利用simulink仿真直流电压闭环控制系统
双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验魏小景张晓娇刘姣(自动化0602班)摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。
关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真1.引言双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。
由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。
调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。
本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。
2.基本原理和系统建模为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、图1 直流电机双闭环调速系统的动态结构图3.系统设计调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统, 系统参数:直流电动机:220,13.6,1480/m in,0.131/(/m in)e V A r C V r =,允许过载倍数1.5λ=;晶闸管装置:76s K =;电枢回路总电阻: 6.58R =Ω;时间常数:0.018l T s =,0.25m T s =;反馈系数:0.00337/(/min)V r α=,0.4/V A β=;反馈滤波时间常数:0.005oi T s =,0.005on T s =。
基于simulink的双闭环直流调速系统设计

基于simulink的双闭环直流调速系统设计摘要:研究了双闭环直流调速系统的结构。
根据系统结构,按照由内到外的顺序分别设计电流调节器和转速调节器。
为使系统无静差,两个调节器均选为PI调节器。
在用simulink仿真的过程中,对调节器参数进行了整定,使系统达到稳定状态。
通过仿真曲线,说明了设计的合理性。
关键词:双闭环直流调速;PI调节器;参数整定;simulink 直流调速系统调速范围广、静差率小、稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。
现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。
本文基于simulink对双闭环直流调速系统进行设计与仿真,合理选择电流调节器和转速调节器的结构,调整调节器的参数,使系统达到设计要求,对电流、转速调节器的参数进行了整定。
本设计是在参数整定的基础上得到仿真曲线,并列出多组数据进行说明。
1.系统设计根据设计多环控制系统的一般原则进行系统设计:从内环开始,一环一环地逐步向外扩展。
先从电流环入手,首先设计好电流调节器,然后把整个电流环看做转速调节系统的一个环节,再设计转速调节器。
稳态指标的要求:系统无静差。
动态指标的要求:空载启动到额定转速时的转速超调量σn≤10%,电流超调量σi≤5%。
2.双闭环直流调速系统的结构带有电流、转速反馈的双闭环调速系统实属多闭环系统,一般采用由内到外一环包一环的形式,内环为电流环,设有电流调节器ACR,外环为转速环,设有转速调节器ASR,构成一个完整的闭环系统。
电流环接受速度环的输出作为控制目标,调节电动机的电流以满足既能控制电动机以较快的速度跟踪参考速度,又不至于产生过流现象损坏电动机,这种结构为工程设计以及调试工作带来相当大的方便。
双闭环直流调速系统结构图如图1所示。
图1中,给定电压U*n=10V,晶闸管放大系数Ks=40,晶闸管失控时间Ts=0.0017s,电枢回路总电阻R=0.5Ω,电磁时间常数Tl=0.03s,机电时间常数Tm=0.18s,电动势常数Ce=0.132V·min/r,转速反馈系数α=0.007V·r/min,电流反馈系数β=0.083V·r/min。
基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。
本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。
文章将以1200字以上的篇幅进行详细阐述。
一、系统设计直流电机双闭环调速系统由速度环和电流环构成。
速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。
通过控制电机的期望电压和实际电压,达到对电机速度的调控。
二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。
包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。
这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。
三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。
在直流电机双闭环调速系统中,可以选择PID控制策略。
PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。
四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。
根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。
通过仿真可以得到系统的动态响应曲线,评估系统的性能。
五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。
通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。
总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。
通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。
利用Simulink仿真直流伺服电机的闭环位置控制系统

利用Simulink 仿真直流伺服电机的闭环位置控制系统 一直流伺服电机传递函数及参数选择直流电机的工作转矩等于负载转矩与负载惯性系统加、减速转矩之和,表达式为: 1()()()()L a d t M t M t J J dtω=++。
其中,()M t 为电动机输出转矩,N m ⋅;()L M t 为负载转矩,N m ⋅;()t ω为电动机角速度,1rad s -⋅;a J 为电动机电枢转动惯量,322.210a J kg m -=⨯⋅;1J 为负载的转动惯量,需将移动工作台的惯性转换到电机轴上,取2321()510,2z h J m kg m π-=⋅≈⨯⋅h 为丝杠螺距,z m 为工作台质量。
电机电路处于动态过程时,对线圈施加的电源电压()a u t 和电枢线圈内通过的电流()a i t 的关系为:()()()()()a a a a ab di t u t R i t L e t d t =++。
其中,a R 为电机电枢线圈内阻,a R =20Ω;a L 为电机电枢线圈的电感,a L =2H ;()b e t 为电机电枢线圈在定子磁场中运动时产生的反电动势。
电机输出转矩()M t 应与通过电枢线圈的电流大小成正比,则()()T a M t K i t =。
其中,T K 为电机输出扭矩常数,T K =15N m A -⋅⋅。
电机电枢线圈产生的反电动势()b e t 与电枢的工作角速度()t ω成正比,故有:()()b b e t K t ω=。
其中,b K 为电机电枢反电动势系数,10.0498b K V rad -=⋅。
我们分别将上述的算式进行拉普拉斯变换,并令初始条件为零,则有:1()()()()L a M s M s J J s s =++Ω;()()()()a a a a b U s R sL I s E s =++;()()T a M s K I s =;()()b b E s K s =Ω。
基于simulink的转速负反馈闭环调速系统仿真

转速负反馈控制直流调速系统的仿真转速负反馈闭环调速系统系统仿真框图及参数图一 比例积分控制的直流调速系统的仿真框图图一中是转速负反馈闭环调速系统的仿真框图,由框图中可以看出:1、该系统是采用PI 调节器进行调节的,PI 调节器的传递函数如下式所示: W PI (s )=K p τs +1τs =K p +1τs其中,K p 是比例系数,积分系数 K i = 1τ⁄。
2、该系统采用的是单闭环系统,通过把转速作为系统的被调节量,检测误差,纠正误差,有效地抑制直至消除扰动造成的影响。
各环节参数如下:直流电动机:额定电压U N = 220V ,额定电流I dN =55A ,额定转速n N =1000r min ⁄ ,电动机电动势系数C e =0.192V ∙min r ⁄。
假定晶闸管整流装置输出电流可逆,装置的放大系数K s =44 ,滞后时间常数T s =0.00167s 。
电枢回路总电阻R = 1.0Ω,电枢回路电磁时间常数T l =0.00167s ,电力拖动系统机电时间常数T m =0.075s 。
转速反馈系数α = 0.01V ∙min r ⁄ 。
对应额定转速时的给定电压U n ∗=10V 。
转速负反馈闭环调速系统的仿真1. 仿真模型的建立进入MATLAB ,并打开SIMULINK 模块浏览器窗口,建立一个新的模型,并复制入相应模块,修改模块的参数,其中PI 调节器的至暂定为K p =0.56 ,1/τ = 11.43。
最后对照着图一中的系统框图连接模块,所得模型如图二所示:图二比例积分控制的直流调速系统的仿真模型2.仿真模型的运行启动仿真过程,得到的仿真结果如图三,图四所示:图三scope输出结果图四scope1输出结果其中,由图三scope输出结果中可以得出该控制系统的最大超调量M p、上升时间t r、调整时间t s,取值分别为:M p = 108r/min, t r= 0.12s, t s= 0.28s(估计值)3.PI调节器参数的调整改变PI调节器的参数,并在启动仿真,分别从仿真曲线中得到的最大超调量及调整时间,相互间进行比较,如下表所示比例系数K p积分系数 K i最大超调量调整时间t s(s)M p(r/min)0.25 3 0 >0.60.56 3 0 >0.60.56 11.43 108 0.280.8 11.43 63 0.280.8 15 152 0.23由表中可以看出,改变PI调节器的参数,可以得到转速响应的超调量不一样、调节时间不一样的响应曲线。
基于simulink的系统仿真实验报告(含电路、自控、数电实例)

《系统仿真实验》实验报告目录一《电路》仿真实例 (3)2.1 简单电路问题 (3)2.1.1 Simulink中仿真 (3)2.1.2 Multisim中仿真 (4)2.2 三相电路相关问题 (5)二《自动控制原理》仿真实例 (7)1.1 Matlab绘图 (7)三《数字电路》仿真实例 (8)3.1 555定时器验证 (8)3.2 设计乘法器 (9)四实验总结 (11)一《电路》仿真实例2.1 简单电路问题课后题【2-11】如图所示电路,R0=R1=R3=4Ω,R2=2Ω,R4=R5=10Ω,直流电压源电压分别为10V、4V、6V,直流电流源电流大小为1A,求R5所在的支路的电流I。
(Page49)解:simulink和multisim都是功能很强大的仿真软件,下面就以这个简单的习题为例用这个两个软件分别仿真,进一步说明前者和后者的区别。
2.1.1 Simulink中仿真注意事项:由于simulink中并没有直接提供DC current source,只有AC current source,开始的时候我只是简单的把频率调到了0以为这就是直流电流源了,但是并没有得到正确的仿真结果。
后来问杨老师,在老师的帮助下发现AC current source的窗口Help中明确的说明了交流变直流的方法:A zero frequency and a 90 degree phase specify a DC current source.然后我把相角改成90度后终于得到了正确的仿真结果,Display显示I=0.125A,与课本上答案一致。
2.1.2 Multisim中仿真结果:I=125mA=0.125A(因为电流表探针电压电流比是1V/mA)。
2.2 三相电路相关问题【例】三相电路实际连接图如下所示,是通过功率表和电流的读数,验证课本上的相关结论。
解:Multisim中电路图连接如下所示:解:观察各支路的功率和功率因素,验证了以下几点结论:(1)只有纯阻性支路的功率因素为1;(2)纯感性或纯容性支路的功率因素为0,有功功率也为0;(3)混合支路的(容阻、感阻、容感阻)功率因素在0到1之间。
单闭环直流电机调速Simulink仿真

直流调速系统及其仿真
首先,我先大致讲一下电机调速的基本原理:
01()d d n a U E I R R R =+++(1)
e e E C n K n ==Φ(2)
3) 直流他励电动机供电原理图 (1) (2) (3) V-M
n U n n U U =放大器p n U K U
晶闸管整流器及触发装置U V-M 式中,p K 为放大器的电压放大系数;s K 为晶闸管整流器及触发装置的电压放大系数;
2α为反馈电位器分压比;etg C 为测速发电机额定磁通下的电动势转速比;2etg C αα=为转速反馈系数。
以上就是单电机比较简单的理论,下面我要向大家介绍一下无静差转速负反馈调速系统的构成、建模及仿真。
单闭环无静差转速负反馈调速系统的电气原理图如图所示:
系统的建模包括主电路的建模和控制电路的建模两部分。
该系统由给定、速度调节器、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机、速度给定环节、限流环节等部分组成。
(一)
三相交流电源
A 超前C120度,C 超前B120度。
同步脉冲触发器和封装之后的子系统符号
六脉冲触发器需要用三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压。
图中
触发器开关信号block 为0时,开放触发器;为1时,封锁触发器。
晶闸管整流桥及其参数设置
直流电机模块
PID 模块及其参数设置
PI 的控制器可以通过现有的PID 模块进行设置。
限幅器模块及其参数设置
通过对ct U 参数变化范围的探索而知:在单闭环无静差系统中,当ct U 在110~207范围内变化时,同步脉冲
为样。
(二)
(三)。
利用Matlab仿真平台设计双闭环直流调速系统

1 设计任务及要求1、已知条件:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V 、136A 、1460r/min ,Ce=0.132 min/r , 允许过载倍数1.5 。
闸管放大系数:Ks=40 。
电枢回路电阻:R 0.5 。
o时间常数:T1=0.03s ,Tm=0.18s 。
电流反馈系数:0.05V/A( 10V/1.5I nom )转速反馈系数:0.007Vmin /r( 10V /n nom)2 、技术要求:稳态指标:无静差;动态指标:电流超调量i 5% ;空载起动到额定转速时的转速超调量n% 10% 。
3 、设计要求:①简述单闭环直流调速系统的基本构成和工作原理。
②分析所设计系统的静态性能指标和动态性能指标。
③根据动态性能指标设计校正装置。
④设计出系统的Simulink 仿真模型,验证所设计系统的性能。
⑤给出所设计系统的性能指标:上升时间t r 、超调量p% 、调节时间t s 、最大启动电流Idmax 、稳态误差e ss 。
2 系统的基本结构和工作原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。
双闭环直流调速系统是由电流和转速两个调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
双闭环直流调速系统较单闭环相比具有动态响应快、抗干扰能力强等优点,具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
具有单闭环不能比拟的优势。
双闭环调速系统的结构示意图如下图1:双闭环调速系统结构原理图如下图2 :渊电源输出*" ---3Hj图2 双闭环调速系统结构原理图触发电踣匸桥-功放rIF1 Io"电源H+II个柠3系统的静态性能和动态性能指标3.1系统的静态性能指标为了分析双闭环调速系统,必须先绘出它的稳态结构框图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
………………………………………装……………………………订…………………
………………………………………装……………………………订……………………………线………………………………………
学号
中原工学院
五.实验仿真模块及仿真波形图。
2013~2014 学年 第 二 学期
重修标识 A.直流电机闭环系统控制仿真模型图。
11 级电气卓越班 Matlab 电气工程理论分析课程期末试卷 A 卷
题号
一
二
三
总分
题目:利用 simulink 仿真直流电压闭环控制系统
一.实验目的:通过该实验使学生对仿真直流电机闭环控制系统有一个较为系统的认识,
实验后,学生应对代码生成的思路有一个较为清晰的理解,熟悉各仿真模块之间的关系。
二.实验步骤:
B.逆变电路
A、完成 simulink 下直流电机闭环系统仿真模型的建立;完成 simulink 下模拟仿真成果,做出
模拟实验的波形图;
B、调整电阻 R2,电压不变,vdc 不变。
三.实验要求:
A、了解实验中 simulink 各元器件的功能和连接; B、对直流电压闭环控制系统进行仿真,剪贴模拟实验的波形图。 C、熟悉基本电路模块:逆变电路、滤波电路、AD 采集模块、PWM 波生成模块。
四.实验原理;
利用 MATLAB 下的 SIMULINK 软件和电力系统模块库(SimPowerSystems)进行系统仿真是 C.滤波电路
十分简单和直观的,用户可以用图形化的方法直接建立起仿真系统的模型,并通过 SIMULINK 环境中的菜单直接启动系统的仿真过程,同时将结果在示波器上显示出来。
姓名
班级
本试卷共 2 页,此页为 A 卷第 1 页
(注:参加重修考试者请在重修标识框内打钩)
………………………………………装……………………………订……………………………线………………………………………
D.使用 PID 算法
七.实验感想
E.代码生成模块:AD 采集模块、PWM 波生成模块
通过这次试验我对 simulink 软件有了更深刻的认识,仿真是研究电
统的微分方程组,再采用合适的方法完成计算,得到所需要的数据。在 最终滤波出该波
此基础上调整控制策略或者修改参数,使得系统满足设计要求。
学号
姓名
班级
本试卷共 2 页,此页为 A 卷第 2 页
ห้องสมุดไป่ตู้
力传动控制策略和系统性能的重要手段,它的基础是系统的数字模型和
数值计算方法。对于使用结构图描述的电力传动控制系统,使用计算机
进行仿真时需要将描述系统的结构图输入到计算机中,包括结构图各个
环节的参数及各个环节之间的连接关系,然后让计算机自动生成描述系 六.通过闭环环仿真模型,模拟通过改变载波频率以及正弦信号幅值,