试验一闭环电压控制系统
赣州电网电压无功优化闭环控制系统的研究与应用

提 高 电 网 电压 质 量 。
关 键 词 : 州 电 网 ; 压 ; 功 优 化 ; 用 赣 电 无 应
据库 、 图形 编辑 和 数据 录入 ( 图模一 体 化)历史 数据 , 曲线查 询 和命令 信息查 询 、实 时图形 数据显 示模块 等。
1 . 系统流 程框 图 2
图1 A 为 VC软件 系统 构架 。其 中 图形 、 据 库 数
服 务器 和 A C主站系统 安 装在 调度 中心 , V 前者 存储
t e lt otg . n a dt n t e a p ia in o o r g ae v l e I d i o , h p l t AVC i n h u Gr s i t d c d T e AVC r a i d r a o a l u a i c o f n Ga z o i wa n r u e . h d o e l e e sn be z ip t o e c ie la o e s t n e u p n n r p r r g l o i r n fr r tp c a g r n u ra t — o d c mp n ai q i me t a d p o e e u  ̄in o man t s me a h n e .Moe v r h f v o f a o ro e ,t e s se w t h p l a i t e h n e h ot g u i n e ra e o so rd y t m i te a p i b l y n a c d t e v l e q a t a d d c s d l s g i . h c i a l y e f Ke o d : n h u Grd v l g ; e ci ep w ro tmiain a p ia in y W r s Ga z o i ; o t e r a t o e p i z t ; p l t a v o c o
调速实验1-4

1、简述实验中观察到的现象,对实验中出现的问题加以分析、解释。
2、画出U/F曲线。
3、画出异步电动机的机械特性n=f(Te)曲线。
4、思考题:如何改变电动机的加速度、减速度?
5、写出实验小结。
实验四速度闭环三相异步电机调压调速系统实验
一.实验目的
3)直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电机的使用寿命,或发生意外。
4)DJK04与DJK02-1不共地,所以实验时须短接DJK04与DJK02-1的地。
实验二、双闭环晶闸管不可逆直流调速系统实验
一、实验目的
1、了解双闭环不可逆直流调速系统的原理及组成。
2、掌握双闭环不可逆直流调速系统的调试方法和步骤。
⑴、通过触摸面板上LO/RE切换键进行切换。
⑵、通过对输入端子参数(n36~n39)的设定来切换。
1、 触摸面板的操作方法
触摸面板操作有两种功能:一种是用面板上的RUN键和STOP/RESET键来控制电机的起动、停止。另一种是用于参数设定。
1) 指示灯显示说明
正常时:接通电源后,RUN灯闪亮、ALARM灯灭。指示灯FREF、FOUT、IOUT、MNTR、F/R、LO/RE、PRGM中有灯亮,指示窗口有数据显示。
U09:显示过去最后一次发生过的异常内容。
U10:制造商管理用。
F/R:灯亮时,可用 或 键,选择电动机的运转方向(正/
反转)。 FOR:正转 rev:反转
LO/RE:灯亮时,可用 或 键,选择本地/远程模式。
rE:远程 LO:本地
PRGM:。灯亮时,可用 或 键,选择要设定的参数,再用
键显示该参数的内容,用 或 键修改该
2013 运动控制(一)实验指导书

运动控制系统实验指导书实验一不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.实验系统组成及工作原理采用闭环调速系统,可以提高系统的动静态性能指标。
转速单闭环直流调速系统是常用的一种形式。
实验图1一1所示是转速单闭环直流调速系统的实验线路图。
实验图1一1转速单闭环直流调速系统图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V供电,通过与电动机同轴刚性连接的测速发电机TG检测电动机的转速,并经转速反馈环节FBS分压后取出合适的转速反馈信号U n,此电压与转速给定信号U*经速度调节器ASR综合调节,ASR的输出作为移相触发器GT的控制电n压U ct,由此组成转速单闭环直流调速系统。
图中DZS为零速封锁器,当转速给定电压U*和转速反馈电压U n均为零时,DZS的输出信号使转速调节n器ASR锁零,以防止调节器零漂而使电动机产生爬行。
三、实验设备及仪器1.教学实验台。
2.直流电动机。
3.双踪示波器。
四.实验内容1.求取调速系统在无转速负反馈时的开环工作机械特性。
调节给定电压U g,使直流电机空载转速n o=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取5-6点,读取整流装置输出调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器,使电机稳定运行。
调节直流发电机负载电阻,在空载至额定负载范围内测取5-6点,读3.测取调速系统在带转速负反馈时的无静差闭环工作的静特性a.接积分电容器,可预置7uF,使ASR成为PI(比例一积分)调节器。
b.调节给定电压U g,使电机空载转速n o=1500转/分。
在额定至空载五.注意事项1.直流电动机工作前,必须先加上直流激磁。
3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。
实验36-电力电子电路闭环控制(稳态分析)

C (s) G ( s) 1 G ( s) H ( s) = = R( s) 1 + G ( s) H ( s) H ( s) 1 + G ( s) H (s)
(36-3)
集学科优势
- 30-
求改革创新
华中科技大学电气与电子工程学院实验教学中心
信号与控制综合实验指导书
其等效变换前后的闭环系统方框图如图 36-2 和图 36-3 所示。从图中可以看出,等 效变换是将一个实际系统的控制电路给定值 R(s)变成了等效单位反馈系统中的等效给定 值 R(s)/H(s),实际系统中的给定 R(s)是低压信号,而等效变换后的给定 R(s)/H(s)由于反 馈系数 H 很小(降压比大) ,而成为高压信号,与系统的实际输出幅度相对应。我们知 道,改变给定是可以控制输出的幅值的,在负反馈系统中输出依据反馈的原理要跟踪输 入信号, 因此, 改变反馈系数 H (即反馈传递函数 H(s)的增益) , 就可以改变等效输入 (给 定) ,相应改变输出。这在设计中也是一种常见的思路,因为通常采用改变给定的方法来 调节输出会影响到控制精度 (尤其在输出值调节到比较低的时候) , 而改变反馈增益却不 会影响控制精度。设计反馈回路时考虑设置一个可调电阻,在需要时调节输出幅值,是 很有必要的。
三、实验内容
1. 设计一个电力电子变换电路及控制系统,内容根据实验装置条件自选。 (注:本实 验装置上可以完成实验的变换器电路模块有:DC/DC-Buck,Boost,Cuk 电路;DC/DC 单端正激变换电路;DC/DC 软开关电路;三相桥电路模块) 2. 采用实验装置各种模块(电力电子变换模块、滤波模块、传感器模块、各种检测仪 器和负载)和面包板(或控制电路板) ,构建所设计的电力电子控制系统,针对被控对象 (电力电子变换电路)进行闭环控制,控制器设计方案自选。系统构建方案尽可能简单、 可靠。要求稳态误差小、系统稳定。 3. 实现以上设计方案:用 PWM 控制芯片及外围电路实现;或采用数字控制器,应用 单片机或 DSP 实现。 - 32-
闭环控制系统的描述

闭环控制系统的描述
闭环控制系统是一种通过反馈机制对系统输出进行自动调节的控制系统。
在闭环控制系统中,系统的输出会被传感器或其他监测设备实时测量,并将测量结果反馈给控制器。
控制器根据反馈信息与设定目标进行比较,然后调整控制信号,使系统的输出逐渐接近或达到设定目标。
闭环控制系统的优点在于其具有较高的精度和稳定性,能够自动补偿系统内部和外部的干扰和变化,从而实现对被控对象的精确控制。
常见的闭环控制系统包括温度控制系统、速度控制系统、位置控制系统等。
闭环控制系统通常由控制器、执行器、被控对象和传感器等组成。
控制器是闭环控制系统的核心部分,它接收传感器反馈的信息,并根据控制算法计算出控制信号,发送给执行器。
执行器根据控制信号对被控对象进行调节,使其输出达到设定目标。
传感器则用于实时测量被控对象的输出,并将测量结果反馈给控制器。
在实际应用中,闭环控制系统需要根据被控对象的特点和控制要求进行设计和调试,以确保系统的稳定性和可靠性。
同时,还需要考虑系统的安全性和可维护性等因素,以保障系统的正常运行和长期使用。
闭环温度控制系统

本文介绍了一种小型温度测量与控制系统——闭环温度控制系统。
该系统利用单片机可以方便地实现对PID参数的设定,也可以通过计算机与单片机的串行通讯,实现工业过程中的交互式PID控制。
该原理是用温度传感器将检测到的温度转化为电信号,然后经过变送器使输出电信号随输入温度信号呈线性关系。
之后再经过A/D转换送入PC机中,与设定值进行比较,得出偏差。
对此偏差经PID算法进行修正,求得对应的控制量经D/A转换来控制驱动器,从而实现对温度的闭环控制。
本学期主要设计、制作和调试直流稳压电源和变送器,了解信息测试、校准和控制的过程,不仅提高了电子工程设计和实际操作方面的综合能力,而且培养了研发工程项目中所具备的基本素质和要求。
一、课题背景 (3)二、需求分析 (3)三、方案论证 (3)(一)稳压电源方案选择 (3)(二)变送器方案选择 (4)四、电路设计 (5)(一)直流稳压电源部分1.工作原理 (5)2. Protel99 SE 自主绘制电路原理图 (6)3.所需元件 (7)4.芯片介绍 (8)(二)变送器部分1.工作原理 (9)2.所需元件 (11)3.芯片介绍 (11)4.参数计算 (13)五、电路调试 (13)六、故障分析 (17)七、结果与收获 (18)八、致谢 (19)九、参考文献 (20)一、课题背景第一阶段我们主要解决闭环温度控制系统的直流稳压电源和变送器这两部分。
要求在工业生产中降低成本,降低材料、能源消耗,提高产品质量和生产效率。
二、需求分析稳压电源和变送器的功能和指标如下:1.温度测量范围: 0℃~+100℃2.温度测量误差: 不大于±2℃(在次要求下尽量提高指标)3.变送器输出电压: 0~5V4.测量误差: 满刻度1%(0.05V或1℃ )5.要求线性规律控制电压—温度6.保证电路性能稳定可靠,具有一定的抗干扰能力7.注意各电路之间的可靠配合与保护问题(过流、断路、过热保护)三、方案论证(一)稳压电源方案选择要求输入9 V和14 V的交流电压,输出+5 V和±12 V的直流电压。
开环控制系统与闭环控制系统-PPT课件

特点
1、有反馈; 2、会调整; 3、被控量会被控制在一定的值——结果稳 定; 4、“结果”会影响“结果”; 5、给定量与被控量是可比较的同一种性质 的量。
系统辨识
辨识的定义 L. A. Zadeh曾给辨识下过这样的定义: “辨识就是在输入和输出数据的基础上,从 一组给定的模型类中,确定一个与所测系统 等价的模型。” 三要素: 输入输出数据(辨识的基础) 模型类(寻找模型的范围) 等价准则(辨识的优化目标)
比较器
给定量 (设定的温度) 控制器 (电子或微机 控制装置) 控制量 (电压)
执行器 (加热器)
被控对象 (加热炉)
被控量 (炉内温度)
检测装置 (热电偶)
加热炉的温度自动控制系统
其他闭环控制系统应用实例
值得一提的是,复杂的闭环控制也未必都属于自动控 制。汽车的驾驶就是一个常见的实例:汽车沿着道路行 驶,必须有人的操控,从控制的角度看,属于人工控制, 这时我们是将人与车作为一个整体,看成一个系统。驾 驶员通过操控方向盘、油门、刹车等机构,控制车辆行 驶的状态;同时,驾驶员还通过视觉,查看车辆与前方 道路或障碍物的位置关系信息,根据这一信息不断修正 自己的操作,使车辆按照预定的路线轨迹行驶。在这一 过程中,驾驶员通过视觉获取的信息就是反馈量,因此 属于闭环控制。
热交换器闭环和开环辨识的模型误差分别为0.1392和 0.0189。闭环模型误差虽然比开环辨识大一些,但数 值仍然很小,因而两者都可以用于过程的动态控制。
实验结果表明,对系统进行闭环辨识,可以得到与 开环辨识相近的过程模型且不会引起过程输入输出 大的波动,也不会危及闭环系统的稳定性,因而是 最适宜于工业生产过程应用的闭环辨识实验调节。
ˆ (k ) z
辨识算法
实验三-单闭环不可逆直流调速系统实验

实验三-单闭环不可逆直流调速系统实验一、实验目的本实验旨在通过实验研究单闭环不可逆直流调速系统的基本原理、调速特性和调速方法,掌握闭环调速的基本思想和方法,熟悉DC电机的调速控制原理和方法。
二、实验原理在单闭环不可逆直流调速系统中,电机的速度调节采用PID控制方式,通过控制电机的电源电压来实现调速。
具体的原理如下:1.电机的动作原理:当电枢通电后,电枢周围会产生一个磁场,同时在电枢内产生一个磁场,这两个磁场互相作用产生力矩,从而将电枢带动转动。
2.电机的调速控制:通过改变电机的电源电压来实现对电机的调速控制,电源电压越高,电机的转速越快,电源电压越低,电机的转速越慢。
而电源电压的改变通常是通过PWM调制实现的。
3.PID算法:PID控制算法采用比例、积分、微分三种控制信号结合的方式实现对电机转速的控制。
比例控制用于实时调整电机转速,积分控制用于修正电机转速下降过程中的偏差,微分控制用于提高系统的动态响应速度。
三、实验步骤1.将实验电路图搭建好,并连接好电源、电机、PWM信号发生器等模块。
2.对电机进行标定:通过对电机的空载转速和负载转速进行测量,确定电机传动系数和最大负载系数。
3.进行调速实验:通过修改PWM信号发生器的占空比来改变输入电压,从而实现对电机速度的控制。
同时通过示波器和万用表实时对电流、转速、电压等参数进行测量与记录。
4.使用PID算法对电机进行调速控制,对比比例控制、积分控制、微分控制和PID控制四种方法的效果和优缺点。
四、实验结果与分析实验中我们对电机的标定得到了电机的传动系数约为0.0134,最大负载系数为0.39。
在进行调速实验时,我们可以明显地感受到PWM信号发生器占空比的改变会对电机的转速产生影响。
同时通过测量和记录不同占空比下的电流、转速、电压等参数,我们可以得到调速系统的调速特性曲线。
通过加入PID算法,我们可以明显地感受到PID控制的稳定性和动态性,相比其他三种控制方法,PID控制能够更快速地达到稳定状态,同时产生的超调也更小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验内容简介
教学实验是课堂理论知识走向实际工程应用的桥梁。
那么桥梁的架设位置、桥梁的性能、造价有必要进行综合和最优的考虑,这就是我们设计自动控制原理实验的理念。
实验一闭环电压控制系统研究
这个实验是自动控制原理的鸟瞰实验,也是入门实验。
一般院校没有的特色实验。
重点:调节规律在控制系统中起决定性作用,对自动控制原理而言。
为保证系统不要太复杂。
实验中受控对象是一个具有三阶性能的模拟电压输出系统。
要求按自动控制原理分解系统的各个功能。
系统调节规律采用比例器K控制,通过开环、闭环的加负载数据比较,说明闭环控制的优越性。
通过增加比例K得实验数据,说明调节规律在控制系统中抗干扰和提高精度等的决定性作用。
强调实际工程设计中反馈极性的重要性,并正确实现负反馈闭环。
实验二频率特性的测试与系统参数的确定
实验对象与实验一一样是个三阶系统。
了解系统频率特性的用途,强调建立数学模型的意义,区分实验建模和机理建模。
实验通过用变频方法来测试,得到幅-频和相-频对数特性曲线,在此曲线基础上,再用近似折线方法转换成波特图,在波特图上即可得到此三阶系统的传递函数。
注意,当时间参数靠的较近时存在一个方法误差,让学生根据近似折线和实际曲线关系进行修正。
实验三串联校正研究
实验对象同实验一是个三阶系统。
将系统闭环,并调K至临界稳定状态。
再分别加入事先设计的:参数“不好”的滞后校正、较好的滞后校正、超前校正,PID校正,观察五种校正的阶跃响应曲线。
并测量稳态误差、超调量、过渡时间,说明各种校正的效果。
要求用波特图分析并预测实验结果。
做这个实验前,预习很重要。
最好带着实验结果来做实验。
实验四Matlab/Simulink仿真
会用Matlab、Simulink建立系统的多种形式的数学模型,以及模型的各种联接,模型的转换,时域、频域、S域等曲线的绘制,性能参数测取,分析零点、极点对系统性能的影响。
而较难的仿真设计、Simulink实时控制系统,在综合设计实验里完成。
实验五非线性控制系统研究
提供具有继电特性的二阶系统,观察其相平面轨迹。
引入速度反馈后,通过观察相平面轨迹曲线及阶跃响应曲线,分析速度反馈对控制系统性能的改善。
实验六采样控制系统探讨
了解采样器和保持器构成原理。
观察信号被采样保持后的波形与采样频率之间的关系,验证香农定理。
分别分析采样周期T、系统增益K、时间系数t与系统稳定性之间的关系。
由于后续有计算机控制技术实验,这里调节规律设计暂不做重点。
实验七状态反馈系统
给定一个能控的二阶系统,并给出期望性能指标。
要求用状态反馈进行极点配置,使其满足期望指标,并测量阶跃响应曲线验证。
注意:反馈所取的状态是事先确定的,计算要小心!
实验八状态观测器设计
设计并实现一个全阶状态观测器。
合理选择观测器极点,分析不同观测器极点对观测性能的影响。
这里,观测状态也是先定的。
实验九综合设计实验
给一个电机系统,要求用现代控制理论知识设计控制系统,使其满足下列指标:理论位置误差为零,过渡时间小于0.5秒,超调量小于20%。
任务书形式下达:要建模、Matlab/Simulink仿真与设计、在Simulink环境下实时控制。
当面验收。