树与生成树
5_3树的概念和算法

定理.1(证明(3)(4))
Ⅱ、增加任何新边,得到一个且仅有一个回路
若在连通图T中加入新的边(ui,uj),则该边与T中ui到 uj的一条路构成一个回路,则该回路必是唯一的。 否则(即回路不唯一),若删去此新边,T中必有回 路,得出矛盾。
综述,T连通且e=v-1则T无回路但增加任何新边,得 到一个且仅有一个回路。
第 7页
定理.1(证明(2)(3))
(2) T无回路 且e=v-1 (3) T连通且e=v-1 证明(2)(3): 证明T连通: (反证法) 假设T有s个连通分支, 则每个连通分支都是连通无 回路即树, 所以 e=e1+e2+…+ es=(v1-1)+(v2-1)+…+(vs-1) =v1+v2+…+vs-s=v-s=v-1, 所以s=1,与s>1矛盾, 所以T连通。
第 6页
定理.1(证明(1)(2))
(1) 无回路的连通图 (2) T无回路且e=v-1 证明(1)(2): e=v-1(归纳法):
v=1时,e=0(平凡树)。 设vk-1时成立,即ek-1=vk-1-1。 当v=k时, 要证ek=vk-1。 因为无回路且连通,故至少有一边其一个端点u的度数为 1,设该边为(u,u*)。删除结点u,得到一个k-1个结点的 连通图T’,T’的边数e’=v’-1=(k-1)-1=k-2,于是将结点u 与边(u,v)加入图T’得到原图T,此时T的边数为e=e’+1=k2+1=k-1, 结点数v=v’+1=(k-1)+1=k,故e=v-1。 综上所述, T无回路且e=v-1。
离散数学中的图的树与生成树的计数

在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
吴裕雄--天生自然数据结构学习笔记:什么是生成树,生成树(生成森林)详解

吴裕雄--天⽣⾃然数据结构学习笔记:什么是⽣成树,⽣成树
(⽣成森林)详解
对连通图进⾏遍历,过程中所经过的边和顶点的组合可看做是⼀棵普通树,通常称为⽣成树。
如图1所⽰,图 1a) 是⼀张连通图,图 1b) 是其对应的2种⽣成树。
连通图中,由于任意两顶点之间可能含有多条通路,遍历连通图的⽅式有多种,往往⼀张连通图可能有多种不同的⽣成树与之对应。
连通图中的⽣成树必须满⾜以下2个条件:
包含连通图中所有的顶点;
任意两顶点之间有且仅有⼀条通路;
因此,连通图的⽣成树具有这样的特征,即⽣成树中边的数量 = 顶点数 - 1。
⽣成森林
⽣成树是对应连通图来说,⽽⽣成森林是对应⾮连通图来说的。
我们知道,⾮连通图可分解为多个连通分量,⽽每个连通分量⼜各⾃对应多个⽣成树(⾄少是1棵),因此与整个⾮连通图相对应的,是由多棵⽣成树组成的⽣成森林。
《离散数学》课件-第16章树

18
16.3 根树及其应用
19
定义(有向树)设D是有向图,如果D的基图是无向 树,则称D为有向树。
在有向树中最重要的是根树。 定义16.6(根树)一棵非平凡的有向树,如果恰有 一个顶点的入度为O,其余所有顶点的入度均为1,则称该 树为根树。 入度为0的顶点称为树根,入度为1出度为0的顶点称 为树叶,入度为1出度不为0的点称为内点,内点和树根统 称为分支点。 树根到一个顶点的有向通路的长度称为该顶点的层数。 层数最大顶点的层数称为树高。 平凡树也称为根树。
2
16.1 树及其性质
3
定义16.1(树和森林) 连通且无回路的无向图称为无向树,简称为树,常用
T表示树。 平凡图为树,称为平凡树。 非连通且每个连通分支是树的无向图称为森林。 T中度数为1的顶点(悬挂顶点)称为树叶,度数大于
1的顶点称为分支点。 称只有一个分支点,且分支点的度数为n-1的n(n≥3)
定义16.8(子树)设T为一棵根树,则其任一顶点v 及其后代导若将层数相同的顶点都 标定次序,则称T为有序树。
根据每个分支点的儿子数以及是否有序,可将根树 分成如下若干类:
定义(跟树分类)设T为一棵根树 (1)若T的每个分支点至多有r个儿子,则称T为r叉 树。又若r叉树是有序的,则称它为r叉有序树。 (2)若T的每个分支点恰好有r个儿子,则称T为r叉 正则树。又若r叉正则树是有序的,则称它为r叉正则有 序树。 (3)若T为r叉正则树,且每个树叶的层数均为树高, 则称T为r叉完全正则树。又若r叉完全正则树是有序的, 则称它为r叉完全正则有序树。
8
平均编码长度为:L = ∑ P( i )× l( i ) = 2.53bit i=1
生成树的名词解释

生成树的名词解释生成树(Spanning Tree)是图论中的一个重要概念,用来描述在一个无向连通图中连接所有顶点的极小连通子图。
在一个无向连通图中,如果能够找到一颗包含所有顶点且边数最少的子图,那么这个子图就是该图的生成树。
生成树的概念最早由Otto Schönflies于1885年提出,并且在图论研究和实际应用中得到了广泛的运用。
生成树在电网规划、通信网络设计、计算机网络以及城市交通规划等领域都有着重要的应用价值。
生成树的定义可以用简洁的方式表述:在一个无向连通图中,生成树是保留了原图的所有顶点,但只保留了足够的边来使得这个子图连通,并且不包含任何环的一种连通子图。
换句话说,生成树是一个无向连通图中的极小连通子图,它连接了所有的顶点,并且不存在回路。
生成树具有很多重要的性质和应用。
首先,生成树的边数比原图的顶点数少一个。
这是因为生成树是一个连通子图,而且不包含任何环。
因此,生成树中的边数等于原图的顶点数减去1。
这个性质经常用于生成树的构造和推导。
其次,生成树可以用于表示图中的最小连接网络。
在一个无向连通图中,如果存在多个连通子图,那么通过连接这些子图的最少的边,就可以得到一个生成树。
这个生成树可以看作是一个最小的连通网络,其中所有顶点都能够通过最短路径相互到达。
此外,生成树还可以用于网络设计和优化问题。
在电网规划、通信网络设计和计算机网络中,生成树常常被用于实现信息的传输和路由的优化。
通过构造合适的生成树,可以使得信息的传输路径更加简洁和高效。
生成树有多种构造算法,其中最常用的是Prim算法和Kruskal算法。
Prim算法是一种贪心算法,它从一个任意选定的顶点开始,逐步构建生成树。
具体地,Prim算法每次选择与已有的生成树连接边权值最小的顶点,并将其加入生成树。
重复这个过程,直到生成树包含了所有的顶点。
Kruskal算法是一种基于边的方法,它首先将图中的边按照权值从小到大排序,然后依次将边加入生成树,直到生成树包含了所有的顶点为止。
离散数学7-树

(b)
(a)
V5
2
1
V7
8
9
V2
V4
2
3
V8
5
V1
V1
V4
V5
1
3
V7
V6
8
V4
2
V8
5
6
V1
1
V5
6
V7
V6
8
3
V8
5
6
V7
9
V3
(e)
V3
(f)
(g)
22
V2
V3
(h)
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
23
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
成圈。
首先证明T无简单回路。对n作归纳证明。
(i) n=1时,m=n-1=0,显然无简单回路;
(ii)假设顶点数为n-1时无简单回路,现考察顶点数是n的情况:此时至少有一
个顶点v其次数d(v)=1。因为若n个顶点的次数都大于等于2,则不少于n条边,但这与
m=n-1矛盾。
删去v及其关联边得到新图T’,根据归纳假设T’无简单回路,再加回v及其关联
边又得到图T,则T也无简单回路。
再由图的连通性可知,加入任何一边后就会形成圈,且只有一个圈,否则原图
中会含圈。
9
二. 基本定理——证明
证明(4):(3)(4),即证一个无圈图若加入任一边就形成圈,
则该图连通,且其任何一边都是桥。
若图不连通,则存在两个顶点vi和vj,在vi和vj之间没有路,若
加边(vi,vj)不会产生简单回路,但这与假设矛盾。由于T无简单回
代数结构-树

384
(1,2,5,6) (8,3,4,3)
6
7
离散数学 中国地质大学 计算机学院
18
生成树 (Spanning TCaryeleey定) 理:n个顶点的标号完全图Kn有nn-2棵生成树
384 7
(1,2,5,6,3) (8,3,4,3,8)
离散数学 中国地质大学 计算机学院
19
生成树 (Spanning TCaryeleey定) 理:n个顶点的标号完全图Kn有nn-2棵生成树
w(e1)<=w(e1’),从而w(T1)<=w(T*)。 依此进行,可以将ek加入到Tk-1中,将形成环,此环中必然然存在边ek’在T*中而不在T中,于是,删除ek’, 则得到生成树Tk。而显然,两边序列e1e2e3…ek 与 e1e2e3…ek’均不构成环,而按kruskal算法,必然有 w(ek)<=w(ek’), 从而 w(Tk)<= w(Tk-1)<=w(T*) ……, 最后可以将em加入到Tm-1中,得到生成树Tm,且w(Tm)<=…<=w(Tk)<= w(Tk-1)<=… <=w(T1)<=w(T*)。 而此时, T所有边都加入到Tm中,即Tm=T。故w(T)<=w(T*) 因此,T为最小生成树。
(3,2,2,3,4,1)
S:(5,6,7,2,3,4)
5
1
32 6
4
8
7
因此,序列集合{t1,t2,…,tn}与Kn的生成树集合存在双射关系。
离散数学 中国地质大学 计算机学院
29
2 生成树(Spanning Tree) 最小生成树(minimum spanning tree)
算法? Kruskal算法
离散数学及其应用课件:树

树
图7-13 二叉树
树
例7.11 计算机中存储的文件目录,目录可以包含子目录
和文件。图7-14用多叉树表示一个文件系统。C表示根目录,
可以表示成根树,内点表示子目录,树叶表示文件或空目录。
树
图7-14 多叉树表示的文件系统
树
2.二叉树的遍历
定义7.10 对于一棵根树的每个结点都访问一次且仅一次
树
图7-16 给定单词二叉搜索树
树
7.2.3 最优二叉树及其应用
1.哈夫曼树
树
例7.14 计算图7-17所示带权二叉树的权值。
图7-17-带权二叉树
树
7.2.1 根树的概念
定义7.6 一个有向图D,如果略去有向边的方向所得的无
向图为一棵无向树,则称D为有向树。换句话说,若有向图的
基图是无向树,那么这个有向图为有向树。入度为0的顶点称
为树根(Root),入度为1且出度为0的顶点称为树叶;入度为1且
出度大于0的顶点称为内点。内点和树根统称为分支点。
有一种特殊结构的有向树叫根树。
图7-2 无向图
树
树
例7.2 设T 是一棵树,它有三个2度结点,两个3度结点,一
个4度结点,求T 的树叶数。
树
7.1.2 生成树的概念与性质
1.生成树的概念
定义7.2 设G=<V,E>是无向连通图,T 是G 的生成子图,并
且T 是树,则称T 是G的生成树(SpanningTree),记为TG 。
树
定理7.1 设G=<V,E>是n 阶无向图,G 中有m 条边,则下面
关于G 是树的命题是等价的:
(1)G 连通而不含回路;
(2)G 的每对顶点之间具有唯一的一条路径;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
树是一种特殊的图, 它是图论中重要的概念之一, 它有 着广泛的应用.在计算机科学中有如判定树、语法树、分 类树、搜索树、目录树等等. 一.树 (Tree) (a) 1.树的定义:一个连通无回路的 无向图T,称之为树. 如(a) 2.叶结点:度数为1的结点, 称为叶结点. (b) 3.分支结点(内结点):度数大于1的结点. 4.森林:一个无向图的每个连通分支都是树.如(b)
三.赋权图的最小生成树 1.定义:一棵生成树中的所有边的权之和称为该生成树的 权. 具有最小权的生成树,称为最小生成树. 最小生成树很有实际应用价值.例如结点是城市名,边的权 表示两个城市间的距离, 从一个城市出发走遍各个城市, 如何选择最优的旅行路线.又如城市间的通信网络问题,如 何布线,使得总的线路长度最短. 例如:右图所示 2 v3 v2 2.求最小生成树算法 3 5 1 1 2 7 ---Kruskal算法: 7 v1 8 v8 v5 3 v4 (贪婪算法) 4 3 4 6 2 4 v7 v6 6
Kruskal算法: 设G是有n个结点,m条边(m≥n-1)的连通 图. S=Φ i=0 j=1
将所有边按照权升序排序: e1, e2, e3,… ,em S=S∪{ai} j=j+1 ai=ej i=i+1
|S|=n-1
N
Y
输出S
停பைடு நூலகம்
N
取ej使得 S∪{ ej}有回路? Y
j=j+1
|S|=n-1, 说明是树 最后S={a1, a2, a3,… ,an-1}
5.与树定义等价的几个命题 定理1给定图T, 以下关于树的定义是等价的. ⑴ T无回路的连通图. ⑵T无环且每对结点之间有一条且仅有一条路. ⑶ T无回路但在任一对不相邻的顶点间添加一条 新边e,则T+e包含唯一的回路. ⑷ T连通的,且每条边都是割边. ⑸ T连通的且m=n-1. ⑹ T无回路且m=n-1. 证明:⑴⑵:已知T是连通无回路图,所以T中无环。 若T中存在两条不同的u-v路P1和P2,则存在 P1的一条边e=xy,它不是P2的边,因此(P1 P2)-e连通,所以, (P1 P2)-e存在一条x-y 路P,故P+e是T的圈,矛盾。
二. 生成树 在图论的应用中,找出一个连通图的所有不同的生成树,以 及找出最小生成树是很有意义的. 1.定义:如果图G的生成子图是树,则称此树为G的生成树. 2.弦:图G中,不在其生成树里的边,称作弦. 所有弦的集合, 称为该生成树的补. v1 定理2 连通图G中至少有一棵生成树. v2 v3 证明:如果G中无回路, 则G本身就是树. v5 如果G中有回路,可以通过反复删去回路 v4 中的边,使之既无回路,又连通.就得到生成树. 思考题:设G是有n个结点,m条边的连通图, 问要删去多少 条边,才得到一棵生成树?
⑸ T连通的且m=n-1. ⑹ T无回路且m=n-1. ⑸⑹:只需证明T无回路。对T关于顶点 数归纳。 当n=1或n=2时,显然成立。 假设nk时结论成立,往证n=k+1时成 立。 因为T连通,所以(T)1,由m=n-1及 d(v)=2m得,T中至少存在一点u,使 得d(u)=1。考虑T’=T-u,显然T’连通, 且|E(T’)|=|V(T’)|-1,由归纳假设,T’ 无回路,所以T无回路。
Prin算法(边割法)
⑵T无环且每对结点之间有一条且仅有一条路. ⑶ T无回路但在任一对不相邻的顶点间添加一条 新边e,则T+e包含唯一的回路. ⑷ T连通的,且每条边都是割边. ⑵⑶:显然T无回路,否则对回路上的任一对顶 点都至少存在两条路,与⑵矛盾。设u,v是T 中任意两个不相邻的点,令e=uv,由⑵,T中 有一条唯一的u-v路,所以T+e中包含唯一的回 路。 ⑶⑷:因为T无回路,所以T的每条边都是割边; 若T不连通,设T1,T2是T的两个分支,设 uV(T1), vV(T2), 则uvE(T),显然T+uv 不存在回路,与⑶矛盾。
⑷ T连通的,且每条边都是割边. ⑸ T连通的且m=n-1. ⑷⑸:关于点数用归纳法证明。 当n=1或2时,T是平凡图或K2,显然有m=n-1。 假设nk时结论成立,往证n=k+1时成立。 当n=k+1时。取T的一条边e,由⑷,e是割边, 所以T-e有两个分支T1和T2, 因为|V(T1)|k, |V(T2)|k, 所以,由归纳假设,有 |E(T1)|=|V(T1)|-1, |E(T2)|=|V(T2)|-1 故m=|E(T1)|+|E(T2)|+1 =|V(T1)|-1+ |V(T2)|-1+1 =n-1。
边按升序排序:边(vi, vj)记成eij e34 e23 e38 e17 边 e28 权 1 1 2 2 2
e24 3
e45 3
e57 3
e16 4
e35 e46 e67 e58 e12 e18 边 e78 e56 4 5 6 6 7 7 8 权 4 2 v3 v2 3 5 1 1 7 2 7 v1 8 v8 v5 3 v4 4 3 4 2 v3 v2 6 2 4 1 1 v7 v 6 6 v1 v8 v5 3 v4 4 3 2 v7 v6
⑹ T无回路且m=n-1. ⑴ T无回路的连通图. ⑹⑴:假设T不连通,设T1, T2,…, Tk为T的连通分支,则 k2。对任意的Ti,Ti是无回路的连通图,所以Ti是树, 由⑹得, |E(Ti)|=|V(Ti)|-1 故m=i=1k|E(Ti)|=i=1k|V(Ti)|-k =n-k<n-1 矛盾。 定理2:每一非平凡树至少有两片树叶。 证明:设T是一非平凡树,则m=n-1。 因为T连通且非平凡,所以(T)1。 设T有k片树叶,则剩余的n-k个顶点的度至少为2。由 d(v)=2m得,k+2(n-k)m=2(n-1), 所以 k2。