学-树

离散数学导论
. 树
1.2 生成树
➢定义9.10
图T称为无向图G的生成树(spanning tree), 如果T为G的生成子图且T为树。
✓定理9.17
任一连通图G都至少有一棵生成。
.. 树树
1.2 生成树
✓ 定理9.18
设G为连通无 向图,那么G的 任一回路与任一生 成树T的关于G的补 G – T ,至少有一 条公共边。
1.3 根树
➢ 定义9.15
每个结点都至多有两个儿子的根树称为 二元树(quasibinary tree)。类似地,每个结点都
至多有n个儿子的根树称为n元树。 对各分支结点 的诸儿子规定了次序(例如左兄右弟)的n 元树称
为n元有序树;若对各分支结点的已排序的诸儿子
规定了在图示中的位置(例如左、中、右),那么
弦组成G的一个割集,它被称为枝t-割集(t-cut set);
而每一条弦e与T中的通路构成一回路,它被称为弦e-回
路(e-circuit)。
. 树
1.2 生成树
✓ 定理9.20
在连通无向图G中,任一回路与任 一割集均有偶数条公共边。
. 树
1.2 生成树
✓ 定理9.21
设G为一连通无向图,T是G的生成树, S = {e1, e2, e3,…,ek}
✓ 定理9.19
设G为连通无 向图,那么G的任 一割集
与任一生成树至少
有一条公共边。
.. 树树
1.2 生成树
➢ 定义9.11
设T为图G的生成树,称T中的边为树枝(branch) 称G – T 中的边为弦(chord)。对每一树枝t,T–t分为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.7.2 13.6 13.7 二叉树 生成树 根树
13.5 树
定义
性质
定义
判定 方法
定义
判定 方法
13.1
3.2
欧拉图
特殊图
定义
判定 方法 完备 匹配
定义
判定 方法 欧拉 公式
13.3 二分图
13.4 平面图
-特殊图在计算机科学技术相关领域的应用
编码理论 优化编码
H
回
定理13.16
任何非平凡的无向树至少有两片叶子。 证设T有x片树叶,由握手定理及定理13.14可知,
n
— 2(n -1) = d(Vi) > x + 2( n
x)
i=1
由上式解出x > 2.
举例
例已知无向树T中 有1个3度顶点,2个 2度顶点,其余顶点 全是树叶,试求树 叶数,并画出满足 要求的非同构的无 向树.
•= 13.6.1生成树的定义
定义13.12
给定一个无向图G,若G的一个生成子图T是一颗树,则 称T为G的生成树或支撑树。
定理13.12
设G为无向图 ⑴ G的树——T是G的子图并且是树 ⑵ G的生成树——T是G的生成子图并且是树 ⑶ 生成树T的树枝——T中的边 ⑷ 生成树T的弦——不在T中的边
(c)为森林。
-13.5.2树的性质
定理13.14
设G=<V,E〉是口阶m条边的无向图,则下面各命题是等价的: (1) G是树 (2) G中任意两个顶点之间存在惟一的路径. (3) G中无回路且m=n-1. (4) G是连通的且m=n-1. (5) G是连通的且G中任何边均为桥. (6) G中没有回路,但在任何两个不同的顶点之间加一条新边, 在所得图中得到惟一的一个含新边的圈.
'与T
有公共一边定.
证否则,C中的边全在冲,这与T为树矛盾.
宜基= 本 □路系统
。 定理设,为G的生成树, 为T的任意一条弦,则TOe中含一个只有一条弦其余边均
为T的树枝的圈.不同的弦对应的圈也不同.
厂 证 设e=(u,v),在冲u至Uv有惟一路径
则/Oe为所求的圈.
定义 设T是n阶m条边的无向连通图G的一棵生成树,设e'i, e'2,…,e'm-n+1为T的弦. 设Cr为T添加弦e'r产生的只含弦e'r、其余边均为树枝的圈.称Cr为G的对应树T 的弦e' 「的基本回路或基本圈,r=1, 2, m-n+1.并称{Ci, C2, -,Cm-n+1}为G对 应T的基本回路系统,称m-n + 1为G的圈秩,记作&(G).
T ⑸生成树T的余树 ——全体弦组成的集合的导出子图
T不一定连通,也不一定不含回路,如图所示
定理无向图G具有生成树当且仅当G连通. 证必要性显然. 充分性用破圈法(注意:在圈上删除任何一条边,不破坏连通性)
推论1 G为力阶^条边的无向连通图,则m"1.
。 推论2 T的边数为m-n+1.
推论3 T为涕勺生成树T的余树,C为G中任意一个圈,则
"本章小结
(1) 深刻理解无向树的定义,熟练掌握无向树的主要性质,并能灵活应用 它们。
(2) 关 于树的
术语和性质的思维形式注记图如图所示。
才树的定义
树V 相关术语
树的性质
[树叶分枝点
平凡树"彳'
J六个等价命题 I任何树至少有两片叶子
解设有X片树叶,于是n=l+2+x=3+x, 2m - 2(n-1)= 2x (2+x)= 1x3+2x2+x 解出x=3,
故T有3片树叶.
T的度数列应为1, 1, 1, 2, 2, 3, 易知3度顶点与1个2度顶点相邻与和2 个2度顶 点均相邻是非同构的,因而有 2棵非同构的无
向树T1, T2,如图所示.
求基本回路的算法:设弦e=(u,v),先求T中u到v的路径ruv,再并上弦e,即得对 应e的基本回路.
-基本= 割集的存在
定理 设7是连通图6的一棵生成树,0为新树枝,则G中存在只含树枝巳其
余边都是弦的割集,且不同的树枝对应的割集也不同. 证由树的性质可知,&是7的桥,因而有两个连通分支4和上令
5;=0 | eeE(6)且0的两个端点分别属于V(4)和V(4)},
计算机网络
网络线路铺设
信息流量分析
算法分析与设计
二叉树成序 生成树
欧拉图
Fleury算法
二分图一► 匈牙利算法
邮递员问题
f最优分派问题
</>
-13.5.1树的定义及其相关术语
定义13.11
—个连通且无回路的无向图称为无向树,简称树。在树中度 数为1的结点称为树叶,度数大于1的结点称为分支点(内点)。 单一孤立结点称为平凡树。如果一个无回路的无向图的每一个连 通分支是树,且连通分支数大于等于2那么称为森林。
由构造显然可知为6的割集,中除/卜都是弦, 所以5;为所求.显然不同的树枝对应的割集不同.
-基=本割集与基=本割集系统
丁定义 设龍刀阶连通图6的一棵生成树,旳,0‘2,…,0丄1为 的树枝, S•是G的只含树枝4的割集,则称为6的对应于生成树沽树枝 马•生成的基本割集,•二1, 2,…,n-1.并称(Si,岛,…,專J 叮 为6对应,的基本割集系统,称牛1为6的割集秩,记作 (6). 求基本割集的算法 设d为生成树厂的树枝,7-Q为两棵小树7;与弓,令 Se ={e | eeE(G)且e的两个端点分别属于7;与弓} 则Se%e对应的基本割集.