数据结构课程设计图的遍历和生成树求解
离散数学中的图的树与生成树的计数

在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
《数据结构》课程教学设计方案

《数据结构》课程教学设计方案一、课程的性质和任务《数据结构》是计算机科学与技术专业本科生的一门必修课程。
本课程介绍如何组织各种数据在计算机中的存储、传递和转换。
内容包括:数组、链接表、栈和队列、递归、树与森林、图、堆与优先级队列、集合与搜索结构、排序、索引与散列结构等。
课程采用面向对象的观点讨论数据结构技术,并以兼有面向过程和面向对象双重特色的C++ 语言作为算法的描述工具,强化数据结构基本知识和面向对象程序设计基本能力的双基训练。
为后续计算机专业课程的学习打下坚实的基础。
二、先修课要求面向对象程序设计、计算机数学(离散数学)。
三、课程的教学基本要求1 、掌握重要数据结构的概念、使用方法及实现技术;2 、学会做简单的算法分析,包括算法的时间代价和空间代价。
四、教学方法和教学形式建议面授辅导为主、辅以网上答疑,小组讨论,专题论坛,学生自主观看教学光盘。
教师阶段性的进行作业评讲,总结复习、同时进行必要的上机实验。
五、考试期末考试由中央电大统一命题,统一评分标准,统一考试时间。
学生的本课程成绩按平时的形成性考核成绩满分 20 分,期末考试满分 80 分分配,合计计算。
六、文字教材及媒体本课程的文字教材包括《数据结构》主教材。
清华大学出版社出版的《数据结构》,殷人昆编著;《数据结构实用教程》作为参考书,徐孝凯编著。
录像媒体:录制30讲,每讲50分钟。
直播课堂:共4讲,每讲50分,前三讲为对教学重点、难点,对教学过程中反映的共性问题和有代表性的问题进行辅导,后一讲为复习辅导和有关考试说明。
七、教学环节有三个教学环节:授课,作业和教学实验,考试。
课程总成绩的记分方法:形成性考核成绩在课程总成绩中占20%,终结性考试成绩在课程总成绩中占80%。
课程总成绩为百分制,60分为合格。
作业及试验:形成性考核的要求和形式:形成性考核的形式有平时作业和课程实验。
能够按时、按质、按量完成平时作业和课程实验者方可得满分。
网上教学:安徽电大教学处主页开放教育专栏有关《数据结构》内容:教学大纲、实施方案、考核说明、课程说明、模拟试题、教学辅导、复习指导、往届试题、重点难点、直播课堂、各章电子教案等;每月更新充实一次。
数据结构实验指导书(新版)

《数据结构和算法》实验指导书实验及学时数分配序号实验名称学时数(小时)1 实验一线性表 42 实验二树和二叉树 23 实验三图 24 实验四查找 25 实验五内部排序 2合计12几点要求:一、上机前:认真预习相关实验内容,提前编写算法程序,上机时检查(未提前编写程序者,扣除平时成绩中实验相关分数)。
二、上机中:在Turbo C或VC6.0环境中,认真调试程序,记录调试过程中的问题、解决方法以及运行结果。
上机时签到;下机时验收签字。
三、下机后:按要求完成实验报告,并及时提交(实验后1周内)。
实验一线性表【实验目的】1、掌握用Turbo c上机调试线性表的基本方法;2、掌握线性表的基本操作,插入、删除、查找以及线性表合并等运算在顺序存储结构和链式存储结构上的运算;3、运用线性表解决线性结构问题。
【实验学时】4 学时【实验类型】设计型【实验内容】1、顺序表的插入、删除操作的实现;2、单链表的插入、删除操作的实现;3、两个线性表合并算法的实现。
(选做)【实验原理】1、当我们在线性表的顺序存储结构上的第i个位置上插入一个元素时,必须先将线性表中第i个元素之后的所有元素依次后移一个位置,以便腾出一个位置,再把新元素插入到该位置。
若是欲删除第i个元素时,也必须把第i个元素之后的所有元素前移一个位置;2、当我们在线性表的链式存储结构上的第i个位置上插入一个元素时,只需先确定第i个元素前一个元素位置,然后修改相应指针将新元素插入即可。
若是欲删除第i个元素时,也必须先确定第i个元素前一个元素位置,然后修改相应指针将该元素删除即可;3、详细原理请参考教材。
【实验步骤】一、用C语言编程实现建立一个顺序表,并在此表中插入一个元素和删除一个元素。
1、通过键盘读取元素建立线性表;(从键盘接受元素个数n以及n个整形数;按一定格式显示所建立的线性表)2、指定一个元素,在此元素之前插入一个新元素;(从键盘接受插入位置i,和要插入的元素值;实现插入;显示插入后的线性表)3、指定一个元素,删除此元素。
数据结构课程设计python

数据结构课程设计python一、课程目标知识目标:1. 理解数据结构的基本概念,掌握常用数据结构如列表、元组、字典和集合的特点及应用场景。
2. 学习并掌握栈和队列的操作原理及其在Python中的实现方法。
3. 掌握树和图的基本概念,了解二叉树、遍历算法及图的表示方法。
技能目标:1. 能够运用Python语言实现基本数据结构,并对其进行增、删、改、查等操作。
2. 能够利用栈和队列解决实际问题,如递归、函数调用栈、任务调度等。
3. 能够运用树和图解决实际问题,如查找算法、路径规划等。
情感态度价值观目标:1. 培养学生严谨的逻辑思维,提高分析问题和解决问题的能力。
2. 激发学生对数据结构和算法的兴趣,培养良好的编程习惯。
3. 引导学生认识到数据结构在实际应用中的重要性,增强学习热情和责任感。
课程性质:本课程为高年级数据结构课程,旨在使学生掌握Python语言实现数据结构的方法,提高编程能力和解决问题的能力。
学生特点:学生具备一定的Python编程基础,具有较强的逻辑思维能力,对数据结构有一定的了解。
教学要求:结合实际案例,采用任务驱动法,引导学生通过实践掌握数据结构的基本原理和应用方法。
注重培养学生的动手能力和团队协作精神,提高学生的综合素质。
通过本课程的学习,使学生能够具备独立设计和实现小型项目的能力。
二、教学内容1. 数据结构基本概念:介绍数据结构的概念、作用和分类,结合Python语言特点,分析各类数据结构在实际应用中的优势。
- 列表、元组、字典和集合的原理与应用- 栈与队列的操作原理及实现2. 线性表:讲解线性表的概念,重点掌握顺序表和链表的操作方法。
- 顺序表和链表的实现及操作- 线性表的查找和排序算法3. 树与二叉树:介绍树的基本概念,重点讲解二叉树的结构及其遍历算法。
- 树的基本概念和表示方法- 二叉树的性质、存储结构、遍历方法4. 图:讲解图的基本概念,掌握图的存储结构及遍历方法。
- 图的基本概念和表示方法- 图的遍历算法(深度优先搜索、广度优先搜索)- 最短路径和最小生成树算法5. 算法分析与设计:结合实例,分析算法性能,掌握基本的算法设计方法。
杭电数据结构课程设计

杭电数据结构课程设计一、课程目标知识目标:1. 学生能理解数据结构的基本概念,掌握线性表、栈、队列、树、图等常见数据结构的特点与应用。
2. 学生能描述各类数据结构的存储方式和操作方法,了解其时间复杂度和空间复杂度。
3. 学生能运用所学的数据结构知识解决实际问题,如排序、查找、最短路径等。
技能目标:1. 学生能运用编程语言(如C++、Java等)实现常见数据结构及其相关算法。
2. 学生能分析实际问题的数据特征,选择合适的数据结构进行问题求解。
3. 学生能通过课程项目实践,培养团队协作、沟通表达、问题解决等综合能力。
情感态度价值观目标:1. 学生对数据结构产生兴趣,认识到数据结构在计算机科学与软件开发中的重要性。
2. 学生在解决实际问题的过程中,培养积极探究、勇于创新的精神。
3. 学生通过团队协作,学会尊重他人、分享经验,提高沟通能力。
课程性质:本课程为计算机科学与技术专业的核心课程,旨在培养学生掌握数据结构的基本知识、技能和素养。
学生特点:学生具备一定的编程基础和数学素养,具有较强的逻辑思维能力,但对数据结构的应用和实际操作能力有待提高。
教学要求:结合课程性质和学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的数据结构知识水平和问题解决能力。
通过课程目标分解,将知识、技能和情感态度价值观目标融入教学过程,为后续教学设计和评估提供依据。
二、教学内容1. 线性表:介绍线性表的定义、特点、存储结构(顺序存储、链式存储),以及线性表的相关操作(插入、删除、查找等)。
教材章节:第2章 线性表2. 栈与队列:讲解栈和队列的基本概念、存储结构及操作方法,分析其应用场景。
教材章节:第3章 栈与队列3. 树与二叉树:阐述树的基本概念、存储结构、遍历方法,重点讲解二叉树的性质、存储结构、遍历算法(前序、中序、后序)及二叉树的应用。
教材章节:第4章 树与二叉树4. 图:介绍图的定义、存储结构(邻接矩阵、邻接表),图的遍历算法(深度优先搜索、广度优先搜索),以及最短路径、最小生成树等算法。
数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。
数据结构与算法课程设计报告---图的算法实现

数据结构与算法课程设计报告课程设计题目:图的算法实现专业班级:信息与计算科学1002班目录摘要 (1)1、引言 (1)2、需求分析 (1)3、概要设计 (2)4、详细设计 (4)5、程序设计 (10)6、运行结果 (18)7、总结体会 (19)摘要(题目): 图的算法实现实验内容图的算法实现问题描述:(1)将图的信息建立文件;(2)从文件读入图的信息,建立邻接矩阵和邻接表;(3)实现Prim、Kruskal、Dijkstra和拓扑排序算法。
关键字:邻接矩阵、Dijkstra和拓扑排序算法1.引言本次数据结构课程设计共完成图的存储结构的建立、Prim、Kruskal、Dijkstra 和拓扑排序算法等问题。
通过本次课程设计,可以巩固和加深对数据结构的理解,通过上机和程序调试,加深对课本知识的理解和熟练实践操作。
(1)通过本课程的学习,能够熟练掌握数据结构中图的几种基本操作;(2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。
使用语言:CPrim算法思想:从连通网N={V,E}中的某一顶点v0出发,选择与它关联的具有最小权值的边(v0,v),将其顶点加入到生成树的顶点集合V中。
以后每一步从一个顶点在V中,而另一个顶点不在V中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合V中。
如此继续下去,直到网中的所有顶点都加入到生成树顶点集合V中为止。
拓扑排序算法思想:1、从有向图中选取一个没有前驱的顶点,并输出之;2、从有向图中删去此顶点以及所有以它为尾的弧;重复上述两步,直至图空,或者图不空但找不到无前驱的顶点为止。
没有前驱-- 入度为零,删除顶点及以它为尾的弧-- 弧头顶点的入度减1。
2.需求分析1、通过键盘输入建立一个新的有向带权图,建立相应的文件;2、对建立的有向带权图进行处理,要求具有如下功能:(1)用邻接矩阵和邻接表的存储结构输出该有向带权图,并生成相应的输出结果;(2)用Prim、Kruskal算法实现对图的最小生成树的求解,并输出相应的输出结果;(3)用Dijkstra算法实现对图中从某个源点到其余各顶点的最短路径的求解,并输出相应的输出结果;(4)实现该图的拓扑排序算法。
数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与计算机学院课程设计说明书课程名称: 数据结构与算法课程设计课程代码: 6014389题目: 图的遍历和生成树求解实现年级/专业/班:学生姓名: 学号:开始时间: 2012 年 12 月 09 日完成时间: 2012 年 12 月 26 日课程设计成绩:学习态度及平时成绩(30)技术水平与实际能力(20)创新(5)说明书(计算书、图纸、分析报告)撰写质量(45)总分(100)指导教师签名:年月日目录摘要 (3)引言 (4)1 需求分析 (5)1.1任务与分析 (5)1.2测试数据 (5)2 概要设计 (5)2.1 ADT描述 (5)2.2程序模块结构 (7)软件结构设计: (7)2.3各功能模块 (7)3 详细设计 (8)3.1结构体定义 (19)3.2 初始化 (22)3.3 插入操作(四号黑体) (22)4 调试分析 (22)5 用户使用说明 (23)6 测试结果 (24)结论 (26)摘要《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。
进行数据结构课程设计要达到以下目的:⏹了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力;⏹初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能;⏹提高综合运用所学的理论知识和方法独立分析和解决问题的能力;训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。
这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。
因为图是一种较线形表和树更为复杂的数据结构。
在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。
采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。
对图的遍历分别采用了广度优先遍历和深度优先遍历。
关键词:计算机;图;算法。
引言很多涉及图的操作的算法都是以图的遍历操作为基础,通过遍历的演示,方便在学习中更好的理解突地遍历的过程。
通过对图的深度优先遍历和广度优先遍历的演示,分别两种遍历的不同与其优缺点。
我们在对一些问题进行求解时,会发现有些问题很难找到规律,或者根本无规律可寻。
对于这样的问题,可以利用计算机运算速度快的特点,先搜索查找所有可能出现的情况,再根据题目条件从所有可能的情况中,删除那些不符合条件的解。
在深度优先搜索算法中,是深度越大的结点越先得到扩展。
如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。
很多问题都可以用广度优先搜索进行处理、如翻币问题、最短路径问题等。
在计算机中,有多种方法存储图的信息,由于图的结构复杂,使用广泛,一般应根据实际的应用,选择适合的表示方法。
常用的图的存储结构有邻接矩阵、邻接多重表和邻接表。
在实际问题当中,经常遇到这类问题,为新建的某个机构进行选址、道路交通路线、如何走完所有路线、旅游线路等一系列问题都涉及到图的知识。
图是一种复杂的非线性数据结构,一个图G(Grah)由两个集合V和E构成。
图存在两种遍历方式:深度优先遍历和广度优先遍历。
广度优先遍历基本思路是假设从图中某顶点U出发,在访问了顶点U之后依次访问U 的各个未访问的领接点,然后分别从这些领接点出发依次访问他们的领接点,并使先访问的顶点的领接点先于后访问的顶点被访问。
直至所有领接点被访问到。
深度优先的基本思路是从某个顶点出发访问此顶点,然后依次从V的未被访问的领接点出发深度优先检索图。
直至图中所有顶点都被访问到。
PRIM算法—KRUSKAL算法,可以对图形进行最小生成树的求解。
树型结构是一种非线性结构,它用于描述数据元素之间层次关系,如人类社会的族谱等,树型结构的应用非常广泛,磁盘文件目录结构就是一个典型的例子。
1 需求分析1.1任务与分析问题描述:图的遍历和生成树求解实现图是一种较线性表和树更为复杂的数据结构。
在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在树形结构中,数据元素之间有着明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素(及其孩子结点)相关但只能和上一层中一个元素(即双亲结点)相关;而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
生成树求解主要利用普利姆和克雷斯特算法求解最小生成树,只有强连通图才有生成树。
基本功能1) 先任意创建一个图;2) 图的DFS,BFS的递归和非递归算法的实现3) 最小生成树(两个算法)的实现,求连通分量的实现4) 要求用邻接矩阵、邻接表等多种结构存储实现输入输出输入数据类型为整型和字符型,输出为整型和字符。
1.2测试数据根据提示,输入所对应的功能,输入相关数据进行测试。
2 概要设计设计思路:a.图的邻接矩阵存储:根据所建无向图的结点数n,建立n*n的矩阵,其中元素全是无穷大(int_max),再将边的信息存到数组中。
其中无权图的边用1表示,无边用0表示;有全图的边为权值表示,无边用∞表示。
b.图的邻接表存储:将信息通过邻接矩阵转换到邻接表中,即将邻接矩阵的每一行都转成链表的形式将有边的结点进行存储。
c.图的广度优先遍历:假设从图中的某个顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后再访问此邻接点的未被访问的邻接点,并使“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。
若此时图中还有未被访问的,则另选未被访问的重复以上步骤,是一个非递归过程。
d.图的深度优先遍历:假设从图中某顶点v 出发,依依次访问v 的邻接顶点,然后再继续访问这个邻接点的系一个邻接点,如此重复,直至所有的点都被访问,这是个递归的过程。
e.图的连通分量:这是对一个非强连通图的遍历,从多个结点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其连通分量的顶点集。
本程序利用的图的深度优先遍历算法。
2.1 ADT 描述ADT Queue{数据对象:D={a i | a i ∈ElemSet,i=1,2,3……,n,n ≥0} 数据关系:R1={<a i-1,a i >| a i-1,a i ∈D,i=1,2,3,……,n} 基本操作: InitQueue(&Q)操作结果:构造一个空队列Q 。
QueueEmpty(Q)初始条件:Q 为非空队列。
操作结果:若Q 为空队列,则返回真,否则为假。
EnQueue(&Q,e)初始条件:Q 为非空队列。
操作结果:插入元素e 为Q 的新的队尾元素。
DeQueue(&Q,e)初始条件:Q 为非空队列。
操作结果:删除Q 的队头元素,并用e 返回其值。
}ADT Queue ADT Graph{数据对象V :V 是具有相同特性的数据元素的集合,称为顶点集。
数据关系R : R={VR}VR={<v,w>|v,w ∈V 且P (v ,w ),<v,w>表示从v 到w 的弧, 谓词P (v,w )定义了弧<v,w>的意义或信息} 基本操作P :CreatGraph(&G,V,VR);初始条件:V是图的顶点集,VR是图中弧的集合。
操作结果:按V和VR的定义构造图G。
BFSTraverse(G,visit());初始条件:图G存在,Visit是定点的应用函数。
操作结果:对图进行广度优先遍历。
在遍历过程中对每个顶点调用函数Visit一次且仅一次。
一旦visit()失败,则操作失败。
DFSTraverse(G,visit());初始条件:图G存在,Visit是定点的应用函数。
操作结果:对图进行广度优先遍历。
在遍历过程中对每个顶点调用函数Visit一次且仅一次。
一旦visit()失败,则操作失败。
DFStra_fen(G)初始条件:图G存在,存在图的深度优先遍历算法。
操作结果:从多个顶点对图进行深度优先遍历,得到连通分量。
}ADT Graph;2.2程序模块结构软件结构设计:maincreatMGraph_L(G)cre atadj(gra,G)ljjzprint(G)adjprint(gra,G)BFSTraverse(gra)DFStra(gra)DFSTraverse_fen(gra)MiniSpanTree_PRIM(g,G.vexnum)MiniSpanTREE_KRUSCAL(G,gra)01234567函数名返回值类型creatMGraph_L(G) intcreatadj(gra,G) intljjzprint(G) voidadjprint(gra,G) voidBFSTraverse(gra) void DFStra(gra) int DFSTraverse_fen(gra) int MiniSpanTree_PRIM(g,G.vexnum) int MiniSpanTREE_KRUSCAL(G,gra) void2.2.1 结构体定义邻接矩阵定义:typedef struct ArcCelltypedef struct邻接表的定义:typedef struct ArcNode//弧结点typedef struct VNode//邻接链表顶点头接点typedef struct//图的定义队列定义:typedef struct QNode2.3 各功能模块邻接矩阵存储:int creatMGraph_L(MGraph_L &G)邻接矩阵的输出:void ljjzprint(MGraph_L G)用邻接表存储图:int creatadj(ALGraph &gra,MGraph_L G)邻接表输出:void adjprint(ALGraph gra,MGraph_L G)初始化队列:Status InitQueue(LinkQueue &Q)入队:Status EnQueue(LinkQueue &Q,QElemType e)//入队,插入元素e为Q的新的队尾元素出队:Status DeQueue(LinkQueue &Q,QElemType &e)//出队,若队列不空,则删除Q的队头元素,用e返回,并返回真,否则假判断队为空:Status QueueEmpty(LinkQueue Q广度优先遍历:void BFSTraverse(ALGraph gra)深度优先遍历:int DFS(ALGraph gra,int i)连通分量:int DFSTraverse_fen(ALGraph gra)3 详细设计主函数:int main(){int s;char y='y';cout<<"||¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤菜单¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤||"<<endl;cout<<"||-------------------------【0、创建一个无向图------------------------------||"<<endl;cout<<"||-------------------------【1、显示该图的邻接矩阵--------------------------||"<<endl;cout<<"||-------------------------【2、显示该图的邻接表----------------------------||"<<endl;cout<<"||-------------------------【3、广度优先遍历--------------------------------||"<<endl;cout<<"||-------------------------【4、深度优先遍历--------------------------------||"<<endl;cout<<"||-------------------------【5、最小生成树MiniSpanTree_PRIM 算法-------------||"<<endl;cout<<"||-------------------------【6、最小生成树MiniSpanTree_KRUSCAL算法----------||"<<endl;cout<<"||-------------------------【7、连通分量------------------------------------||"<<endl;cout<<"||¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤||"<<endl;while(y=='y'){cout<<"请选择菜单:"<<endl;cin>>s;if(s==0){++o;if(o==2){n=0;l=0;o=0;}}switch(s){case 0:cout<<"创建一个无向图:"<<endl;MGraph_L G;creatMGraph_L(G);ALGraph gra;creatadj(gra,G);break;case 1:cout<<"邻接矩阵显示如下:"<<endl;ljjzprint(G);break;case 2:cout<<"邻接表显示如下:"<<endl;adjprint(gra,G);break;case 3:cout<<"广度优先遍历:";BFSTraverse(gra);cout<<endl;break;case 4:cout<<"深度优先遍历:";DFStra(gra);cout<<endl;break;case 5:if(n==0){cout<<"无权图没有最小生成树";break;}else if(l>0){cout<<"若该图为非强连通图(含有多个连通分量)时,最小生成树不存在"<<endl;break;}else{int i,g[max][max];for(i=0;i!=G.vexnum;++i)for(int j=0;j!=G.vexnum;++j)g[i+1][j+1]=G.arcs[i][j].adj;cout<<"普利姆算法:"<<endl;MiniSpanTree_PRIM(g,G.vexnum);break;}case 6:if(n==0){cout<<"无权图没有最小生成树";break;}else if(l>0){cout<<"该图为非强连通图(含有多个连通分量),最小生成树不存在"<<endl;break;}else{cout<<"克鲁斯卡尔算法:"<<endl;MiniSpanTREE_KRUSCAL(G,gra);break;}case 7:cout<<"连通分量:"<<endl;DFSTraverse_fen(gra);break;}cout<<endl<<"是否继续?y/n:";cin>>y;if(y=='n')break;}return 0;}邻接矩阵存储:int creatMGraph_L(MGraph_L &G)//创建图用邻接矩阵表示{char v1,v2;int i,j,w;cout<<"请输入顶点和弧的个数"<<endl;cin>>G.vexnum>>G.arcnum;cout<<"输入各个顶点"<<endl;for(i=0;i<G.vexnum;++i){cin>>G.vexs[i];}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j){G.arcs[i][j].adj=int_max;G.arcs[i][j].info=NULL;}for(int k=0;k<G.arcnum;++k){cout<<"输入一条边依附的顶点和权"<<endl;cin>>v1>>v2>>w;//输入一条边依附的两点及权值i=localvex(G,v1);//确定顶点V1和V2在图中的位置j=localvex(G,v2);G.arcs[i][j].adj=w;G.arcs[j][i].adj=w;}for(i=0;i!=G.vexnum;++i)for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj!=1&&G.arcs[i][j].adj<int_max)n+=1;}if(n>=1)cout<<"这是一个有权图"<<endl;else cout<<"这是一个无权图"<<endl;cout<<"图G邻接矩阵创建成功!"<<endl;return G.vexnum;}邻接矩阵的输出:void ljjzprint(MGraph_L G) //邻接矩阵的输出{int i,j;if(n==0){for(i=0;i!=G.vexnum;++i){for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj==int_max){cout<<"0"<<" ";}else {cout<<G.arcs[i][j].adj<<" ";}}cout<<endl;}}else{for(i=0;i!=G.vexnum;++i){for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj==int_max){cout<<"∞"<<" ";}else {cout<<G.arcs[i][j].adj<<" ";}}cout<<endl;}}}用邻接表存储图:int creatadj(ALGraph &gra,MGraph_L G)//用邻接表存储图{int i=0,j=0;ArcNode *arc;//,*tem,*p;for(i=0;i!=G.vexnum;++i){gra.vertices[i].data=G.vexs[i];gra.vertices[i].firstarc=NULL;}for(i=0;i!=G.vexnum;++i)for(j=0;j!=G.vexnum;++j){if(G.arcs[i][j].adj!=int_max){arc=(ArcNode *)malloc(sizeof(ArcNode));arc->adjvex=j;arc->nextarc=gra.vertices[i].firstarc;gra.vertices[i].firstarc=arc;}}gra.vexnum=G.vexnum;gra.arcnum=G.arcnum;cout<<"图G邻接表创建成功!"<<endl;return 1;}邻接表输出:void adjprint(ALGraph gra,MGraph_L G) //邻接表输出{int i;for(i=0;i!=gra.vexnum;++i){ArcNode *p;cout<<"["<<i<<","<<G.vexs[i]<<"]";p=gra.vertices[i].firstarc;while(p!=NULL){cout<<"->"<<"["<<p->adjvex<<"]";p=p->nextarc;}cout<<"->"<<"End";cout<<endl;}}初始化队列:Status InitQueue(LinkQueue &Q)//初始化队列{Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));if(!Q.front)return 0;//存储分配失败Q.front->next=NULL;return 1;}入队:Status EnQueue(LinkQueue &Q,QElemType e)//入队,插入元素e为Q的新的队尾元素{QueuePtr p;p=(QueuePtr)malloc(sizeof(QNode));if(!p)return 0;//存储分配失败p->data=e;p->next=NULL;Q.rear->next=p;Q.rear=p;return 1;}出队:Status DeQueue(LinkQueue &Q,QElemType &e)//出队,若队列不空,则删除Q 的队头元素,用e返回,并返回真,否则假{QueuePtr p;if(Q.front==Q.rear)return 0;p=Q.front->next;e=p->data;Q.front->next=p->next;if(Q.rear==p)Q.rear=Q.front;free(p);return 1;}判断队为空:Status QueueEmpty(LinkQueue Q)//判断队为空{if(Q.front==Q.rear) return 1;return 0;}广度优先遍历:void BFSTraverse(ALGraph gra){int i,e;LinkQueue q;for(i=0;i!=gra.vexnum;++i)visited[i]=0;InitQueue(q);for(i=0;i!=gra.vexnum;++i)if(!visited[i]){visited[i]=1;cout<<gra.vertices[i].data;EnQueue(q,i);while(!QueueEmpty(q)){DeQueue(q,e);for(we=firstadjvex(gra,gra.vertices[e]);we>=0;we=nextadjvex(gra,g ra.vertices[e],we)){if(!visited[we]){visited[we]=1;cout<<gra.vertices[we].data;EnQueue(q,we);}}}}}深度优先遍历:int DFS(ALGraph gra,int i){visited[i]=1;int we1;cout<<gra.vertices[i].data;for(we=firstadjvex(gra,gra.vertices[i]);we>=0;we=nextadjvex(gra,g ra.vertices[i],we)){we1=we;if(visited[we]==0)DFS(gra,we);we=we1;}return 1;}int DFStra(ALGraph gra){int i,j;for(i=0;i!=gra.vexnum;++i){visited[i]=0;}for(j=0;j!=gra.vexnum;++j){if(visited[j]==0)DFS(gra,j);}return 0;}连通分量:int DFSTraverse_fen(ALGraph gra){int i,j;for(i=0;i!=gra.vexnum;++i)visited[i]=0;for(j=0;j!=gra.vexnum;++j){if(visited[j]==0){DFS(gra,j);cout<<endl;l++;}}return 0;}主要函数的程序流程图,实现设计中主程序和其他子模块的算法,以流程图的形式表示。