Logistic模型 ppt课件

合集下载

logistic回归分析PPT优秀课件

logistic回归分析PPT优秀课件
(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;

13.Logistic回归分析(09) PPT课件

13.Logistic回归分析(09) PPT课件

0
1
0
45
1.7
0
1
0
46
5.1
0
1
0
47
1.1
0
1
0
48
32.0
0
1
0
49
12.8
0
1
0
50
1.4
0
1
0
全回归方程:
Variables in the Equation
S1atep
X1 X2
B
S.E. Wald
df
-.002 .006 .167
1
.792 .487 2.643
1
X3
-2.830 .793 12.726
0
1
0
45
1.7
0
1
0
46
5.1
0
1
0
47
1.1
0
1
0
48
32.0
0
1
0
49
12.8
0
1
0
50
1.4
0
1
0
观察号
因素
i
X1
X2
X3
1
2.5
0
0
2
1.2
2
0
3
173.0
2
0
4
3.5
0
0
5
119.0
2
0
6
39.7
0
0
7
10.0
2
0
8
62.4
0
0
9
502.2
2
0
10
2.4

《logistic回归》课件

《logistic回归》课件
03
易于理解和实现: 由于基于逻辑函数,模型输出结 果易于解释,且实现简单。
Logistic回归的优势与不足
• 稳定性好: 在数据量较小或特征维度较高 时,Logistic回归的预测结果相对稳定。
Logistic回归的优势与不足
01
不足:
02
对数据预处理要求高: 需要对输入数据进行标准化或归一化处理,以 避免特征间的尺度差异对模型的影响。
模型假设
01
线性关系
因变量与自变量之间存在线性关系 。
无自相关
因变量与自变量之间不存在自相关 。
03
02
无多重共线性
自变量之间不存在多重共线性,即 自变量之间相互独立。
随机误差项
误差项是独立的,且服从二项分布 。
04
模型参数求解
最大似然估计法
通过最大化似然函数来求解模型参数。
梯度下降法
通过最小化损失函数来求解模型参数。
特征选择与降维
在处理大数据集时,特征选择和降维是提高模 型性能和可解释性的重要手段。
通过使用诸如逐步回归、LASSO回归等方法, 可以自动选择对模型贡献最大的特征,从而减 少特征数量并提高模型的泛化能力。
降维技术如主成分分析(PCA)可以将高维特 征转换为低维特征,简化数据结构并揭示数据 中的潜在模式。
迭代法
通过迭代的方式逐步逼近最优解。
牛顿法
利用牛顿迭代公式求解模型参数。
模型评估指标
准确率
正确预测的样本数占总样本数的比例 。
精度
预测为正例的样本中实际为正例的比 例。
召回率
实际为正例的样本中被预测为正例的 比例。
F1分数
精度和召回率的调和平均数,用于综 合评估模型性能。

Logisic回归分析PPT课件

Logisic回归分析PPT课件

0
吸烟 不吸烟
各 变 量
X2
1
0
饮酒 不饮酒


Y
1
病例
0
对照
39
17
表16-1 吸烟与食道癌关系的病例-对照调查资料
分层 吸烟 饮酒 观察例数 阳性数 阴性数
g
X1
X2
ng
dg
ng dg
1
0
0
199
63 136
2
0
1
170
63 107
3
1
0
101
44
57
4
1
1
416
265 151
39
18
经 logistic 回归计算后得
计算公式为:
OR j
P1 P0
/(1 /(1
P1 ) P0 )
式中 P1 和 P0 分别表示在 X j 取值为 c1 及 c0 时 的发病概率, ORj 称作多变量调整后的优势比, 表示扣除了其他自变量影响后危险因素的作用。
39
12
与 logisticP 的关系:
对比某一危险因素两个不同暴露水平X j c1 与X j c0 的发病 情况(假定其它因素的水平相同),其优势比的自然对数为:
.
51
2
0
1
1
0
1
2
1
1
52
2
1
1
1
0
0
2
1
1
53
2
1
0
1
0
0
1
1
1
54
3
1
1
0
1

Logistic回归分析(共53张PPT)

Logistic回归分析(共53张PPT)
数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。

Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。

《logistic回归分析》PPT课件

《logistic回归分析》PPT课件
3
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1

p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。

logistic回归(共36张PPT)

二分类自变量 系数为比数比的对数值,由此比数比=eb
多分类自变量 以第i类作参照,比较相邻或相隔的两个类别。
连续型自变量 当自变量改变一个单位时,比数比为eb
2022/11/3
27
输出结果的解释
模型拟合的优劣
自变量与结果变量(因变量)有无关系
确认因变量与自变量的编码 模型包含的各个自变量的临床意义 由模型回归系数计算得到的各个自变 量的比数比的临床意义
3
一般直线回归难以解决的问题
医学数据的复杂、多样
连续型和离散型数据
医学研究中疾病的复杂性
一种疾病可能有多种致病因素或与多种危 险因素有关
疾病转归的影响因素也可能多种多样 临床治疗结局的综合性
2022/11/3
4
简单的解决方法
固定其他因素,研究有影响的一两个因 素; 分层分析:按1~2个因素组成的层进行 层内分析和综合。 统计模型
2022/11/3
28
输出结果的解释
模型的预测结果的评价
敏感度、特异度和阳性预测值
正确选择预测概率界值,简单地以0.5为 界值,但并不是最好的。
C指数
预测结果与观察结果的一致性的度量。 C值越大(最大为1),模型预测结果的
能力越强。
2022/11/3
29
非条件logistic回归
研究对象之间是否发生某事件是 独立的。 适用于:
放入所有变量,再逐个筛选
理论上看,前进法选择变量的经验公式缺乏总体概念,当用于因
素分析时,建议用后退法。当变量间有完全相关性时,后退法无 法使用,可用前进法。
2022/11/3
21
5.交互作用的引入
交互作用的定义
当自变量和因变量的关系随第三个变量 的变化而改变时,则存在交互作用

《Logistic回归》PPT课件


常量 -20.207 4.652 18.866
1 .000
.000
a. 在步骤 1 中输入的变量: 性别, 年龄, 学历, 体重指数, 家族史, 吸烟, 血压, 总胆 固醇, 甘油三脂, 高密度脂蛋白, 低密度脂蛋白.
七、变量筛选
从所用的方法看,有强迫法、前进法、后退 法和逐步法。在这些方法中,筛选变量的过 程与线性回归过程的完全一样。但其中所用 的统计量不再是线性回归分析中的F统计量, 而是以上介绍的参数检验方法中的三种统计 量之一。
八、logistic 回归模型拟合优度检验和预 测准确度检验
(一)拟合优度检验:
Logistic回归模型的拟合优度检验是通过比较模型 预测的与实际观测的事件发生与不发生的频数有无差 别来进行检验。如果预测的值与实际观测的值越接近, 说明模型的拟合效果越好。
·模型的拟合优度检验方法有偏差检验(Deviance)、 皮尔逊(pearson)检验、统计量(Homser-Lemeshow), 分别计算统计量X2D、X2 P、X2HL值。统计量值越小, 对应的概率越大。无效假设H0:模型的拟合效果好。
第九章 Logistic回归
(非条件Logistic回归)
第一节 Logistic回归概述
一、Logistic回归目的: Logistic回归通常以离散 型的分类变量(疾病的死亡、痊愈等)发生结果的 概率为因变量,以影响疾病发生和预后的因素为自 变量建立模型。研究分类变量(因变量)与影响因 素(自变量)之间关系的研究方法。属于概率型非 线性回归方法。
本例模型的似然比检验结果:
X2=-2(ln Lp-ln Lk)=95.497
模 型 系数 的 综 合检 验
步骤 1
步骤 块 模型

统计学-logistic回归分析ppt课件


最新版整理ppt
38
九、logistic回归的应用举例
• 输精管切除术与动脉粥样硬化疾病的研究
• 1.问题的描述
(1)输精管切除术是否与动脉粥样硬化疾病 有关?
(2)如果存在联系,与其他已知的危险因素 相比,输精管切除术的相对重要性有多大?
(3)哪些男性亚群在输精管切除术以后发生 动脉粥样硬化疾病的可能性特别大?
• 条件Logistic回归的回归系数检验与分 析,和非条件Logistic回归完全相同。
最新版整理ppt
36
八、logistic回归的应用
1.疾病(某结果)的危险因素分析和筛选
用回归模型中的回归系数(βi)和OR说明 危险因素与疾病的关系。
适用的资料:
前瞻性研究设计、病例对照研究设计、 横断面研究设计的资料。

p (y 1 /x 1 ,x 2 x k) 1 e (0 1 1 x k ....kx k)
最新版整理ppt
10
2.模型中参数的意义
ln1PP=01X1
Β0(常数项):暴露因素Xi=0时,个体发病 概率与不发病概率之比的自然对数比值。
ln1PP (y(y 1/0x/x 0)0)=0
最新版整理ppt
调查员审阅每日住院病人情况如果诊断适合研究的范围将病例转给心脏病主任医师作评估由他做出病例诊断是否合格的决定调查人员核对病人背景资料是否合格如果病人满足诊断标椎和背景资料合格调查人员开始询问并填写调查表每完成5个病例和10个配对对照以后请研究中心的工作人员对调查表进行评估重复以上步骤
第十六章 logistic回归分析
最新版整理ppt
28
• 分析因素xi为等级变量时,如果每个等级的 作用相同,可按计量资料处理:如以最小或

《logistic回归模型》课件


方法、模型优化方法及评估指标,并运用实战案例加深了对模型的理解与应
用。
参考资料
- 《统计学习方法》
- 《机器学习实战》
- 《Python机器学习经典实例》
同时,我们使用准确率、精度、召回率、F1-score、ROC和AUC等评估指标来度量模型的效果。
实战案例
让我们利用Logistic回归模型来预测Titanic号上的幸存者。通过数据格式及预处
理、特征工程、模型构建和模型评估等步骤,我们将从实际案例中学习该模
型的应用。
小结
通过本课程,我们深入了解了Logistic回归模型的特点及适用场景、参数估计
() = (^)
参数估计方法
Logistic回归模型的参数估计通常采用极大似然估计。为了最大化似然函数,
我们使用梯度上升算法进行优化,并可以应用L1和L2正则化方法来提高模型
的鲁棒性。
ቤተ መጻሕፍቲ ባይዱ
模型优化方法
为了提高Logistic回归模型的性能,我们可以进行特征工程。这包括数据预处理、特征选择和特征降维等步骤。
《logistic回归模型》PPT
课件
欢迎来到《logistic回归模型》PPT课件。本课程将带你深入了解Logistic回归模
型的应用及优化方法。让我们开始这个令人兴奋的学习之旅吧!
什么是Logistic回归模型
Logistic回归模型是一种适用于二分类问题和非线性分类问题的模型。它假设
数据独立同分布、满足线性和二项分布的特点,并使用如下公式进行建模:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变在量“的统模计型图和和使表用”小中样选本择的分研类 图究和。“统H计os基m于er将-Le个m案es分ho组w为拟不合 同的风险度十度分“位数并比较每 在个“十输分出位”数中中选的择已在观每察个到步的骤概
率与期中望概率
在“预测值"中选择”概率 在“影响”中选择“Cook距离” 在“残差”中选择“学生化”
二分类 Logistic 回归对资料的要求
反应变量为二分类的分类变量或是某事件的发生 率
自变量与 Lgit(P)之间为线性关系 残差合计为 0,且服从二项分布。 各观测间相互独立。
案例:研究银行客户贷款是否违约的问题
步骤一:导入数据 所用软件:SPSS Statistics 17.0
步骤二:生成一个变量(validate)
e i1
那么 P
,m
a i*Xi
1 e i1
则事件未发生的概理为 1-P。
涉及到的模型、统计量
二项Logistic回归模型 回归系数显著性检验
LogitP X
0
i
i
P
LogitP ln( )
Wald i
i
S i
1
P
拟合优度检验
(1)Cox-Snell R统2 计量
Cox
- Snell R2
这种值为0/1的二值品质型变量,我们称其为二 分类变量。
Logit 变换
Logit 变换以前用于人口学领域,1970 年被Cox 引入来解决曲线直线化问题。
通常把出现某种结果的概率与不出现的概率之
比称为比值odds ,即odds=
1
p
,p 取其
对数λ=ln(odds)= ln p 这就是
logit变换。
局限性:1、无法描述其作用大小及方向,更不能考察各 因素间是否存在交互作用;
2、该方法对样本含量的要求较大,当控制的分层因素较 多时,单元格被划分的越来越细,列联表的格子中频 数可能很小,将导致检验结果的不可靠。
3、卡方检验无法对连续性自变量的影响进行分析, 而这将大大限制其应用范围
和最小二乘法区别
1 p
Logistic回归
二元logistic回归是指因变量为二分类变量的回归 分析,目标概率的取值会在0~1之间,但是回 归方程的因变量取值却落在实数集当中,这个 是不能够接受的,所ห้องสมุดไป่ตู้,可以先将目标概率做 Logit变换,这样它的取值区间变成了整个实 数集,采用这种处理方法的回归分析,就是 Logistic回归。
点击继续,返回,再点击“选项”按钮
步骤七:得出分析结果
可以看出:总计850个案例, 选定的案例489个,占总数 的57.5%;未选定的案例 361个,占总数的42.5%。 这个结果是根据设定的 validate = 1得到的
分析结果
在“因变量编码”中可以看出“违约”的两种结果 “是”或者“否” 分别用值“1“和“0”代替; 在“分类变量编码”中教育水平分为5类, 如果选中 “未完成高中,高中,大专,大学等,其中的任何一 个,那么就取值为 1,未选中的为0,频率分别代表了 处在某个教育水平的个数,总和应该为 489个
了剔除“缺失值”所以,结果必须等于“0“
步骤四:选择所分析变量
将“是否曾经违约”拖入“因 变量”选框,分别将其他8个变
量拖入“协变量”选框, “validate" 拖入"选择变量”框

向前:LR :向前选择(似然 在比 检方)验法,是中逐基,步于选选得择择分法统向,计前其变:中量LR进的入显 著性,移去检验是基于在最大 局部似然估计的似然比统计的
步骤八:进行预测
在“分类表”中可以看出: 预测有360个是“否”(未来不会违 约), 有129个是“是”(未来可能违约)
步骤九:参数估计(Wald统计量)
在“方程中的变量”表中可以看出:最初是对“常数项”赋值,B 为-1.026, 标准误差为:0.103 那么Wald =( B/S.E)²=(-1.026/0.103)²= 99.2248, 跟表中的100.029 几乎接近 B和Exp(B) 是对数关系,将B进行对数变换后,可以得到:Exp(B)
通过大量的分析实践,发现 Logistic回归模型可 以很好地满足对分类数据的建模需求,因此目 前它已经成为了分类因变量的标准建模方法。
原理
设因变量为y, 其中“1” 代表事件发生,“0”代表
事件未发生,影响y的 n个自变量分为 、X 1
X2、X3···X n,记事件发生的条件概率为 P,
m
a i *X i
二分类Logistic回归模型
二分类变量
Logistic中文意思为“逻辑”,但是这里,并不 是逻辑的意思,而是通过logit变换来命名的。
在很多场合下都能碰到反应变量为二分类的资料, 如考察公司中总裁级的领导层中是否有女性职 员、某一天是否下雨、某病患者结局是否痊愈、 调查对象是否为某商品的潜在消费者等。
选择 “转换”—“计算变量” 命令
在数字表达式框中,输入公式: rv.bernoulli(0.7)
这意思为:返回概率为0.7的bernoulli分 布随机值如果在0.7的概率下能够成功,
那么就为1,失败的话,就为"0"
步骤三:剔除缺失值
用"missing”函数的时候,如果“违约”变量中,确实存 在缺失值,它的返回值应该为“1”或者 为“true", 为
(1)取值区间:上述模型进行预报的范围为整个实数 集,而模型左边的取值范围为 0≤ P≤ 1,二者并 不 相符。模型本身不能保证在自变量的各种组合下,因 变量的估计值仍限制在0~1内。
(2)曲线关联:根据大量的观察,反应变量P与自变 量的关系通常不是直线关系,而是S型曲线关系。 显 然,线性关联是线性回归中至关重要的一个前提假设, 而在上述模型中这一假设是明显无法满足的。
1-
L 0
2 n
L
(2)Nagelkerke R统2 计量
错判矩阵 总体正确率为
Nagelkerke R 2
f f
Cox - Snell R 2
1
L
2 n
0
11
22
f f f f
11
12
21
22
和列联表区别
对于分类资料的分析,当要考察的影响因素较少,且也 为分类变量时,分析者常用列联表的形式对这种资料 进行整理,并使用卡方检验来进行分析。
概率
点击“规则”
步骤五:生成虚拟变量
设置validate 值为1,表示 我们只将取值为1的记录纳 入模型建立过程
参考类别选择:“最后一个” 在对比中选择“指示符”
步骤六:选择分析选项
Hosmer-Lemeshow”拟合度: 此拟合度统计比用于Logistic回
归中所用的传统拟合度统计更
稳健,特别是对于具有连续协
相关文档
最新文档