土壤团聚体分离方法
土壤―大团聚体组成的测定―筛分法(精)

FHZDZTR0009 土壤大团聚体组成的测定筛分法F-HZ-DZ-TR-0009土壤—大团聚体组成的测定—筛分法1 范围本方法适用于土壤大团聚体组成的测定。
2 原理土壤团聚体是指土壤中大小、形状不一、具有不同孔隙度和机械稳定性、水稳定性的结构单位,通常将粒径 >0.25mm的结构单位称为大团聚体。
大团聚体分为非水稳定性和水稳定性两种,非水稳定性大团聚体组成用干筛法测定,水稳定性大团聚体组成用湿筛法测定。
筛分法根据土壤大团聚体在水中的崩解情况识别其水稳定性程度,测定分干筛和湿筛两个程序进行,最后筛分出各级水稳定性大团聚体,分别称其质量,再换算为占土样的质量百分数。
注 1:湿筛法不适用于一般有机质含量少的、结构性差的土壤,因这些土壤在水中振荡后,除了筛内留下一些已被水冲洗干净的石块、砾石和砂粒外,其他部分几乎全部通过筛孔进入水中。
注 2:粘重的土壤风干后会结成紧实的硬块, 即使用干筛法将其分成不同直径的粒级, 也不能代表它们是非水稳定性大团聚体。
3 仪器3.1 平口沉降筒, 1000mL ,带有橡皮塞。
3.2 水桶(搪瓷桶或铁桶 ,直径不小于 40cm ,高不小于 45cm 。
3.3 套筛, 高 5cm , 直径 20cm , 孔径分别为 10mm 、 7mm 、 5mm 、 3mm 、2mm 、 1mm 、 0.5mm 、 0.25mm ,共 8个,有底和盖,并附有能装 5个套筛的铁架子1个。
3.4 团聚体分析仪,手摇或电动,含 4套筛子,每套有 6个筛子,孔径分别为 5mm 、3mm 、 2mm 、 1mm 、 0.5mm 、 0.25mm ,电动团聚体分析仪在水中上下振荡速度为每分钟 30次。
3.5 白铁盒或铝制盒, 10cm ×10cm ×10cm 。
4 操作步骤4.1 采样:通常是采耕层土壤,根据需要也可分层采样。
采样时要注意土壤的湿度,最好在土不沾铲,接触不变形时为宜。
团聚体干筛、湿筛实验方法(一种)

实验方法1、采集样品要注意土壤湿度,不宜过干或过湿,最好在土不粘铲,经接触而不变形时采取。
采样面积为10cm2,深度视需要而定,从下至上分层采取。
采样要有代表性,一般耕作层分两层采样,取样点不少于10cm2小心地不使土块受挤压,尽量保持原来的结构状态。
剥去土块外面直接与土铲接触而变形的土壤,均匀地取内部的土壤约1.5—2kg,放在木盒或铁盒内(防止挤压)带回室内。
将带回的土样先风干,待稍干时把土块沿自然结构面轻轻地分成直径约1cm的小土块,避免受到机械压力而变碎。
除去粗根和小石块,风干后备用2、用四分法取风干样品200g,分数次置于套筛上,筛孔大小自上而下排列的顺序为5mm、2mm、1mm、0.5mm、0.25mm。
加筛盖和筛底盒后用手干筛,直至各筛上的土团不再下漏为止。
然后收集各筛上的土样,分别称重,计算各级团聚体占风干土样的百分数具体方法:取200g(有资料是“将为量不多的”)分析土壤放在上面最大的筛子上,并将整套筛子小心地左右摆动地进行筛分,筛子不应太强烈地振动。
在分开每个筛子时,还要用手掌在筛壁上小心地敲打几下,其目的是为了敲落其中塞住筛孔的团聚体。
土壤干筛后分成>5mm,5-2mm,2-1mm,1-0.5mm,0.5-0.25mm,<0.25mm 的粒级。
分别收集团聚体的每一粒级,称重并计算其百分含量……将全部分析称样当作100%,把得到的资料整理成图表3、根据上面求得的各级于筛团聚体的百分含量,按比例配成50g风干土样具体方法:用干筛时所得的各粒级土样共50g作试样。
取试样时,用技术天平从每一粒级中称取数值上相当于一半其百分率质量的土样,精确至:0.01g。
例如,土中5mm—2mm粒级的土壤团聚体含量为12.40%,则取土6.20g;土壤无结构粒级,即<0.25mm的,不要加在土样内,理论上这—部分粒级的土壤可以通过所有的筛孔,但实际上这个粒级的团聚体会塞住筛孔,妨碍较大粒级的筛分,但在计算取样数量和其他计算中都需计算这一数值。
土壤—微团聚体组成的测定—吸管法

FHZDZTR0010 土壤微团聚体组成的测定吸管法F-HZ-DZ-TR-0010土壤—微团聚体组成的测定—吸管法1 范围本方法适用于土壤微团聚体组成的测定。
2 原理土壤中小于0.25mm的团聚体为微团聚体。
土壤中由原生颗粒所形成的微团聚体标志着土壤在浸水状况下的结构性能和分散强度。
土壤微团聚体测定与土壤颗粒组成吸管法测定基本相同,也是根据司笃克斯定律,利用不同直径微团聚体的沉降时间不同,将悬浮液分级。
所不同的是在颗粒分散时,为了保持土壤的微团聚体免遭破坏,在分散过程中只用物理方法(振荡)处理分散样品,而不加入化学分散剂。
然后根据土壤微团聚体测定结果与土壤颗粒组成测定结果中的小于0.002mm粒级含量计算出土壤分散系数和结构系数。
土壤分散系数用作表示土壤微团聚体在水中被破坏的程度,土壤分散系数愈大,则微团聚体的稳固性愈低。
土壤结构系数用作鉴定微团聚体的水稳定性。
3 仪器3.1 振荡机。
3.2 土壤颗粒分析吸管(图1)。
图1 土壤颗粒分析吸管3.3 搅拌棒(图2)。
3.4 量筒,1000mL 。
3.5 土壤筛,孔径2mm 、1mm 、0.5mm 。
3.6 烧杯,50mL ,200mL 。
3.7 洗筛,直径6cm ,孔径0.25mm 。
3.8 锥形瓶,500mL 。
4 操作步骤4.1 称取通过2mm 筛孔的10g (精确至0.001g )风干土样置于500mL 锥形瓶中,加入200mL 水,加塞浸泡24h ,然后在振荡机上振荡2h 。
在1000mL 量筒上放一大漏斗,在量筒口放一孔径0.25mm 洗筛,将悬浮液通过筛孔洗入量筒中,留在锥形瓶内的土粒,用水全部洗入洗筛内,注意切不可用橡皮头玻璃棒洗擦土粒,以免破坏微团聚体,最后将量筒内的悬浮液用水加至1000mL 。
图2 搅拌棒将盛有悬浮液的1000mL 量筒放在温度变化较小的平稳试验台上,避免振动,避免阳光直接照射。
将留在洗筛内的砂粒洗入已知质量的50mL 烧杯(精确至0.001g )中,烧杯置于低温电热板上蒸去大部分水分,然后放入烘箱中,于105℃烘6h ,再在干燥器中冷却后称至恒量(精确至0.001g )。
土壤水稳性大团聚体测定方法综述

土壤水稳性大团聚体测定方法综述
土壤水稳性大团聚体是植物处理土壤水分时所依赖的能量支撑、可以为周围的根系提供包埋的有机材料和水分的结构。
它与植物的生长、发育、根系的活动、水盐分布和土壤结构性能密切相关。
"土壤水稳性大团聚体"测定方法有多种,其中最为常用的是蒸发法和自动分析法。
蒸发法是土壤水稳性大团聚体测定常用方法之一。
该方法中,土壤样品用热处理将水稳性大团聚体团聚;调节温度,使其蒸发水分;经沉淀法去除无机悬浮物;然后用分离器分离出水稳性大团聚体。
之后,可采用水比容量的测定方法,来对水稳性大团聚体的含量进行表征。
自动分析法是比较新型的土壤水稳性大团聚体测定方法。
它采用电泳技术,以建立大团聚体在不同分离条件下的分布状况,借助分析仪曲线跟踪技术,根据不同条件下土壤水稳性大团聚体的分离状况,判定土壤水稳性大团聚体的数量和密度。
总之,蒸发法和自动分析法是目前最为常用的土壤水稳性大团聚体测定方法,两种方法都能准确地表征土壤水稳性大团聚体的数量和密度,从而为人们更深入地研究土壤特性和作物栽培,提供更全面的参考依据。
土壤团聚体的测定方法

土壤团聚体的测定方法
土壤团聚体是指土壤中的颗粒以及有机物质通过吸附力和黏结力相互结合形成的团块状结构。
常用的测定土壤团聚体的方法有:
1. 阴离子和阳离子浸出法:将土壤样品浸入高浓度的阴离子或阳离子溶液中,使土壤团聚体解聚,然后通过筛网分离土壤颗粒,根据不同粒径的颗粒数量和比例来评估土壤团聚体的状况。
2. 高速离心法:将土壤样品与水混合,并通过高速离心的方式分离土壤中的粗颗粒和团聚体。
然后通过筛选和称重,计算土壤团聚体的质量百分比。
3. 干密度法:将土壤样品晾干后,通过测量一定体积的土壤的质量来计算土壤的干密度。
干密度越高,表示土壤团聚体越好。
4. 湿筛分析法:将土壤样品与一定量的水混合,通过特定粒径的筛网筛分,根据筛网上的土壤颗粒数量和比例来评估土壤团聚体的状况。
5. 显微镜观察法:将土壤样品制成薄片,然后使用光学显微镜观察土壤团聚体的形态和结构,评估土壤团聚体的连通性和稳定性。
这些方法可以单独应用或结合使用,以获得更准确的土壤团聚体的测定结果。
同时,根据研究目的和需求,也可以选择其他适合的方法来评估土壤团聚体的性质。
湿筛法测定土壤团聚体方法

湿筛法测定土壤团聚体方法湿筛法是一种常用的土壤团聚体测定方法。
它通过筛选土壤样品,可以定量评估土壤的团聚体大小和稳定性。
下面将详细介绍湿筛法的具体操作步骤及其在土壤研究中的指导意义。
首先,进行湿筛法测定土壤团聚体的准备工作是必不可少的。
我们需要准备好需要测定的土壤样品,并将其均匀混合。
同时,还需要准备一套筛网,常用的筛孔直径有5mm、2mm和0.25mm等,以逐渐减小筛孔直径的方式进行筛选。
在具体操作过程中,将土壤样品倒入最大筛网中,然后用适当的水量将其湿润,同时用手或搅拌器将其充分混合均匀。
接下来,将湿润的土壤样品通过5mm筛网进行筛选,去除大颗粒的杂质,将得到的细颗粒和团聚体继续湿润。
然后,采用2mm和0.25mm筛网依次进行筛选,将不同粒径的团聚体分离出来。
通过湿筛法测定土壤团聚体,可以得到不同级别的团聚体含量。
大颗粒的团聚体往往具有较好的稳定性,而小颗粒的团聚体则易于破碎。
通过对团聚体含量的分析,可以评估土壤的结构稳定性和质地特征。
同时,还可以研究土壤团聚体与土壤肥力之间的关系,为土壤改良和农作物培育提供科学依据。
此外,在具体操作过程中,需要注意一些问题。
首先,要保持操作过程中的湿润度,避免土壤样品因过干或过湿导致测定结果的不准确。
其次,筛网的选择应根据具体的研究目的和土壤性质进行合理选择。
不同的筛孔直径可以反映不同级别的团聚体含量,因此需要根据实际情况进行调整。
总之,湿筛法是一种生动、全面、有指导意义的土壤团聚体测定方法。
通过该方法的应用,可以评估土壤结构稳定性、认识土壤团聚体的特征,从而为土壤管理和农作物生产提供科学依据。
需要注意的是,在具体操作过程中要掌握正确的方法和技巧,严格控制相关因素对测定结果的影响。
同时,还可以与其他土壤分析方法结合使用,进一步深化对土壤特性和质地的认识。
土壤大团聚体类型及测定方法课件

目录
• 土壤大团聚体的定义与重要性 • 土壤大团聚体的类型 • 土壤大团聚体的测定方法 • 土壤大团聚体的影响因素
目录
• 土壤大团聚体的改善措施 • 土壤大团聚体与植物生长的关系
01
土壤大团聚体的定义与重 要性
土壤大团聚体的定义
01
02
土壤大团聚体是指土壤中直径大于0.25mm的水稳性团聚体,是土壤 结构的基本单元。
土壤大团聚体是由微小的土壤颗粒通过有机质和无机胶体粘结形成的 ,其形成与土壤有机质含量、土壤质地、土壤微生物活动等因素密切 相关。
土壤大团聚体的重要性
土壤大团聚体是土壤质量的重要指标,对土壤的理化性 质、水文性质、生物活性等方面具有重要影响。
良好的土壤大团聚体结构有助于提高土壤的通气性、持 水能力、养分循环和利用效率,促进植物生长和发育。
02
03
提高养分保蓄能力
促进养分循环
提高养分利用率
大团聚体结构有助于保持土壤养分的稳定 性,减少养分流失。
大团聚体结构为微生物提供良好的生存环 境,促进养分循环。
大团聚体结构有助于提高土壤养分的有效 性,从而提高植物对养分的利用率。
对土壤环境的影响
01
02
03
改善土壤通气性
大团聚体结构有助于改善 土壤的通气性,减少土壤 板结和压实。
05
土壤大团聚体的改善措施
有机物料施用
增加有机物料投入
通过施用有机肥料、绿肥、生物 质废弃物等,提高土壤有机质含 量,促进大团聚体的形成。
有机物料选择
优先选择富含腐殖质、纤维素的 有机物料,如畜禽粪便、作物秸 秆等,这些物料对土壤团聚体的 改善效果更佳。
土壤耕作与轮作
土壤大团聚体组成的测定

土壤大团聚体组成的测定
检测土壤大团聚体组成十分重要,因为它是研究土壤性质特征的重要指标之一。
大团聚体不仅可以维持土壤的物理稳定性,还可以促进土壤的储水功能。
因此,检测土壤中的大团聚体组成至关重要。
检测土壤大团聚体组成的方法主要有分散溶剂法、溶解剂法、洗净法和水膜脱
附法。
分散溶剂法是通过使用分散溶剂来测量土壤中大团聚体的含量。
溶解剂法是通过使用溶解剂来溶解土壤中的大团聚体,从而测量它们的含量。
洗净法是将土壤中的细颗粒和团聚体分别收集和测量,从而得出大团聚体的含量。
水膜脱附法是将土壤悬浮于水中,并且可以通过水膜脱附的结果,以估计团聚体的含量。
上述方法都可以用来检测土壤中的大团聚体组成,但是要选择最适合的方法十
分重要。
首先,应该根据土壤细颗粒组成确定团聚体组成,包括黏土粒子、砂粒子、粉粒子等。
其次,根据土壤属性确定合适的检测方法,如黏土性质、湿度、细度等特征决定检测方法。
最后,在检测土壤大团聚体组成时,需要特别注意操作的步骤,避免温度和湿
度的变化等的影响,以确保实验的准确性和可靠性。
总之,正确地检测土壤大团聚体组成不仅可以为我们掌握土壤的物理性质提供
重要的指导,还可以为后续的土壤改良和耕作起到有力的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤微团聚体颗粒分离依据Stemmer 等方法并略作修改,沿用国际制土壤颗粒分级划定粒组。
1.从冰箱中取出土样,将大块土用手轻轻掰成小块土。
2.称取未处理土样35.0 g,水土质量比为5∶1,置于盛有175 ml 自来水
的烧杯中,浸泡1h左右(因为土样较湿,不需要浸泡太长时间)。
3.用探针式超声波发生器(JYD-650)低能量(170 J·L-1)超声分散5 min。
4.用湿筛法分离出2.00∼0.20 mm 粒径的土壤颗粒。
即0.20 mm筛在下,
2.00 mm筛在上,将两筛置于盆中,然后将超声震荡的土壤悬浮液倒
入筛中,用自来水将筛中的土壤颗粒全部冲下去。
0.20 mm筛上残留的土壤颗粒即为2.00∼0.20 mm 粒径的土壤颗粒。
5.然后用沉降虹吸法分离盆中的土壤悬液得到0.20∼0.02 mm 粒径的土
壤颗粒。
首先,通过Stokes 定律计算沉降时间,即
t=s/[(2/9)*gr2*((d1-d2)/η)](参考《土壤胶体》第二册p11)
其中,s 为沉降距离(10cm)
g 为重力加速度(981cm/s2)
r 为沉降土粒半径(cm)
d1 为土粒密度
d2 为介质密度
η为介质的粘滞系数(水的粘滞系数表见《土壤物理性质测定法》p31 ,温度4℃)
(本次试验参考各粒级土壤颗粒沉降时间表:10分53秒)然后进行沉降,至少沉降三次,沉降杯中得到0.20∼0.02 mm 粒径的土壤颗粒。
6.继而采用离心法分离出0.02∼0.002 mm、<0.002 mm 粒径的土壤颗
粒。
离心时间与转速由公式计算得到。
t =[ηlog(x2-x1)]/[3.81n2r2(d1-d2)]
其中,x1为中心轴到液面的距离;
x2 为中心轴到离心管底的距离;
n 为离心机每秒转数。
(选t为10分钟,温度为4℃,x1=8,x2=15,分离出<0.002 mm粒径的土壤颗粒,转速为640转/分)沉淀为0.02∼0.002 mm 粒径的土壤颗粒,用自来水将0.02∼0.002 mm 粒径的土壤颗粒洗出。
上清液为<0.002 mm 粒径的土壤颗粒。
7.用高速离心法分离得到<0.002 mm 粒径的土壤颗粒,4800转/分,
10min 。
转数
CD47 水的粘滞系
数
640 10.66667 0.01567 620.3957 10.33993 0.01519 601.6082 10.0268 0.01473 583.2291 9.720485 0.01428 566.0753 9.434588 0.01386 549.7384 9.162306 0.01346 534.2183 8.903638 0.01308 519.1066 8.651776 0.01271 504.8117 8.413529 0.01236 491.3338 8.188896 0.01203 478.2642 7.97107 0.01171 465.6031 7.760051 0.0114 453.7588 7.562646 0.01111 442.3229 7.372049 0.01083 431.2955 7.188258 0.01056 420.6765 7.011274 0.0103 410.4659 6.841098 0.01005 400.6637 6.677728 0.00981 391.2291 6.520485 0.009579 382.2029 6.370049 0.009358 373.381 6.223016 0.009142 365.0083 6.083472 0.008937 356.8398 5.94733 0.008737 348.9981 5.816635 0.008545 341.4422 5.690704 0.00836 334.0906 5.568177 0.00818
327.0249 5.450415 0.008007。