大团聚体
盐渍化土壤团聚体和微生物与有机质关系研究进展

DOI: 10.12357/cjea.20220752董心亮, 王金涛, 田柳, 娄泊远, 张雪佳, 刘彤, 刘小京, 孙宏勇. 盐渍化土壤团聚体和微生物与有机质关系研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(3): 364−372DONG X L, WANG J T, TIAN L, LOU B Y, ZHANG X J, LIU T, LIU X J, SUN H Y. Review of relationships between soil aggreg-ates, microorganisms and soil organic matter in salt-affected soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 364−372盐渍化土壤团聚体和微生物与有机质关系研究进展*董心亮, 王金涛, 田 柳, 娄泊远, 张雪佳, 刘 彤, 刘小京, 孙宏勇**(中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022)摘 要: 土壤有机质是耕地质量的核心, 不仅促进土壤团聚体形成, 也为植物和微生物提供养分。
土壤有机质的形成和分解过程都离不开微生物的参与, 而土壤团聚体不仅为微生物提供了栖息环境, 也对有机质进行物理保护。
在高盐分含量的土壤中, 有机质的积累和分解过程变得更加复杂, 因此本文总结了土壤盐渍化及其危害, 分析了土壤盐分对土壤团聚结构和微生物特征的影响、盐碱土壤有机质特征及积累规律, 进而综述了土壤盐分对土壤有机质影响规律的研究进展, 旨在揭示盐碱土壤碳封存的潜在机理。
以往研究表明盐渍化土壤有机质含量低、团聚结构差、微生物活性低, 这些都与土壤盐分含量高和外源有机物质输入量低有关。
恶劣的土壤结构导致盐渍化土壤有机质暴露而较易分解, 低量的外源有机物质输入导致盐渍化土壤有机质较难积累。
长期连作棉田不同种植模式下土壤团聚体组成及其有机碳分布特征

土壤团聚体是土壤结构的基本单元,对土壤的物理化学性质均具有重大影响[1-2]。
土壤团聚体通常被划分为大团聚体(>250um)和微团聚体(<250um)[3],不同粒级团聚体在土壤结构的改善和有机碳的固定中的作用不同。
耕作措施对土壤团聚体的影响主要是改变了土壤有机碳的分布和微生物的活动生境,为土壤有机物质的分解转化创造条件,从而造成了团聚体的变化[4]。
许多研究认为,耕作方式通过影响大团聚体与微团聚体之间的转化和再分布[5],进而影响土壤结构稳定性和抗侵蚀能力[6]。
免耕和少耕等保护性耕作措施有利于团聚体含量的增加,表层土壤结构的改善[7-9],但耕作方式对团聚体的土壤物理性质的影响会因气候条件、土壤质地和植被类型等的变化而不一样。
合理的耕作措施,对于增加土壤有机碳的固定,提高土壤肥力具有重要的理论和实践意义。
新疆北疆地区玛纳斯河流域棉花面积从1978年的14.97×103ha发展至2010年的176.25×103ha,部分区域棉田占总播种面积的70%[10]。
由于棉田面积的不断扩大,农业生产结构趋于单调,轮作倒茬困难,棉田大面积长期连作现象普遍,短则8~10年,长则15~20年,甚至更长。
大面积棉田多年连作的结果,使土壤肥力消耗很快,地力明显下降,对农田生态系统产生重要影响。
本研究以长期连作棉田为对象,分析大豆轮作、玉米轮作、玉米/大豆间作和休闲免耕种植模式对土壤有机碳团聚体组成及有机碳分布的影响,并运用土壤团粒指数(ELT)指标分析不同种植模式对长期棉田连作土壤团聚体稳定性的影响。
研究结果明确不同轮作模式对长期连作棉田土壤质量的变化,为采用有效的土壤管理措施以提高新疆棉田土壤质量提供科学依据。
1 材料与方法1.1 研究区概况试验始于2012年4月,在新疆石河子地区西古城镇选择长期连作棉田(20年),试验田的位置是北纬45°06′99″,东经86°13′56″,高程328m。
大团聚体测定方法

大团聚体的测定方法专业:水土保持与荒漠化防治 姓名:高强伟 学号:S2*******摘要:土壤团聚体是指土壤中大小、形状不一、具有不同孔隙度和机械稳定性的结构单位,通常将粒径>0.25mm 的结构单位称为大团聚体。
按水稳定性可把大团聚体分为非水稳定性大团聚体和水稳定性大团聚体,土壤水稳性团聚体含量是评价土壤结构性的重要指标,团聚体的测定有利于了解土壤水分的众多方面,如径流、人渗、再分布、通气以及根系生长。
而本文介绍用干筛法测定非水稳定性大团聚体,湿筛法、Le Bissonnais (LB)法测定水稳定性团聚体。
关键词:土壤团聚体;水稳性;测定方法;结果计算土壤团聚体是指一组黏结在一起的多个基本土壤颗粒,这些土壤颗粒之间的黏结力比其与周围土壤颗粒的黏结力更强,是土壤的结构单位[1-3]。
土壤团聚体对于外来破坏性作用力的脆弱性的度量[4],影响着土壤的一系列物理性质,特别是入渗和土壤侵蚀 [5-6],决定土壤对风和水的搬运作用的敏感性,还影响着耕作土壤孔隙的大小,进而影响土壤入渗、产流、侵蚀及肥力状况[1]。
从农学意义上讲,适于植物生长的良好结构主要依赖于直径为1—10mm 的水稳性团聚体,因为这种团聚体有利于调节通气、持水、养分的保持和释放[7]。
1 干筛法测定非水稳定性大团聚体(国家标准法)1.1 测定步骤第一步:在野外采取土样时,要求不破坏土壤结构,一个样品采集1. 5-2. 0 kg ,采回来的土样,将大的土块按其结构轻轻剥开,成直径10 mm 左右的团块,挑去石块、石砾及明显的有机物质,放在纸上风干(不宜太干)。
第二步:将团粒分析仪的筛组按筛孔大的在上、小的在下顺序套好,将土样倒在筛组的最上层,加盖,用手摇动筛组.使土壤团聚体按其大小筛到下面的筛子内。
当小于5 mm 团聚体全部被筛到下面的筛子内后,拿去5 mm 筛,用手摇动其他四个筛。
当小于2 mm 团聚体全部被筛下去后,拿去2 mm 的筛子。
土壤―大团聚体组成的测定―筛分法(精)

FHZDZTR0009 土壤大团聚体组成的测定筛分法F-HZ-DZ-TR-0009土壤—大团聚体组成的测定—筛分法1 范围本方法适用于土壤大团聚体组成的测定。
2 原理土壤团聚体是指土壤中大小、形状不一、具有不同孔隙度和机械稳定性、水稳定性的结构单位,通常将粒径 >0.25mm的结构单位称为大团聚体。
大团聚体分为非水稳定性和水稳定性两种,非水稳定性大团聚体组成用干筛法测定,水稳定性大团聚体组成用湿筛法测定。
筛分法根据土壤大团聚体在水中的崩解情况识别其水稳定性程度,测定分干筛和湿筛两个程序进行,最后筛分出各级水稳定性大团聚体,分别称其质量,再换算为占土样的质量百分数。
注 1:湿筛法不适用于一般有机质含量少的、结构性差的土壤,因这些土壤在水中振荡后,除了筛内留下一些已被水冲洗干净的石块、砾石和砂粒外,其他部分几乎全部通过筛孔进入水中。
注 2:粘重的土壤风干后会结成紧实的硬块, 即使用干筛法将其分成不同直径的粒级, 也不能代表它们是非水稳定性大团聚体。
3 仪器3.1 平口沉降筒, 1000mL ,带有橡皮塞。
3.2 水桶(搪瓷桶或铁桶 ,直径不小于 40cm ,高不小于 45cm 。
3.3 套筛, 高 5cm , 直径 20cm , 孔径分别为 10mm 、 7mm 、 5mm 、 3mm 、2mm 、 1mm 、 0.5mm 、 0.25mm ,共 8个,有底和盖,并附有能装 5个套筛的铁架子1个。
3.4 团聚体分析仪,手摇或电动,含 4套筛子,每套有 6个筛子,孔径分别为 5mm 、3mm 、 2mm 、 1mm 、 0.5mm 、 0.25mm ,电动团聚体分析仪在水中上下振荡速度为每分钟 30次。
3.5 白铁盒或铝制盒, 10cm ×10cm ×10cm 。
4 操作步骤4.1 采样:通常是采耕层土壤,根据需要也可分层采样。
采样时要注意土壤的湿度,最好在土不沾铲,接触不变形时为宜。
土壤水稳性大团聚体测定方法综述

d r gw tn n ldn l ig ( ra d w a sd b h o pes n o nrp e i i h o ui et gic ig s kn bek o n cue y te cm rsi fe t p d ar n te si n i u a o a l
用 的研 究 目的也不 同 。
笔 者 主要对 湿筛 法 团聚体 稳定 性及 粒径 分 析 中
土样 预处理 及筛 分 方 法进 行综 述 , 土壤 团 聚体 的 为
粒径 分 布及水 稳 性分 析提 供参 考 。
团聚体 对 于外来 破 坏 性 作用 力 的脆 弱 性 的度 量 ,
影 响着 土壤 的 一系 列 物 理 性 质 , 别 是 人 渗 和 土壤 特
常 压 湿 润 和 高 真 空 湿 润 。常 压 快 速 湿 润 过 程 中 , 分 沿 毛 管 快 速 渗 入 土 体 , 壤 内部 封 闭 的空 气 被 压 缩 , 生 微 型 水 土 产 爆 炸 , 团 聚体 破 坏 较 大 ; 速 湿 润 和 真 空 湿 润 能 使 团 聚 体 稳 定 性 显 著 增 大 。 如 果 是 为 全 面 了解 土 壤 团 聚 体 稳 定 对 慢 性及粒 径分布的信息 , 对土样采用常压快速湿润 和常压慢速湿润 ( 真空湿润 ) 可 或 2种 预 湿 润 。 湿 筛 的 作 用 在 于 区
21 0 1年 6月 9( 3):0 一t 3 1 6 1
中 国 水 土 保 持 科 学
S i n e o ola d W ae ns r a c e c fS i n t rC0 e v on
V0 . N0. 19 3
J n. O1l u 2
土壤 水 稳 性 大 团聚体 测 定 方 法综 述
不同植被条件下土壤团聚体的分布特征及稳定性分析

草地植被
草地植被对土壤团聚体的影响主要体现在对土壤结构的改 善和土壤质量的提升上。草地植被的根系和地上部分的残 余物能够提供有机质,促进微生物活动,改善土壤结构, 提高土壤团聚体的稳定性。
草地植被还能够通过减缓地表径流、减少土壤侵蚀等作用 ,保护土壤团聚体不被破坏。此外,草地植被的根系还能 够固结土壤,增强土壤的抗侵蚀能力。
能具有重要影响。
植被类型和覆盖度是影响土壤团 聚体分布和稳定性的重要因素。
不同植被条件下,土壤团聚体的 分布特征和稳定性存在差异,对 土壤质量和生态系统的健康具有
重要影响。
研究目的与意义
01
揭示不同植被条件下土壤团聚体的分布特征和稳定性规律。
02
探讨植被类型和覆盖度对土壤团聚体形成和稳定性的影响机制。
团聚体类型分布
团聚体类型分类
土壤团聚体可分为水稳性和非水稳性两大类。水稳性团聚体在土壤水分的作用下不易分散,而非水稳 性团聚体则较易分散。
植被类型对团聚体类型的影响
森林土壤中水稳性团聚体的含量较高,而农田土壤中非水稳性团聚体的含量较高。这可能与不同植被 条件下土壤有机质和微生物的分布有关。
团聚体稳定性分布
土壤pH值
总结词
土壤pH值对团聚体稳定性具有显著影响,通常在适宜的 酸碱度范围内能够提高团聚体的稳定性。
详细描述
在适宜的酸碱度范围内,土壤中的矿物质和有机质能够 更好地发挥其作用,促进土壤颗粒之间的粘结和稳定。 然而,过酸或过碱的土壤条件会破坏土壤结构,降低团 聚体的稳定性。例如,酸性土壤中过多的铝离子会与多 糖等物质发生反应,降低其粘结力;而碱性土壤中过多 的钙离子则会使土壤颗粒变得更加松散和不稳定。
针对农业活动区土壤团聚体稳定性较低的问题,未来研究可以探讨农业可持续管理措施对提高土壤团聚 体稳定性的作用,为农业可持续发展提供科学依据。
土壤大团聚体类型及测定方法课件

目录
• 土壤大团聚体的定义与重要性 • 土壤大团聚体的类型 • 土壤大团聚体的测定方法 • 土壤大团聚体的影响因素
目录
• 土壤大团聚体的改善措施 • 土壤大团聚体与植物生长的关系
01
土壤大团聚体的定义与重 要性
土壤大团聚体的定义
01
02
土壤大团聚体是指土壤中直径大于0.25mm的水稳性团聚体,是土壤 结构的基本单元。
土壤大团聚体是由微小的土壤颗粒通过有机质和无机胶体粘结形成的 ,其形成与土壤有机质含量、土壤质地、土壤微生物活动等因素密切 相关。
土壤大团聚体的重要性
土壤大团聚体是土壤质量的重要指标,对土壤的理化性 质、水文性质、生物活性等方面具有重要影响。
良好的土壤大团聚体结构有助于提高土壤的通气性、持 水能力、养分循环和利用效率,促进植物生长和发育。
02
03
提高养分保蓄能力
促进养分循环
提高养分利用率
大团聚体结构有助于保持土壤养分的稳定 性,减少养分流失。
大团聚体结构为微生物提供良好的生存环 境,促进养分循环。
大团聚体结构有助于提高土壤养分的有效 性,从而提高植物对养分的利用率。
对土壤环境的影响
01
02
03
改善土壤通气性
大团聚体结构有助于改善 土壤的通气性,减少土壤 板结和压实。
05
土壤大团聚体的改善措施
有机物料施用
增加有机物料投入
通过施用有机肥料、绿肥、生物 质废弃物等,提高土壤有机质含 量,促进大团聚体的形成。
有机物料选择
优先选择富含腐殖质、纤维素的 有机物料,如畜禽粪便、作物秸 秆等,这些物料对土壤团聚体的 改善效果更佳。
土壤耕作与轮作
名词解释

名词解释第二章土壤物理性质与过程土壤基质(soil matrix):土壤固相部分。
土粒密度(soil particle density)土壤容重(soil bulk density)土壤孔隙度(soil porosity)土壤孔隙比(pore space ratio):土壤中孔隙的容积与土壤固相容积的比值。
质量含水量(mass water content)容积含水量(volumetric water content)土壤颗粒(soil particle):是指在岩石、矿物的风化过程和成土过程中形成的碎屑物质,是构成土壤固相的基本物质。
单粒(single particle):单个存在的矿物质土壤颗粒。
复粒(compound particle):指在土壤固相中由多个单粒相互聚集在一起形成的矿质土壤颗粒。
司笃克斯定律(stcoke’s law):颗粒半径与颗粒在静水中自由沉降速率的关系式。
当量粒径(equivalent diameter):一般用与某粒级土壤颗粒沉降速率相同的圆球直径代表土壤颗粒的大小,称之为当量粒径。
石砾(gravel)砂粒(sand)粉粒(silt)黏粒(clay)原生矿物(primary mineral)次生矿物(secondary mineral)土壤质地(soil texture):土壤颗粒分布(particle-size distribution)(土壤机械组成mechanical composition)土壤结构体(soil structure types):各级土粒由于不同原因相互团聚成大小、形状和性质不同的土团、土块、土片等土壤实体。
实际上是土壤颗粒按照不同的排列方式、复合而形成的土壤团聚体。
土壤结构性(soil structural properties):反映了土壤一种重要的物理性质的状态,主要指土壤中单粒和复粒(包括各种结构体)的数量、大小、形状、性质及其排列、相应的空隙状况等综合特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三 各测定方法的适用范围及注意事项
1.对于粘重的土壤一般不采用干筛法,因为粘重的土壤风干后 往往会结成非常结实的硬块,即使用干筛法将其分成不同直径的 粒级,也不能代表它们是非水稳性大团聚体。同时干筛法测定的 土样太干太湿都不适宜,以潮为适度,即土壤用铲挖时不粘在铲 子上,用手捻时土块能捻碎放在筛内时又不粘在筛子上为宜并且 应挑去石块和石砾,但结合在大团聚体中的砂粒与细砾不应挑出 去应包括在大团聚体中。 2.湿筛法对一般有机质含量少的土壤不适用,因这些土壤在水 中振荡后,除了筛内留一些已被水冲洗干净的石块、石砾、砂粒 外,其他部分几乎全都通过筛孔进人水中。湿筛的作用在于区分 不同粒级的土壤颗粒,应尽量减小对团聚体颗粒进一步的磨蚀作 用,因此湿筛过程中振动速度不能太快. 3.LB法是Le Bissonnais在系统总结土壤团聚体稳定性的物理 学机制和测定方法基础上, 提出了新的测定团聚体的方法论, 该 法根据不同团聚体崩解的作用力采用不同的处理, 以区分团聚体 崩解的不同机制。卢升高等在用运LB法测定富铁土中团聚体时指 出LB法优于湿筛法,同时还可确定一些影响团聚体稳定性和形成 的因素。
论文题目
大团聚体的测定方法
报告内容
土壤团聚体的意义及国内外测定方 法的概述 介绍几种大团聚体的测定方法 各测定方法的适用范围及注意事项
一 土壤团聚体的意义及测定方法概述
土壤团聚体是指一组黏结在一起的多个基本土壤颗粒,这些 土壤颗粒之间的黏结力比其与周围土壤颗粒的黏结力更强,是 土壤的结构单位,按稳定性可将大团聚体分为非水稳定性大团 聚体和水稳定性大团聚体。团聚体稳定性及其粒径分布是团聚 体的2个重要特征,也是2个相互关联的概念。前者是指土壤团 聚体对于外来破坏性作用力的脆弱性的度量,影响着土壤的一 系列物理性质,特别是入渗和土壤侵蚀;后者则决定土壤对风 和水的搬运作用的敏感性,还影响着耕作土壤孔隙的大小,进 而影响土壤入渗、产流、侵蚀及肥力状况。从农学意义上讲, 适于植物生长的良好结构主要依赖于直径为1—10 mm的水稳性 团聚体,因为这种团聚体有利于调节通气、持水、养分的保持 和释放。 长期以来,人们设计了多种方法来分析团聚体粒径分布。团 聚体粒径分布的分析方法主要有W.S.Chepil的旋转干筛法、 根据Stokes定律的沉降法、L.D.Baver等叫的水析法以及R.
二 团聚体的测定方法
非水稳定性大团聚体的测定方法
(一)测定步骤
1.在不破坏土壤结构的情况下每一样品采集1.5-2.0kg,带回后 挑去石块、石砾及明显的有机物质,放在纸上风干(不宜太干)。 2.将土样倒在安装好的团粒分析仪上用手摇动。相继干筛同 一样品的每一个粒级部分,每次筛出来的各级大团聚体,将相同 粒径的放在一起称重(精确到0.01g)。 (二)结果计算 ′ m1 各级非水稳性大团聚体含量(g/kg)= ×1000 (1) m1 ′ 式中:m1—风干土样质量,g; m1 —各级非水稳性大团聚体风干质量,g。 各级非水稳性大团聚体含量(g/kg)的总和为总非水稳性大团聚体 含量(g/kg),各级非水稳性大团聚体含t占总非水稳性大团聚体含 量比例(%) (2) 各级非水稳定大团聚体含量(g / kg)
(二)Le Bissonnais (LB)法测定水稳定性团聚体 1.测定步骤 (1)用干筛法筛出5-2,2-1,1-0.5mm三级团聚体,在40℃烘24h 统一含水量。 (2)三级团聚体可用以下3种方法处理: <1>快速湿润( Fast wetting,FW):各级团聚体各取5g轻轻放入装有50ml去离子水的烧 杯中, 静置10min后,用移液管吸干水分,用乙醇将团聚体洗入套筛 内(套筛预先浸在乙醇中,按筛孔从小到大依次叠放)。<2>慢速湿 润( Slow wetting, SW):各级团聚体各取5g轻放在滤纸上,在0.3 kPa吸力下润湿30min,用乙醇将团聚体洗入套筛内。<3> 预湿后 扰动(Wet stirring,WS ):各级团聚体各取5g轻轻放入装有50ml乙 醇的烧杯中, 静置10min后,用移液管吸干乙醇,再移入装有50ml去 离子水的刻度三角瓶,加去离子水至200ml,加塞,振荡20次,静置 30min后,吸干水分,用乙醇将团聚体洗入套筛内。 (3)3种处理完后双手抓紧套筛, 均匀用力在乙醇中上下振荡5次, 将各筛上的团聚体洗入蒸发皿内,烘干,称重。 (二)计算结果(与前面两种方法的计算方法相同)
E.Yoder的湿筛法,他们研究发现土样预湿方式和湿筛方式是影响 水稳性大团聚体粒径分布和数量的2个重要因素,不同的方法所得 结果差异很大,适用的研究目的也不同。 本文主要介绍用干筛法测定非水稳定性大团聚体,湿筛法、Le Bissonnais (LB)法测定水稳定性团聚体,为土壤团聚体的粒径 分布及水稳性分析提供参考。
= × 100 总非水稳定性大团聚体含量(g / kg)
水稳定性团聚体的测定
(一)湿筛法测定水稳定性团聚体 1.测定步骤 (1)根据干筛法求得的各级团聚体的含量(g/kg),把干筛分取 的风干样品按比例配成50g。按孔径从小到大依次叠好筛组,将 称好的样品置于筛组上(为了防止在湿筛时堵塞筛孔,故不把 0.25mm的团聚体倒入湿筛内) (2)将筛组安装在振动架上放入已加水的的桶内(水的高度至 筛组最上面一个筛子的上缘部),开动马达震动30min后,慢慢升 起振荡架湿筛组完全离开水面,待水淋干后将各级筛上的团聚体 洗入铝盒,侵取上清液放入烘箱烘干,在大气中放一晚上后称重。 2.计算结果(与前面非水稳定性大团聚体计算过程相同)