2018-2019学年福建省福州一中七年级(下)期中数学试卷
2018-2019学年七年级数学下学期期中原创卷B卷(福建)(考试版)

数学试题 第1页(共4页) 数学试题 第2页(共4页)2018-2019学年下学期期中原创卷B 卷七年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:华师大版七下第6~8章。
第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.﹣27的立方根是 A .3B .﹣3C .±3D .﹣2.当x =-2时,下列不等式成立的是 A .x -5>-7 B .12x +2>0 C .2(x -2)>-2D .3x >2x3.x 与y 的差的5倍与2的和是一个非负数,可表示为 A .5(x -y )+2>0 B .5(x -y )+2≥0 C .x -5y +2≥0D .5x -2y +2≤04.下列计算正确的是 A .x 4•x 4=x 16B .23225()24a b a b -=C .2336()ab a b -=D .a +2a =3a5.若a =a 在数轴上对应的点的大致位置 A .B .C .D .6.下列说法:①一个正数的算术平方根总比这个数小;②任何一个实数都有一个立方根,但不一定有平方根;③无限小数是无理数;④无理数与有理数的和是无理数. 其中正确的是A .①②B .③④C .①③D .②④7.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为 A .5B .2.5C .25D .108.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于A .3B .0C .2D .19.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )如图甲,把余下的部分拼成一个矩形乙,根据两个图形中阴影部分的面积相等,可以验证A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 210.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有A .6个B .5个C .4个D .3个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 11.已知2x –6=0,则4x =__________.12.已知(m –2)x |m –1|+y =0是关于x ,y 的二元一次方程,则m =__________. 13.由5x =4x +5得5x –4x =5,在此变形中,方程两边同时加上了__________.数学试题 第3页(共4页) 数学试题 第4页(共4页)14.如果|x –2y +1|+|x +y –5|=0,那么xy =__________.15.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 值是__________.16.对非负实数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n –12≤x <n +12,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论: ①(1.493)=1; ②(2x )=2(x ); ③若(112x -)=4,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有(m +2019x )=m +(2019x ); ⑤(x +y )=(x )+(y );其中,正确的结论有__________(填写所有正确的序号).三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程:(1)2–3(x –5)=2x ;(2)313x -=1–416x -.18.(本小题满分8分)已知不等式组3462211132x x x x -≤-⎧⎪+-⎨-<⎪⎩,并求此不等式组的整数解.19.(本小题满分8分)一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,求原两位数.20.(本小题满分8分)机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?21.(本小题满分8分)设m 为整数,且关于x 的一元一次方程(m –5)x +m –3=0.(1)当m =2时,求方程的解; (2)若该方程有整数解,求m 的值.22.(本小题满分10分)“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?23.(本小题满分10分)阅读下列材料,然后解答后面的问题.已知方程组372041027x y z x y z ++=++=⎧⎨⎩,求x +y +z 的值.解:将原方程组整理得()()()()23203327x y x y z x y x y z ++++=++++=⎧⎪⎨⎪⎩①②,②–①,得x +3y =7③, 把③代入①得,x +y +z =6.仿照上述解法,已知方程组6422641x y x y z +=--+=-⎧⎨⎩,试求x +2y –z 的值.24.(本小题满分12分)对x ,y 定义一种新运算T ,规定:T (x ,y )=2ax byx y++(a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=01201a b ⨯+⨯⨯+=b .若(11)2(2,1)1T T -=-⎧⎨=⎩,.(1)求a ,b 的值.(2)解关于m 的不等式:T (2m ,3–4m )≤8.25.(本小题满分14分)我市某蔬菜种植农户购买白菜苗和西红柿苗共1000株,其中白菜苗每株3元,西红柿苗每株5元.已知该农户打算用不少于3600元但不多于3800元的资金购买两种蔬菜. (1)求该农户可以购买白菜苗株数的最大值和最小值;(2)该农户按(1)中购买白菜苗株数的最小值的方案购买两种蔬菜苗,经过农户的精心培育,两种蔬菜苗全成活.根据以往的数据分析,平均一株白菜苗可长成2千克白菜,平均一株西红柿苗可结3千克西红柿.农户计划采用直接销售和生态采摘销售两种方式进行销售,其中直接销售白菜的售价为每千克4元,直接销售西红柿的售价为每千克5元;生态采摘销售时两种蔬菜的售价一样,都比直接销售白菜的售价高a %,但生态采摘过程中会有10%的损耗.当白菜和西红柿各直接销售一半后、剩下的全部采用生态采摘销售时,该农户可获得8080元的利润.求a 的值.。
福建省福州市七年级下学期期中数学试卷

福建省福州市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列方程组中不是二元一次方程组的是()A .B .C .D .2. (2分)已知|x+y﹣3|+(x﹣2y)2=0,则()A .B .C .D .3. (2分)若二次函数配方后为,则 m,k 的值分别为()A . 0,6B . 0,2C . 4,6D . 4,24. (2分) (2016七下·天津期末) 甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多,如果甲先做30个,乙再开始做,4天后乙反比甲多做10个.甲,乙两人每天分别做多少个?设甲,每天做x个,乙每天做y个,列出的方程组是()A .B .C .D .5. (2分)(2018·灌南模拟) 下列运算中,正确的是().A .B .C .D .6. (2分) (2020九下·下陆月考) 下列计算正确的是()A .B .C .D .7. (2分)下列各式可以分解因式的是()A . x2-y2B . a2+b2C . mx-nyD . -x2-y28. (2分) (2017七下·钦南期末) 把代数式xy2﹣9x分解因式,结果正确的是()A . x(y2﹣9)B . x(y+3)2C . x(y+3)(y﹣3)D . x(y+9)(y﹣9)9. (2分) (2017八上·罗山期末) 已知(m﹣n)2=34,(m+n)2=4 000,则m2+n2的值为()A . 2 016B . 2 017C . 2 018D . 4 03410. (2分) (2019七下·江阴月考) 同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了左图鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A .B .C .D .二、填空题 (共8题;共9分)11. (2分) (2016七下·房山期中) 若x3m﹣3﹣2yn﹣1=5是二元一次方程,则m=________,n=________.12. (1分) (2016九下·苏州期中) 若关于x,y的二元一次方程组的解满足2x+y≤2,则t 的取值范围为________.13. (1分)(﹣x﹣3)________=9﹣x2 .14. (1分)(2019·青浦模拟) (﹣2x2)3=________.15. (1分)(2017·漳州模拟) 分解因式:x3﹣4x2y+4xy2=________.16. (1分)把多项式3x3﹣6x2y+3xy2分解因式的结果是________.17. (1分) (2011七下·广东竞赛) 如图,是一块钜形的场地,长=101米,宽=52米,从A、B两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为________米218. (1分)(2019·大连模拟) 某运输队只有大、小两种货车,已知1辆大车能运3吨货物,3辆小车能运1吨货物,100吨货物恰好由100辆车一次运完.设有x辆大车,y辆小车,根据题意可列方程组为________.三、解答题 (共8题;共75分)19. (10分)(2017·杭州) 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.20. (15分)(2018八上·广东期中) 计算:(1) -3a2•(ab)2(2) x(y-5)+y(3-x)(3)(x+2)(x-1)-3x(x+1)21. (10分)将下列各式因式分解:(1) 4x2﹣16(2)﹣3x3+6x2y﹣3xy2.22. (5分)先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23. (10分)计算(1):m(m+2n)﹣(m+1)2+2m(2)计算:6.290+(﹣)﹣3﹣π2016×(﹣)2016.24. (5分)如果a2+a=0(a≠0),求a2005+a2004+12的值.25. (10分)化简并求值:(1)(m2+2m)﹣2( m2+3m),其中m= .(2)(2ab2﹣a)+(b﹣ab2)﹣(a2b+b﹣a),其中a,b,满足|a+3|+(b﹣2)2=0.26. (10分) (2016九下·海口开学考) 为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、25-1、25-2、26-1、26-2、。
2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
福建省福州市七年级数学下学期期中考试卷(含答案)

福建省福州市七年级数学下学期期中考试卷(含答案)(满分150分,完卷时间120分钟)出卷:欧之海 审核:林玲友情提示:请把答案填在答案卷上,考试结束只收答案卷。
一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请填在答案卷的相应位置)1.在−17,﹣π,0,3.14,−√2,0.3⋅,﹣7,﹣313中,无理数有( )A .1个B .2个C .3个D .4个2.下列说法正确的是( ) A .4的平方根是2 B .√16的平方根是±4 C .﹣36的算术平方根是6D .25的平方根是±53.线段CD 是由线段AB 平移得到的,点A (3,﹣1)的对应点C 的坐标是(﹣2,5),则点B (0,4)的对应点D 的坐标是( ) A .(5,﹣7)B .(4,3)C .(﹣5,10)D .(﹣3,7)4.如图,将一张矩形纸片和一张直角三角形纸片叠放在一起,∠1+∠2的值是( )A .180°B .240°C .270°D .300° 5.41在下面哪两个整数之间( ) A .5和6B .6和7C .7和8D .8和96.在《九章算术》中记载一道这样的题:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,甲、乙持钱各几何?”题目大意是:甲、乙两人各带若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50,如果乙得到甲所有钱的23,那么乙也共有钱50.甲、乙两人各需带多少钱?设甲需带钱x ,乙带钱y ,根据题意可列方程组为( )A .{x +y =5023x +y =50 B .{x +2y =5023x +y =50 C .{12x +y =50x +23y =50 D .{x +12y =5023x +y =507.解三元一次方程组{x −y +z =−3,①x +2y −z =1,②x +y =0,③要使解法较为简便,首先应进行的变形为( )A .①+②B .①﹣②C .①+③D .②﹣③8.如图,AB ∥CD ,与EF 交于B ,∠ABF =3∠ABE ,则∠E +∠D 的度数( )A .等于30°B .等于45°C .等于60°D .不能确定9.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于( )A .80cmB .75cmC .70cmD .65cm10.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m +n 的值可能是( )A .2018B .2019C .2020D .2021二、填空题(共6小题,每题4分,满分24分;请将正确答案填在答案卷相应位置) 11.已知{x =4y =m 是二元一次方程7x +2y =10的一组解,则m 的值是 .12.若2 x 有意义,则x 的取值范围是 .13.若在平面直角坐标系中,点P 的坐标是(x ,y )且x >y ,则点P 不可能在第 象限.14.如图,长为4a 的长方形,沿图中虚线裁剪成四个形状大小完全相同的小长方形,那么每个小长方形的周长为 (用含a 的代数式表示).第9题图 第10题图15.点P (3m +1,2m ﹣5)到两坐标轴的距离相等,则m = .16.在平面直角坐标系中,存在不在同一直线上的三点A (3m ﹣2,n+1)、B (3m+n ,n ﹣5)、C (3m+4,n+1),△ABC 的面积S= .三、解答题(满分86分;请将答案及解答过程填在答案卷相应位置,每题分值在答卷) 17.(1)求等式中x 的值:4x 2﹣81=0;(2)计算:−12020+√(−2)2−√273+|2−√3|.18.解二元一次方程组:(1){x −2y =7x +y =10 (2) {x −12y =13(x −y)+y =519.解不等式并把解集表示在数轴上.(1)5)2(4)1(3--≤+x x ; (2)6313--x x<.20.如图所示,三角形ABC 中,AD ⊥BC 于点D ,点E 为CA 的延长线上的一点, 作EG ⊥BC 于点G ,若∠E =∠1,求证:∠2=∠3.21. 在平面直角坐标系中,有A (﹣2,a +1),B (a ﹣1,4),C (b ﹣2,b )三点.(本题需写过程) (1)当点C 在y 轴上时,求点C 的坐标; (2)当AB ∥x 轴时,求A ,B 两点间的距离; (3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.22.某校七年级为了开展球类兴趣小组,需要购买一批足球和篮球﹒若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元. (1)求出足球和篮球的的单价分别是多少?(2)已知该年级决定用800元购进这两种球,若两种球都要有,请问有几种购买方案,并请加以说明﹒23.若关于x ,y 的二元一次方程组⎩⎨⎧-=++=-m y x m y x 74232(1)若方程组的解也是二元一次方程73=-y x 的解,求m 的值. (2)若方程组的解满足1+y x >,求m 的取值范围.24.对有序数对(m ,n )定义新运算:f (m ,n )=(am+bn ,am-bn ),其中a ,b 为常数.f 运算的结果也是一对有序数对.例如:当a=1,b=1时,f (-2,3)=(1,-5) (1)当a=-1,b=2时,f (2,3)= .(2)若f (-3,-1)=(3,1),则a= ,b= .(3)有序数对(m ,n ),满足 n=2m ,f (m ,n )=(m ,n ),求a ,b 的值.(本小题需写过程)25.如图所示,点A 的坐标为A (0,a ),将点A 向右平移b 个单位得到点B ,其中b a ,满足05)232=-++-b a b a (.(1)求点B 的坐标,连结AB ,OB 并求△AOB 的面积AOB S △;(2)在x 轴上是否存在一点D ,使得AOD AOB S S △△2=? 若存在,求出点D 的坐标,若不存在,请说明理由;(3)按要求画图:延长线段AB 至M ,作∠OBM 的平分线BF 交x 轴于点F ,作∠AOB 的平分线OE 与射线FB 交于点E. 根据图形求∠OEF 的度数.AOxByAOxBy备用图161658433≥≤--≤+x x x x ﹣﹣393362)3(62<<﹣<﹣﹣<x x x x x x +参考答案一、选择题 B D C C B D A B B C 二、填空题11. m=﹣9 12. x ≥﹣2 13. 二 14. 6a 15. m=﹣6或0.8 16. 18 三、解答题17、(1)4x 2﹣81=0,则x 2=814,故x =±92;(2)原式=﹣1+2﹣3+2−√3=−√3. 18、解:(1){x −2y =7①x +y =10②,②﹣①得:3y =3, 解得:y =1,把y =1代入②得:x =9, 则方程组的解为{x =9y =1;(2)方程组整理得:{2x −y =2①3x −2y =5②,①×2﹣②得:x =﹣1,解得:x =﹣1代入①得:﹣2﹣y =2, 解得:y =﹣4,则方程组的解为{x =−1y =−4.19、(1)解: (2) (数轴略)20、证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGD=∠ADC=90° ∴EG ∥AD∴∠1=∠2,∠E =∠3又∵∠E =∠1 ∴∠2=∠3 21、解:(1)∵点C 在y 轴上, ∴b ﹣2=0,解得b =2, ∴C 点坐标为(0,2); (2)∵AB ∥x 轴, ∴A 、B 点的纵坐标相同, ∴a +1=4,解得a =3, ∴A (﹣2,4),B (2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4; (3)∵CD ⊥x 轴,CD =1, ∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).22、解:(1)设足球的单价x 元,篮球的单价为y 元,根据题意得 ……………1分3558043480x y x y +=⎧⎨+=⎩………………………………………………3分 解得8060x y =⎧⎨=⎩ ………………………………………………4分 (2)设购买足球的单价a 个,购买篮球b 个,根据题意,得8060800a b += …………………………………………………6分化简得:4034ba -=∵两种球都要有∴a 和b 都是正整数 …………………………………………7分 ∴有三种购买方案分别是()1112a b ⎧=⎨=⎩()428a b =⎧⎨=⎩()734a b =⎧⎨=⎩ …………9分23、解:(1)解方程组得⎩⎨⎧-=-=my mx 312代入73=-y x ,得 17)31(32==---m m m 解得:(2)由(1)得⎩⎨⎧-=-=m y mx 312代入1+y x >,得131-2>解得:>m m m +-24、(1)f (2,3)=(4,﹣8)(2)132﹣,=-=b a (3)依题意得:⎪⎪⎩⎪⎪⎨⎧==⎪⎩⎪⎨⎧==-=+41232﹣,解得b a m n n bn am m bn am 25、(1)∵05)232=-++-b a b a (⎩⎨⎧==⎩⎨⎧=-+=-3205023b a b a b a 解得: ∴B (3,2),30-3221=⨯⨯=)(△AOB S (2)设D (x ,0)),()或(点,或解得:∵△△0230,23232332212,2D D x x x S S AOD AOB -∴=-==⨯⨯∴=(3)如图所示: ∵OE 平分∠AOB ∴∠AOE=∠BOE设∠AOE= ∠BOE= x °,∠BOF= y °, ∠OBF=∠OFB = z °,则⎪⎩⎪⎨⎧=∠+++=+=+1801802902E z y x z y y x 解得∠E=45°。
2018-2019学年福建省XX市七年级下册期中数学试卷(含答案解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()A.x﹣2y=4B.xy=4C.3y﹣1=4D.2.已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1B.3x<3y C.﹣x<﹣y D.3.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=84.不等式组1≤x<2的解集在数轴上可表示为()A.B.C.D.5.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣36.二元一次方程组的解是()A.B.C.D.7.方程+1=,去分母后正确的是()A.3(x+2)+12=4x B.12(x+2)+12=12xC.4(x+2)+12=3x D.3(x+2)+1=4x8.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个9.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>110.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标价为x元,裤子标价为y元,则可列出方程组为()A.B.C.D.二、填空题(每题4分,共24分)11.如果x=6是方程2x+3a=0的解,那么a的值是.12.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.13.x的3倍与5的和大于8,用不等式表示为.14.已知:,则x+y+z=.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.16.已知关于x,y的方程组(1)由方程①﹣②,可方便地求得x﹣y=;(2)若方程组的解满足x+y>0,则a的取值范围是.三、计算题(本大题共5小题,共40分)17.(12分)解方程:(1)5x+6=3x+2(2).18.(6分)解二元一次方程组:.19.(6分)解不等式x﹣2(x﹣1)>0,并将它的解集在数轴上表示出来.20.(8分)解不等式组:并写出它的所有的整数解.21.(8分)二元一次方程组的解满足2x﹣ky=1,求k的值.四、解答题(本大题共4小题,共46分)22.(8分)某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.24.(14分)某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?25.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()A.x﹣2y=4B.xy=4C.3y﹣1=4D.【分析】利用一元一次方程的定义判断即可.【解答】解:各方程中,是一元一次方程的是3y﹣1=4,故选:C.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1B.3x<3y C.﹣x<﹣y D.【分析】根据不等式的性质逐项分析即可.【解答】解:A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D、不等式两边乘(或除以)同一个正数,等式两边加(或减)同一个数(或式子),不等号方向不变.故本选项错误.故选:C.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=8【分析】方程组中两方程相减消去x得到结果,即可做出判断.【解答】解:,①﹣②得:﹣7y=8,故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.不等式组1≤x<2的解集在数轴上可表示为()A.B.C.D.【分析】先在数轴上表示不等式组的解集,再选出即可.【解答】解:不等式组1≤x<2的解集在数轴上可表示为:,故选:C.【点评】本题考查了在数轴上表示不等式的解集,能把不等式组的解集在数轴上表示出来是解此题的关键.5.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣3【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选:B.【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.6.二元一次方程组的解是()A.B.C.D.【分析】方程组的解,指的是该数值满足方程组中的每一方程,用代入消元法可解方程组.【解答】解:二元一次方程组,即,解得x=2.则y=﹣3.【点评】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.7.方程+1=,去分母后正确的是()A.3(x+2)+12=4x B.12(x+2)+12=12xC.4(x+2)+12=3x D.3(x+2)+1=4x【分析】根据等式的性质方程两边都乘以12即可.【解答】解:+1=,去分母得:3(x+2)+12=4x,故选:A.【点评】本题考查了解一元一次方程的应用,能正确根据等式的性质进行变形是解此题的关键,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.8.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个【分析】先根据一元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选:C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x 的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>1【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出a+1<0是解题的关键.10.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标价为x元,裤子标价为y元,则可列出方程组为()A.B.C.D.【分析】根据“上衣标价为x元,裤子标价为y元”可得x+y=250;由“上衣按标价打九折,裤子按标价打八五折”可得0.9x+0.85y=180,可得方程组.【解答】解:设上衣标价为x元,裤子标价为y元,由题意得,,故选:C.【点评】本题主要考查了二元一次方程组的实际运用,根据题意找出等量关系是解答此题的关键.二、填空题(每题4分,共24分)11.如果x=6是方程2x+3a=0的解,那么a的值是﹣4.【分析】把x=6代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=6代入方程2x+3a=0得:12+3a=0,解得:a=﹣4,故答案为:﹣4.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.12.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=3.【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得m﹣3=1,2﹣n=1,解出m、n的值可得答案.【解答】解:由题意得:m﹣3=1,2﹣n=1,解得:m=4,n=1,m﹣n=4﹣1=3,故答案为:3.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.13.x的3倍与5的和大于8,用不等式表示为3x+5>8.【分析】先表示出x的3倍,再表示出与5的和,最后根据大于8可得不等式.【解答】解:根据题意可列不等式:3x+5>8,故答案为:3x+5>8;【点评】本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.已知:,则x+y+z=6.【分析】三个式子左右两边分别相加即可求解.【解答】解:三个式子相加得:2(x+y+z)=12,则x+y+z=6.故答案是:6.【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与x+y+z的关系是关键.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为x<﹣6.【分析】首先转化成一般的不等式,然后解不等式即可.【解答】解:根据题意得:2x+12<0,解得:x<﹣6.故答案是:x<﹣6.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.已知关于x,y的方程组(1)由方程①﹣②,可方便地求得x﹣y=2a;(2)若方程组的解满足x+y>0,则a的取值范围是a>﹣1.【分析】(1)直接用①﹣②,即可得出答案;(2)直接用①+②,即可得出x+y,根据x+y>0,再求出a的取值范围.【解答】解:(1),①﹣②得,2x﹣2y=1+3a﹣1+a,即x﹣y=2a;(2)①+②得,4x+4y=1+3a+1﹣a,即x+y=a+;∵x+y>0,∴a+>0,解得a>﹣1;故答案为2a;a>﹣1.【点评】本题考查了解二元一次方程组,是基础知识要熟练掌握.三、计算题(本大题共5小题,共40分)17.(12分)解方程:(1)5x+6=3x+2(2).【分析】(1)依次移项、合并同类项、系数化为1可得;(2)去分母、去括号、移项、合并同类项,系数化成1可得.【解答】解:(1)移项,得:5x﹣3x=2﹣6,合并同类项,得:2x=﹣4,系数化为1,得:x=﹣2;(2)去分母得:2x+4=20﹣5x+5,移项,得:2x+5x=20+5﹣4,合并同类项,得:7x=21,系数化为1,得:x=3.【点评】本题考查了解一元一次方程,解一元一次方程的步骤是:去分母、去括号、移项、合并同类项,系数化成1.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②得:7x=14,即x=2,把x=2代入①得:y=﹣3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(6分)解不等式x﹣2(x﹣1)>0,并将它的解集在数轴上表示出来.【分析】解不等式的步骤为:去括号;移项及合并;系数化为1;再将它的解集在数轴上表示出来即可.【解答】解:去括号得x﹣2x+2>0,移项得x﹣2x>﹣2,合并得﹣x>﹣2,系数化为1,得x<2.解集在数轴上表示为:【点评】本题考查了解不等式的一般步骤,需注意在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.20.(8分)解不等式组:并写出它的所有的整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:解不等式①得,x≥1,解不等式②得,x<4,所以不等式组的解集是1≤x<4,所以不等式组的所有整数解是1、2、3.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.21.(8分)二元一次方程组的解满足2x﹣ky=1,求k的值.【分析】利用加减消元法求出x、y的值,将x、y的值代入方程得出关于k的方程,解之可得答案.【解答】解:,①+②×2得:7x=7,即x=1,把x=1代入①得:y=2,∴方程组的解为,代入2x﹣ky=1中得:2﹣2k=1,解得:.【点评】本题主要考查二元一次方程组的解,解题的关键是掌握解二元一次方程的方法和二元一次方程的解的定义.四、解答题(本大题共4小题,共46分)22.(8分)某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.【分析】设每辆A型车售价为x万元,B型车的售价为y万元,根据1辆A型车和3辆B型车的销售总额为96万元,2辆A型车和1辆B型车的销售总额为62万元,列出二元一次方程组,求解即可.【解答】解:设每辆A型车售价为x万元,B型车的售价为y万元,根据题意,得,解得:,答:每辆A型车售价为18万元,B型车的售价为26万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出正确的二元一次方程组并求解.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.【分析】(1)设甲、乙合作x天才能把该工程完成,根据总工程量=甲单独做4天完成的部分+甲、乙合作完成的部分即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总费用=单天费用×工作时间即可算出甲、乙两队的费用,将其相加即可得出结论.【解答】解:(1)设甲、乙合作x天才能把该工程完成,根据题意得:×4+(+)x=1,解得:x=20.答:甲、乙合作20天才能把该工程完成.(2)甲队的费用为2500×(20+4)=60000(元),乙队的费用为3000×20=60000(元),60000+60000=120000(元).答:完成此项工程需付给甲、乙两队共120000元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据总工程量=甲单独做4天完成的部分+甲、乙合作完成的部分列出关于x的一元一次方程;(2)根据数量关系列式计算.24.(14分)某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?【分析】(1)本题首先找出题中的等量关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.(2)根据题意列出W与x之间的函数关系式,利用一次函数的增减性和(1)得到的取值范围即可求得最大利润.【解答】解:(1)设安排生产A种产品x件,则生产B种产品(50﹣x)件,根据题意有:,解得:30≤x≤32,∵x为整数,∴x30,31,32,所以有三种方案:①安排A种产品30件,B种产品20件;②安排A种产品31件,B种产品19件;③安排A种产品32件,B种产品18件.(2)设安排生产A种产品x件,那么利润为:W=700x+1200(50﹣x)=﹣500x+60000,∵k=﹣500<0,∴W随x的增大而减小,∴当x=30时,对应方案的利润最大,W=﹣500×30+60000=45000,最大利润为45000元.∴采用方案①所获利润最大,为45000元.【点评】本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.25.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.。
福建省福州市七年级下学期数学期中考试试卷

福建省福州市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列运算正确的是()A . (a+b)2=a2+b2B . x3+x3=x6C . (a3)2=a5D . (2x2)(﹣3x3)=﹣6x52. (2分) (2018八下·邯郸开学考) 某细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()。
A .B .C .D .3. (2分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A . 30°B . 40°C . 20°D . 35°4. (2分)下列说法中,正确的有()①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④能够完全重合的图形是全等形.A . 1个B . 2个C . 3个D . 4个5. (2分)如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()A . 155°B . 50°C . 45°D . 25°6. (2分)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A . ①②③B . ①②④C . ①③④D . ①②③④二、填空题 (共8题;共10分)7. (2分)如图,已知在△ABC中,∠ACB=90°,AC=6,点G为重心,GH⊥BC,垂足为点H,那么GH=________ .8. (1分) (2018八上·营口期末) 若x2+kx+16是一个完全平方式,则k值为________.9. (1分) (2017七下·靖江期中) 已知,则=________.10. (2分)如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于________.11. (1分) (2017七下·温州期中) 已知, ,则的值是________.12. (1分)一个三角形的底边a增加了k,该边上的高h减少k后,若其面积保持不变,则a﹣h=________.13. (1分) (2018八上·天台月考) 在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB上一点,AE=AD,且BF∥CD,AF⊥CE的延长线于F.连接DE交对角线AC于H.下列结论:①△ACD≌ACE;②AC垂直平分ED;③CE=2BF;④CE平分∠ACB.其中结论正确的是________.(填序号)14. (1分)(2016·金华) 如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.三、解答题 (共12题;共90分)15. (5分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.16. (5分)利用乘法公式计算:(1)(2x﹣3y)2﹣(y+3x)(3x﹣y)(2)(a﹣2b+3)(a+2b﹣3).17. (5分) (2019七下·九江期中) (-2x3y)3÷(2x2)18. (5分) (2019八上·吉林期末) 计算:(1);(2)(6x4﹣8x3)÷(﹣2x2).19. (5分)992+2×99+1.20. (5分)先化简,再求值:(2a+b)(2a﹣b)+(2a﹣b)2 ,其中a=﹣1,b=2.21. (5分) (2019七上·姜堰期末) 先化简,再求值:-2x2•4x4+(x4)2÷x2-(-3x3)2 ,其中x3= .22. (10分)(﹣3)7÷(﹣3)5 .23. (5分) (2019七下·大通回族土族自治月考) 如图,若∠ADE=∠ABC ,BE⊥AC于E ,MN⊥AC于N ,证明:∠1=∠2.24. (5分) (2020八上·长丰期末) 如图,已知于F,且,,求的度数.25. (20分)某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲, y乙(单位:元),y甲, y 乙与销售量x(单位:件)的函数关系如图所示,请你根据图象解决下列问题:(1)分别求出y甲、y乙与x的函数关系式;(2)现在厂家有商品500件,单独分配给甲商场或乙商场,分配给哪个商场,厂家获得的利润更高?请说明理由并求出最大利润.(3)现在厂家有商品1200件,分配给甲商场和乙商场,如何分配,厂家获得的总利润最大?26. (15分) (2017八下·无棣期末) 在矩形ABCD中,∠DAB的平分线交BC于点E,交DC的延长线于点F,连接BD.(1)计算∠AEC的度数;(2)求证:BE=DC;(3)点P是线段EF上一动点(不与点E,F重合),在点P运动过程中,能否使△BDP成为等腰直角三角形?若能,写出点P满足的条件并证明;若不能,请说明理由.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共90分)15-1、16-1、16-2、17-1、18-1、18-2、19-1、20-1、21-1、22-1、23-1、24-1、25-1、25-2、25-3、26-1、26-2、26-3、第11 页共11 页。
福建省福州市七年级下学期数学期中考试试卷

福建省福州市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法中,不正确的是()A . 垂线段最短B . 两直线平行,同旁内角相等C . 对顶角相等D . 两点之间,线段最短2. (2分)(2019·婺城模拟) 在、、,中,最小的数是()A .B .C .D .3. (2分)(2019·二道模拟) 点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .4. (2分)下列说法错误的是()A . 5是25的算术平方根B . 1是1的一个平方根C . (-4)2的平方根是-4D . 0的平方根与算术平方根都是05. (2分) (2017七下·荔湾期末) 在﹣2,,,3.14这4个数中,无理数是()A . ﹣2B .C .D . 3.146. (2分) (2019七下·潜江月考) 如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为()A . 65°B . 85°C . 95°D . 115°7. (2分)在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定;正方形内部不包括边界上的点,如果如图所示的中心在原点,一边平行于x轴的正方形,边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整数点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内的整点个数为()A . 42B . 40C . 36D . 498. (2分) (2017七下·临沭期末) 如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为()A . (m+2,n+1)B . (m﹣2,n﹣1)C . (m﹣2,n+1)D . (m+2,n﹣1)9. (2分) (2019七下·方城期中) 已知是方程组的解,则的值是()A . 10B . -8C . 15D . 2010. (2分) (2017七下·南平期末) 如图,小明作出了边长为1的第1个正△A1B1C1 ,算出了正△A1B1C1的面积。
2018-2019学年福建省福州一中七年级(下)期中数学试卷

2018-2019学年福建省福州一中七年级(下)期中数学试卷一、选择题(每小题3分,共30分,请把答案写在答题卷上!)1.(3分)在平面直角坐标系中,点P(1,﹣5)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>03.(3分)下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵4.(3分)平方根等于本身的数有()个.A.1B.2C.3D.45.(3分)在下列实数中无理数有()个.A.2B.3C.4D.56.(3分)点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)7.(3分)如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是()A.∠1=∠2B.∠B=∠DCEC.∠3=∠4D.∠D+∠DAB=180°8.(3分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(3分)如图,直线l∥m,将Rt△ABC(∠ABC=45°)的直角顶点C放在直线m上,若∠2=24°,则∠1的度数为()A.21°B.22°C.23°D.24°10.(3分)若定义f(x)=3x﹣2,如f(﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f(x)=1时,x=1;②对于正数x,f(x)>f(﹣x)均成立;③f(x﹣1)+f(1﹣x)=0;④当a=2时,f(a﹣x)=a﹣f(x).其中正确的是()A.①②B.①③C.①②④D.①③④二、填空题(11-12题每空2分,13-18每小题4分,共32分,请把答案写在答题卷上!)11.(4分)若x3=8,则x=;若x2=81,则x=.12.(4分)化简=;计算+=.13.(4分)将方程x﹣2y=5变形为用含x的代数式表示y的形式是y=.14.(4分)的整数部分是.15.(4分)在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是.16.(4分)步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打折.17.(4分)关于x,y的方程组的解满足不等式组,则m的取值范围.18.(4分)关于x的不等式组:有5个整数解,则a的取值范围是.三、解答题(共88分,请把答案写在答题卷上!)19.(4分)计算20.(4分)已知点M(a,2)与点N(b﹣5,3),若MN与y轴平行,求2a﹣b.21.(14分)解方程或方程组:(1)4x2=25(2)(3)22.(10分)(1)求不等式的正整数解;(2)解不等式组23.(10分)我校开展的社团活动有:A.动漫社团;B.轮滑社团:C.音乐社团;D.诗歌社团;E.书法社团.学生管理中心为了了解全校500名学生的社团需求,开展了一次调查研究,请将下面的调查过程补全抽样调查:从七、八、九三个年级中随机抽取男女生各20名进行问卷调研;收集数据:抽样方法确定后,学生管理中心收集到如下数据(社团项目的编号,用字母代号表示)B,E,B,A,E,C,C,C,B,BA,C,E,D,B,A,B,E,C,AD,D,B,B,C,C,A,A,E,BC,B,D,C,A,C,C,A,C,E整理、描述数据:划记、整理、描述样本数据、绘制统计图如下,请补全统计表和统计图分析数据、推断结论(1)在扇形统计图中,“B轮滑社团”所在的扇形的圆心角等于度;(2)根据学生管理中心获得的样本数据,估计全校大约有名同学选择D社团.24.(10分)已知A(﹣4,0)、B(﹣3,﹣3)、C(0,﹣5)(1)画出△ABC;(2)△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+5,y1+3).画出平移后的△A′B′C′,并求△A′B′C′的面积;(3)设直线A′C′与x轴交于点Q,求交点Q坐标.25.(10分)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.26.(12分)4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?27.(14分)在平面直角坐标系中,O为坐标原点,点M、N位于第一象限,其中M的坐标为(m,5),点N的坐标(n,8),且m≥n.(1)若MN与坐标轴平行,则MN=;(2)若m、n、t满足,MA⊥x轴,垂足为A,NB⊥x轴,垂足为B.①求四边形MABN的面积;②连接MN、OM、ON,若△MON的面积大于26而小于30,求m的取值范围.附加题(共10分)若你做完仍有余力,请完成以下各题,不计入总分.(请把答案写在答题卷上!)28.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.2018-2019学年福建省福州一中七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,请把答案写在答题卷上!)1.【解答】解:点P(1,﹣5)在第四象限.故选:D.2.【解答】解:(D)∵m<1,∴m+1<2,故D错误,故选:D.3.【解答】解:A、调查“神舟十一号”飞船重要零部件的产品质量适合全面调查,不适合抽样调查,符合题意;B、调查某电视剧的收视率适合抽样调查,不符合题意;C、调查一批炮弹的杀伤力适合抽样调查,不符合题意;D、调查一片森林的树木有多少棵适合抽样调查,不符合题意;故选:A.4.【解答】解:平方根等于本身的数是0,有1个.故选:A.5.【解答】解:,﹣8,0.6,0是有理数;,,是无理数,故无理数有3个.故选:B.6.【解答】解:点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(﹣3﹣3,﹣5+4);则点B的坐标为(﹣6,﹣1).故选:C.7.【解答】解:A、正确,符合内错角相等,两条直线平行的判定定理;B、正确,符合同位角相等,两条直线平行的判定定理;C、错误,若∠3=∠4,则AD∥BE;D、正确,符合同旁内角互补,两条直线平行的判定定理;8.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.【解答】解:如图,∵∠2=24°,∴∠3=∠2=24°.∵∠A=45°,∴∠4=180°﹣45°﹣24°=111°.∵直线l∥m,∴∠ACD=111°,∴∠1=111°﹣90°=21°.故选:A.10.【解答】解:∵f(x)=1,∴3x﹣2=1,∴x=1,故①正确,f(x)﹣f(﹣x)=3x﹣2﹣(﹣3x﹣2)=6x,∵x>0,∴f(x)>f(﹣x),故②正确,f(x﹣1)+f(1﹣x)=3(x﹣1)﹣2+3(1﹣x)﹣2=﹣4,故③错误,∵f(a﹣x)=3(a﹣x)﹣2=3a﹣3x﹣2,a﹣f(x)=a﹣(3x﹣2),∴f(a﹣x)=a﹣f(x),故④正确.故选:C.二、填空题(11-12题每空2分,13-18每小题4分,共32分,请把答案写在答题卷上!)11.【解答】解:x3=8,则x=2;x2=81,则x=±9,故答案为:2;±9.12.【解答】解:||=,+═﹣2+2=0,故答案为:;0.13.【解答】解:方程x﹣2y=5,解得:y=,故答案为:14.【解答】解:∵3<<4,∴的整数部分是3.故答案为:3.15.【解答】解:∵在平面直角坐标系中,若x轴上的点P到y轴的距离为3,∴P的坐标为(±3,0),故答案为:(±3,0)16.【解答】解:设至多可打x折,则1200×﹣800≥800×5%,解得x≥7,即至多可打7折.故答案为:7.17.【解答】解:将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得,解得:m>﹣,故答案为:m>﹣.18.【解答】解:,解不等式①,得x<20,解不等式②,得x>3﹣2a,∵不等式组有5个整数解,依次为:19,18,17,16,15,∴14≤3﹣2a<15,解得﹣6<a≤﹣.故本题答案为:﹣6<a≤﹣.三、解答题(共88分,请把答案写在答题卷上!)19.【解答】解:原式=3﹣2+2﹣=3﹣;20.【解答】解:若MN与y轴平行,则点M、N的横坐标相同,即a=b﹣5,整理得:2a﹣b=﹣10.21.【解答】解:(1)∵4x2=25,∴x2=,∴x=±;(2),①+②×2得:13x=26,∴x=2,将x=2代入①得:6+4y=10,∴y=1,∴方程组的解为:;(3)原方程组化为,①×2+②得:11x=22,∴x=2,将x=2代入4x﹣y=5,∴8﹣y=5,∴y=3,∴方程组的解为22.【解答】解:(1)3x+1﹣2x<4,3x﹣2x<4﹣1,x<3,则不等式的正整数解为1、2;(2)解不等式3(x+1)<2x+3,得:x<0,解不等式﹣<0,得:x<﹣2,则不等式组的解集为x<﹣2.23.【解答】解:整理、描述数据:分析数据、推断结论:(1)在扇形统计图中,“B轮滑社团”所在的扇形的圆心角等于360°×25%=90°;(2)根据学生管理中心获得的样本数据估计全校选择D社团项目的同学大约为500×10%=50人;故答案为:90、50.24.【解答】解:(1)如图所示,△ABC即为所求:(2)∵点P(x1,y1)平移后的对应点为P′(x1+5,y1+3),∴平移规律为向右5个单位,向上3个单位,∴A′(1,3),B′(2,0),C′(5,﹣2),△A′B′C′如图所示,△A′B′C′的面积=4×5﹣=3.5;(3)设直线A′C′的解析式为:y=kx+b,可得:,解得:,直线A′C′的解析式为:y=,把y=0代入解析式,可得:x=,所以点Q的坐标为(,0)25.【解答】解:(1)当a=2时,,①﹣②,得:3y=6,y=2,将y=2代入①,得:x+2=11,x=9,则方程组的解为;(2)解方程组得,∵x>y,∴>,解得a>﹣.26.【解答】解:(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据题意得:,解得:,答:雀巢巧克力”和“趣多多小饼干”各买了3包和7包;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,则50+0.9(m﹣50)<100+0.8(m﹣100),解得:m<150,若在B超市购物花费少,则50+0.9(m﹣50)>100+0.8(m﹣100),解得:m>150,如果购物在100元至150元之间,则去A超市更划算;如果购物等于150元时,去任意两家购物都一样;如果购物超过150元,则去B超市更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据题意得:100+(22n﹣100)×0.8≤20n,解得:n≥8,据题意x取整数,可得x的取值为9,所以小欣在B超市至少购买9包“雀巢巧克力”,平均每包价格不超过20元.27.【解答】解:(1)∵M的坐标为(m,5),点N的坐标(n,8),∴m=n,MN=8﹣5=3,故答案为3;(2)如图,∵m、n、t满足,∴,∴n=m﹣,①∵MA⊥x轴,NB⊥x轴,∴MA=5,NB=8,AB=m﹣n=m﹣(m﹣)=,∴S梯形AMNB=(MA+NB)•MN=×(5+8)×=;②由①知,S梯形AMNB=,MA=5,NB=8,∵MA⊥x轴,NB⊥x轴,M(m,5),N(n,8),∴OB=n,OA=m,∴S△MON=S△OBN+S梯形AMNB﹣S△OAM=n×8+﹣m×5=4n﹣m+=4(m﹣)﹣m+=m+4,∵△MON的面积大于26而小于30,∴26<m+4<30,∴<m<.附加题(共10分)若你做完仍有余力,请完成以下各题,不计入总分.(请把答案写在答题卷上!)28.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠P AD+∠P AG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠P AG,∴∠P AG=∠ADP,∴∠APD=180°﹣(∠ADP+∠P AD)=180°﹣(∠P AG+∠P AD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年福建省福州一中七年级(下)期中数学试卷一、选择题(每小题3分,共30分,请把答案写在答题卷上!)1.(3分)在平面直角坐标系中,点P(1,﹣5)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>03.(3分)下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵4.(3分)平方根等于本身的数有()个.A.1B.2C.3D.45.(3分)在下列实数中无理数有()个.A.2B.3C.4D.56.(3分)点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)7.(3分)如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是()A.∠1=∠2B.∠B=∠DCEC.∠3=∠4D.∠D+∠DAB=180°8.(3分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(3分)如图,直线l∥m,将Rt△ABC(∠ABC=45°)的直角顶点C放在直线m上,若∠2=24°,则∠1的度数为()A.21°B.22°C.23°D.24°10.(3分)若定义f(x)=3x﹣2,如f(﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f(x)=1时,x=1;②对于正数x,f(x)>f(﹣x)均成立;③f(x﹣1)+f(1﹣x)=0;④当a=2时,f(a﹣x)=a﹣f(x).其中正确的是()A.①②B.①③C.①②④D.①③④二、填空题(11-12题每空2分,13-18每小题4分,共32分,请把答案写在答题卷上!)11.(4分)若x3=8,则x=;若x2=81,则x=.12.(4分)化简=;计算+=.13.(4分)将方程x﹣2y=5变形为用含x的代数式表示y的形式是y=.14.(4分)的整数部分是.15.(4分)在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是.16.(4分)步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打折.17.(4分)关于x,y的方程组的解满足不等式组,则m的取值范围.18.(4分)关于x的不等式组:有5个整数解,则a的取值范围是.三、解答题(共88分,请把答案写在答题卷上!)19.(4分)计算20.(4分)已知点M(a,2)与点N(b﹣5,3),若MN与y轴平行,求2a﹣b.21.(14分)解方程或方程组:(1)4x2=25(2)(3)22.(10分)(1)求不等式的正整数解;(2)解不等式组23.(10分)我校开展的社团活动有:A.动漫社团;B.轮滑社团:C.音乐社团;D.诗歌社团;E.书法社团.学生管理中心为了了解全校500名学生的社团需求,开展了一次调查研究,请将下面的调查过程补全抽样调查:从七、八、九三个年级中随机抽取男女生各20名进行问卷调研;收集数据:抽样方法确定后,学生管理中心收集到如下数据(社团项目的编号,用字母代号表示)B,E,B,A,E,C,C,C,B,BA,C,E,D,B,A,B,E,C,AD,D,B,B,C,C,A,A,E,BC,B,D,C,A,C,C,A,C,E整理、描述数据:划记、整理、描述样本数据、绘制统计图如下,请补全统计表和统计图分析数据、推断结论(1)在扇形统计图中,“B轮滑社团”所在的扇形的圆心角等于度;(2)根据学生管理中心获得的样本数据,估计全校大约有名同学选择D社团.24.(10分)已知A(﹣4,0)、B(﹣3,﹣3)、C(0,﹣5)(1)画出△ABC;(2)△A′B′C′是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+5,y1+3).画出平移后的△A′B′C′,并求△A′B′C′的面积;(3)设直线A′C′与x轴交于点Q,求交点Q坐标.25.(10分)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.26.(12分)4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?27.(14分)在平面直角坐标系中,O为坐标原点,点M、N位于第一象限,其中M的坐标为(m,5),点N的坐标(n,8),且m≥n.(1)若MN与坐标轴平行,则MN=;(2)若m、n、t满足,MA⊥x轴,垂足为A,NB⊥x轴,垂足为B.①求四边形MABN的面积;②连接MN、OM、ON,若△MON的面积大于26而小于30,求m的取值范围.附加题(共10分)若你做完仍有余力,请完成以下各题,不计入总分.(请把答案写在答题卷上!)28.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.2018-2019学年福建省福州一中七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,请把答案写在答题卷上!)1.【解答】解:点P(1,﹣5)在第四象限.故选:D.2.【解答】解:(D)∵m<1,∴m+1<2,故D错误,故选:D.3.【解答】解:A、调查“神舟十一号”飞船重要零部件的产品质量适合全面调查,不适合抽样调查,符合题意;B、调查某电视剧的收视率适合抽样调查,不符合题意;C、调查一批炮弹的杀伤力适合抽样调查,不符合题意;D、调查一片森林的树木有多少棵适合抽样调查,不符合题意;故选:A.4.【解答】解:平方根等于本身的数是0,有1个.故选:A.5.【解答】解:,﹣8,0.6,0是有理数;,,是无理数,故无理数有3个.故选:B.6.【解答】解:点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(﹣3﹣3,﹣5+4);则点B的坐标为(﹣6,﹣1).故选:C.7.【解答】解:A、正确,符合内错角相等,两条直线平行的判定定理;B、正确,符合同位角相等,两条直线平行的判定定理;C、错误,若∠3=∠4,则AD∥BE;D、正确,符合同旁内角互补,两条直线平行的判定定理;8.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.【解答】解:如图,∵∠2=24°,∴∠3=∠2=24°.∵∠A=45°,∴∠4=180°﹣45°﹣24°=111°.∵直线l∥m,∴∠ACD=111°,∴∠1=111°﹣90°=21°.故选:A.10.【解答】解:∵f(x)=1,∴3x﹣2=1,∴x=1,故①正确,f(x)﹣f(﹣x)=3x﹣2﹣(﹣3x﹣2)=6x,∵x>0,∴f(x)>f(﹣x),故②正确,f(x﹣1)+f(1﹣x)=3(x﹣1)﹣2+3(1﹣x)﹣2=﹣4,故③错误,∵f(a﹣x)=3(a﹣x)﹣2=3a﹣3x﹣2,a﹣f(x)=a﹣(3x﹣2),∴f(a﹣x)=a﹣f(x),故④正确.故选:C.二、填空题(11-12题每空2分,13-18每小题4分,共32分,请把答案写在答题卷上!)11.【解答】解:x3=8,则x=2;x2=81,则x=±9,故答案为:2;±9.12.【解答】解:||=,+═﹣2+2=0,故答案为:;0.13.【解答】解:方程x﹣2y=5,解得:y=,故答案为:14.【解答】解:∵3<<4,∴的整数部分是3.故答案为:3.15.【解答】解:∵在平面直角坐标系中,若x轴上的点P到y轴的距离为3,∴P的坐标为(±3,0),故答案为:(±3,0)16.【解答】解:设至多可打x折,则1200×﹣800≥800×5%,解得x≥7,即至多可打7折.故答案为:7.17.【解答】解:将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得,解得:m>﹣,故答案为:m>﹣.18.【解答】解:,解不等式①,得x<20,解不等式②,得x>3﹣2a,∵不等式组有5个整数解,依次为:19,18,17,16,15,∴14≤3﹣2a<15,解得﹣6<a≤﹣.故本题答案为:﹣6<a≤﹣.三、解答题(共88分,请把答案写在答题卷上!)19.【解答】解:原式=3﹣2+2﹣=3﹣;20.【解答】解:若MN与y轴平行,则点M、N的横坐标相同,即a=b﹣5,整理得:2a﹣b=﹣10.21.【解答】解:(1)∵4x2=25,∴x2=,∴x=±;(2),①+②×2得:13x=26,∴x=2,将x=2代入①得:6+4y=10,∴y=1,∴方程组的解为:;(3)原方程组化为,①×2+②得:11x=22,∴x=2,将x=2代入4x﹣y=5,∴8﹣y=5,∴y=3,∴方程组的解为22.【解答】解:(1)3x+1﹣2x<4,3x﹣2x<4﹣1,x<3,则不等式的正整数解为1、2;(2)解不等式3(x+1)<2x+3,得:x<0,解不等式﹣<0,得:x<﹣2,则不等式组的解集为x<﹣2.23.【解答】解:整理、描述数据:分析数据、推断结论:(1)在扇形统计图中,“B轮滑社团”所在的扇形的圆心角等于360°×25%=90°;(2)根据学生管理中心获得的样本数据估计全校选择D社团项目的同学大约为500×10%=50人;故答案为:90、50.24.【解答】解:(1)如图所示,△ABC即为所求:(2)∵点P(x1,y1)平移后的对应点为P′(x1+5,y1+3),∴平移规律为向右5个单位,向上3个单位,∴A′(1,3),B′(2,0),C′(5,﹣2),△A′B′C′如图所示,△A′B′C′的面积=4×5﹣=3.5;(3)设直线A′C′的解析式为:y=kx+b,可得:,解得:,直线A′C′的解析式为:y=,把y=0代入解析式,可得:x=,所以点Q的坐标为(,0)25.【解答】解:(1)当a=2时,,①﹣②,得:3y=6,y=2,将y=2代入①,得:x+2=11,x=9,则方程组的解为;(2)解方程组得,∵x>y,∴>,解得a>﹣.26.【解答】解:(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据题意得:,解得:,答:雀巢巧克力”和“趣多多小饼干”各买了3包和7包;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,则50+0.9(m﹣50)<100+0.8(m﹣100),解得:m<150,若在B超市购物花费少,则50+0.9(m﹣50)>100+0.8(m﹣100),解得:m>150,如果购物在100元至150元之间,则去A超市更划算;如果购物等于150元时,去任意两家购物都一样;如果购物超过150元,则去B超市更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据题意得:100+(22n﹣100)×0.8≤20n,解得:n≥8,据题意x取整数,可得x的取值为9,所以小欣在B超市至少购买9包“雀巢巧克力”,平均每包价格不超过20元.27.【解答】解:(1)∵M的坐标为(m,5),点N的坐标(n,8),∴m=n,MN=8﹣5=3,故答案为3;(2)如图,∵m、n、t满足,∴,∴n=m﹣,①∵MA⊥x轴,NB⊥x轴,∴MA=5,NB=8,AB=m﹣n=m﹣(m﹣)=,∴S梯形AMNB=(MA+NB)•MN=×(5+8)×=;②由①知,S梯形AMNB=,MA=5,NB=8,∵MA⊥x轴,NB⊥x轴,M(m,5),N(n,8),∴OB=n,OA=m,∴S△MON=S△OBN+S梯形AMNB﹣S△OAM=n×8+﹣m×5=4n﹣m+=4(m﹣)﹣m+=m+4,∵△MON的面积大于26而小于30,∴26<m+4<30,∴<m<.附加题(共10分)若你做完仍有余力,请完成以下各题,不计入总分.(请把答案写在答题卷上!)28.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠P AD+∠P AG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠P AG,∴∠P AG=∠ADP,∴∠APD=180°﹣(∠ADP+∠P AD)=180°﹣(∠P AG+∠P AD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°。