恒温槽装配和性能测试

合集下载

《物理化学实验报告》恒温槽的装配与性能测试

《物理化学实验报告》恒温槽的装配与性能测试

恒温槽的装配与性能测试2012年2月28日实验,2012年3月1日提交报告助教:陈双龙1 引言恒温条件是物理化学实验中的基本手段之一。

主要的恒温装置有固定温度点的相变介质浴和可变温度点的电子控温法。

本实验讨论的恒温水浴属于后者。

它通过继电器、温度调节器(热电偶)和加热器配合工作而达到恒温的目的。

其原理如图1所示。

当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,热电偶使得线路Ⅱ为通路,因电磁作用将弹簧片D吸下,线路Ⅰ断开,加热器停止加热;当水槽温度低于设定值时,线路Ⅱ断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路Ⅰ又成为通路。

如此反复进行,从而使恒温槽维持在所需恒定的温度。

图1恒温槽工作原理[1]1. 加热器2. 直流电源3. 热电偶恒温槽由浴槽、温度计、热电偶、继电器、加热器、搅拌器等部件组成。

为了对恒温槽的性能进行测试,实验中还包括与自动记录仪相连的热敏电阻测温装置。

浴槽包括容器和液体介质。

一般选择10 L或者20 L的圆形玻璃缸做为容器。

本实验采用水为工作介质。

观察恒温浴槽的温度可选择1/10 ℃水银温度计,测量恒温槽灵敏度则采用热敏电阻测温装置。

将热敏电阻与1/10 ℃温度计绑在一起,安装位置应尽量靠近被测系统。

热电偶是恒温槽的重要部件,它利用两种导体在温差下产生的电动势测定体系的温度[2],其灵敏度对控温精度起着关键作用。

实验室常用的继电器有晶体管继电器和电子管继电器。

我们使用的是前者。

在实验中的加热器之前,需要一个和加热器功率相适应的调压器,以便对加热电压进行调节。

综上所述,恒温效果是通过一系列元件的动作来获得的。

因此不可避免地存在着滞后现象,如温度传递、感温元件、继电器、加热器等的滞后。

因此,装配时除对上述各元件的灵敏度有一定要求外,还应根据各元件在恒温槽中作用,选择合理的摆放位置,合理的布局才能达到理想的恒温效果。

灵敏度是恒温槽恒温好坏的一个重要标志。

恒温槽的装配与性能测试

恒温槽的装配与性能测试

实验1 恒温槽的装配和性能测试一、实验目的1.了解恒温槽的原理,初步掌握其装配和调试的基本技术。

2.分析恒温槽的性能,找出合理的最佳布局。

3.掌握水银接点温度计、热敏电阻温度计、继电器、自动平衡记录仪的基本测量原理和使用方法。

二、实验原理许多物理化学实验都需要在恒温条件下进行。

欲控制被研究体系的某一温度,通常采取两种方法:一是利用物质相变时温度的恒定性来实现,叫介质浴。

如:液氮(-195.9℃)、冰-水(0℃)、沸点水(100℃)、干冰-丙酮(-78.5℃)、沸点萘(218℃)等等。

相变点介质浴的最大优点是装置简单、温度恒定。

缺点是对温度的选择有一定限制,无法任意调节。

另一种是利用电子调节系统,对加热或制冷器的工作状态进行自动调节,使被控对象处于设定的温度之下。

本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。

其简单恒温原理线路如图1所示。

当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I 断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。

如此反复进行,从而使恒温槽维持在所需恒定的温度。

恒温槽由浴槽、温度计、接点温度计、继电器、加热器、搅拌器等部件组成。

如图2所示。

为了对恒温槽的性能进行测试,图中还包括一套热敏电阻测温装置。

现将恒温槽主要部件简述如下。

1.浴槽浴槽包括容器和液体介质。

根据实验要求选择容器大小,一般选择10L或者20L的圆形玻璃缸做为容器。

若设定温度与室温差距较大时,则应对整个缸体保温。

以减少热量传递,提高恒温精度。

恒温槽液体介质根据控温范围选择,如:乙醇或乙醇水溶液(-60-30℃)、水(0-100℃)、甘油或甘油水溶液(80-160℃)、石蜡油、硅油(70-200℃)。

实验一:恒温槽的装配与性能测试

实验一:恒温槽的装配与性能测试

实验一:恒温槽的装配与性能测试一、实验目的1.了解恒温槽的构造及恒温原理,掌握恒温操作技术。

2.绘制恒温槽的灵敏度曲线,学会分析恒温槽的性能。

3.掌握贝克曼温度计的使用方法。

二、实验原理许多物理化学量都与温度有关,要准确测量其数值,必须在恒温下进行。

实验室最常用的是用恒温槽来控制温度维持恒温,它是以某种液体为介质的恒温装置,依靠温度控制器来自动调节其热平衡。

图1-1 恒温槽装置图1-浴槽;2-电热丝;3-搅拌器;4-温度计;5-接触温度计;6-温度控制器恒温槽一般是由浴槽、搅拌器、加热器、接触温度计、温度控制器和温度计等部分组成,现分别介绍如下:(如图所示)实验开始时,先将搅拌器3启动,将接触温度计5调至所需恒温温度(例如25℃),若此时浴槽1内的水温低于25℃,则接触温度计5的两条引出线断路,则温度控制器6发出指令对加热器2通电加热,使浴槽1内的水温升高,当浴槽1内的水温达到25℃时,接触温度计5的两条引线导通,则温度控制器6发出指令对加热器2停止加热。

以后当浴槽1内的水因对外散热使温度低于25℃时,则接触温度计5的两条引线再次断路,则加热器2重新工作。

这样周而复始就可使介质的温度在一定范围内保持恒定。

图1-3 温度控制器的电路图T-电源变压器;D1、D2、D3、D4-2AP3晶体二级管;J-121型灵敏继电器;C1、C1-滤波电容;L1-工作指示氖炮;L2-电源指示灯炮。

由于这种温度控制装置属于“通”“断”类型,当加热器接通后传热使介质温度上升并传递质温度上升并传递给接触温度计,使它的水银柱上升。

由于传质、传热都需要一定时间,因此,会出现温度传递的滞后现象。

即当接触温度计的水银触及钨丝时,实际上电热器附近的水温已超过了指定温度,因此,恒温槽温度必高于指定温度。

同理,降温时也会出现滞后现象。

由此可知,恒温槽控制的温度有一个波动范围,而不是控制在某一固定不变的温度,并且恒温槽内各处的温度也会因搅拌效果的优劣而不同。

恒温槽的装配和性能测试

恒温槽的装配和性能测试

恒温槽的装配和性能测试1 引言1.1实验目的[1]1、了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术2、分析恒温槽性能,找出合理的最佳布局。

3、掌握热敏电阻温度计等的基本测量原理和使用方法。

1.2 实验原理本实验讨论的恒温水浴是一种常用的控温装置。

当水温低于设定值时,线路接通,加热器工作,使水槽温度上升;当水槽温度升高到设定值时,线路段开,加热器停止加热。

如此反复进行,从而使恒温槽维持在所需恒定的温度。

[1]实验时恒温槽由浴槽、温度计、加热器、搅拌器等组成。

浴槽内含有液体介质(水)。

内有一套测温的热敏电阻温度计连接已设定好目标温度可控电路通断的温控仪,并与加热器串联,从而实现根据温度变化控制加热器是否加热。

1/10℃温度计与热敏电阻温度计紧连在一起亦置于水槽中,用以测量温度,热敏电阻温度计与无纸记录仪、计算机相连,测量值由计算机处理出图。

电加热器还与调压器连接,可以控制加热器的加热电压。

恒温效果是由一系列元件的动作来获得的,因此存在着滞后现象。

因此装配时除对上述各元件的灵敏度有一定要求外,还应根据各元件在恒温槽中的作用选择合理的摆放位置,合理的布局才能达到理想的恒温效果。

灵敏度是恒温槽恒温效果好坏的一个重要标志,一般以制定温度下T T 停始、分别表示开始加热和停止加热时槽内水的温度(相对值),以()12T T T =-停始为纵坐标,实践t 为横坐标,画出灵敏度曲线如图:图1:几种形状的灵敏度曲线若最高温度为T 高,最低温度为T 低,测得恒温槽的灵敏度为:E 2T T T -=±低高2 实验操作2.1 实验药品、仪器型号及测试装置示意图恒温槽一套:玻璃钢、D-8410多功能型电动搅拌器,数显惠斯通电桥清华大学化学系,群力接触调压器北京调压器厂,1/10℃温度计,热敏电阻温度计,电加热器放大镜,温控仪,无纸记录仪2.2 实验条件温度:17.0 ℃湿度:56.2%压强:101.28 kPa2.3 实验操作步骤及方法要点1、恒温槽的装配按实验原理中所述连接线路。

恒温槽的装配和性能测试.

恒温槽的装配和性能测试.

实验一恒温槽的装配和性能测试一.实验目的:1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术。

2.绘制恒温槽灵敏度曲线。

3.掌握水银接点温度计,继电器的基本测量原理和使用方法。

二.实验原理:恒温槽使实验工作中常用的一种以液体为介质的恒温装置。

用液体作介质的优点是热容量大和导热性好,从而使温度控制的稳定性和灵敏度大为提高。

根据温度控制的范围,可采用下列液体介质:-60℃~30℃—乙醇或乙醇水溶液;0℃~90℃—水;80℃~160℃—甘油或甘油水溶液;70℃~200℃—液体石蜡、汽缸润滑油、硅油。

恒温槽通常由下列构件组成:1. 槽体:如果控制的温度同室温相差不是太大,则用敞口大玻璃缸作为槽体是比较满意的。

对于较高和较低温度,则应考虑保温问题。

具有循环泵的超级恒温槽,有时仅作供给恒温液体之用,而实验则在另一工作槽中进行。

2. 加热器及冷却器:如果要求恒温的温度高于室温,则须不断向槽中供给热量以补偿其向四周散失的热量;如恒温的温度低于室温,则须不断从恒温槽取走热量,以抵偿环境向槽中的传热。

在前一种情况下,通常采用电加热器间歇加热来实现恒温控制。

对电加热器的要求是热容量小、导热性好,功率适当。

选择加热器的功率最好能使加热和停止的时间约各占一半。

3. 温度调节器:温度调节器的作用是当恒温槽的温度被加热或冷却到指定值时发出信号,命令执行机构停止加热或冷却;离开指定温度时则发出信号,命令执行机构继续工作。

目前普遍使用的温度调节器是汞定温计(接点温度计)。

它与汞温度计不同之处在于毛细管中悬有一根可上下移动的金属丝,金属丝再与温度控制系统连接。

4. 温度控制器温度控制器常由继电器和控制电路组成,故又称电子继电器。

从汞定温计传来的信号,经控制电路放大后,推动继电器去开关电热器。

5. 搅拌器:加强液体介质的搅拌,对保证恒温槽温度均匀起着非常重要的作用。

设计一个优良的恒温槽应满足的基本条件是:(1)定温计灵敏度高,(2)搅拌强烈而均匀,(3)加热器导热良好而且功率适当,(4)搅拌器、汞定温计和加热器相互接近,使被加热的液体能立即搅拌均匀并流经定温计及时进行温度控制。

恒温槽装配和性能测试

恒温槽装配和性能测试

恒温槽装配和性能测试一、实验技能1、欲设定实验温度为25℃,如何调节恒温槽?2、贝克曼温度计的调节和使用。

参考答案:1.温度设定:(用水银导电表调节)假定室温为20℃,欲设定实验温度为25℃,其调节方法如下:先旋开水银接触温度计上端螺旋调节帽的锁定螺丝,再旋动磁性螺旋调节帽,使温度指示螺母位于大约22℃处。

接通继电器电源,打开开关,开启加热器和搅拌器令其工作,注视温度计的读数。

当达到24℃左右,再次转动磁性螺旋调节帽,使触点与水银柱处于刚刚接通与短开的状态。

此时要缓慢加热,直到温度升至25℃为止,然后旋紧锁定螺丝。

2.调节贝克曼温度计:实验中采用标尺读书法该法是直接利用贝克曼温度计上部的温度标尺,而不必另外用恒温浴来调节,其操作步骤如下:首先将贝克曼温度计倒置,使下方水银球中的水银和上方辅助水银贮槽中的水银连接,正立过来,放于已经恒温的恒温槽中恒温5分钟,计下此时水银柱停留在辅助水银贮槽上的刻度;倒置,使水银在原来的刻度基础上上升2.5个小格(大约相当于5度),立即正立,拍断,将贝克曼温度计重新放在恒温槽中,使水银柱刻度位于1~4之间即可。

二、提问问题:1.恒温槽构造,各部件的作用。

2.怎样提高恒温槽的灵敏度?3.贝克曼温度计的构造和特点。

4.贝克曼温度计的调节方法。

参考答案:1.恒温槽构造,各部件的作用。

(1)浴槽浴槽包括容器和液体介质。

如果要求设定的温度与室温相差不太大,通常可用20dm3的圆形玻璃缸作容器。

若设定的温度较高(或较低),则应对整个槽体保温,以减小热量传递速度,提高恒温精度。

恒温水浴以蒸馏水为工作介质。

如对装置稍作改动并选用其它合适液体作为工作介质,则上述恒温可在较大的温度范围内使用。

(2)温度计观察恒温浴的温度可选用分度值为0.1℃的水银温度计,而测量恒温浴的灵敏度时应采用贝克曼温度计。

温度计的安装位置应尽量靠近被测系统。

(3)搅拌器搅拌器以小型电动机带动,其功率可选40W,用变速器或变压器来调节搅拌速度。

实验一:恒温槽的装配和性能测试

实验一:恒温槽的装配和性能测试

恒温槽的装配和性能测试一、实验目的1.了解恒温槽的构造及恒温原理, 初步掌握其装配和调试的基本技术。

2.绘制恒温槽灵敏度曲线。

3.掌握水银接点温度计, 继电器的基本测量原理和使用方法。

4.掌握乌氏粘度计的构造和使用方法。

二、恒温槽的构造及恒温原理1.恒温槽的构造A.槽体: B.加热器及冷却器C.温度调节器D.电子继电器E.搅拌器2.实验原理示意图三、乌氏粘度计的构造及测量原理1.乌氏粘度计的构造2.粘度计测量原理测定粘度时通常测定一定体积的液体流经一定长度垂直的毛细管所需的时间, 根据泊塞耳公式计算其粘度:但通过此方法直接测定液体的绝对粘度较难, 所以可通过测量未知液体与标准液体(水)的相对粘度, 通过下式进行计算:、五、实验步骤(一)恒温槽操作步骤1.插上电子继电器电源, 打开电子继电器开关。

2.插上电动搅拌机电源, 调节合适的搅拌速度。

3.插上数字贝克曼温度计电源, 打开开关。

检查实际温度是否低于所所控制温度。

4.旋转下降调节帽, 直到电子继电器的红灯刚好亮。

插上加热器电源, 缓慢旋转调节帽, 使钨丝高度上升, 直到电子继电器的红灯刚好灭, 加热器开始加热。

5、当电子继电器的红灯亮, 重复调节并反复进行, 直到实际温度在设定温度的一定范围内波动。

6、记录温度随时间的变化值, 绘制恒温槽灵敏度曲线。

(二)、粘度计操作步骤1.将粘度计垂直夹在恒温槽内, 将纯水自A管注入粘度计内, 恒温5分钟左右, 夹紧C管上连结的乳胶管, 同时在连接B管制乳胶管上接洗耳球慢慢抽气, 待液体升至G球的1/2左右时停止。

打开C管乳胶管上夹子使毛细管内液体同D球分开, 用秒表测定液面在a, b两线间移动所需时间。

2.重复测定3次, 每次误差不超过0.2~0.3秒, 取平均值。

3、洗净烘干后, 用同样的方法测定10%NaCl溶液的粘度。

4、实验完毕后, 按开机相反的顺序关闭电源, 整理实验台。

六、实验数据处理1.记录反应温度、大气压等常规物理量, 不得用铅笔记录, 不得用小纸片预先记录。

恒温槽的组装及性能测试

恒温槽的组装及性能测试

实验一恒温槽的装配及性能测试一、实验目的1.了解恒温水浴的构造及其工作原理,学会恒温水浴的装配技术。

2.测绘恒温水浴的灵敏度曲线。

二、基本原理恒温控制可分为两类,一类是利用物质的相变点温度来获得恒温,但温度的选择受到很大限制;另外一类是利用电子调节系统进行温度控制,此方法控温范围宽、可以任意调节设定温度。

恒温槽是实验工作中常用的一种以液体为介质的恒温装置,根据温度控制范围,可用以下液体介质:-60度~30度用乙醇或乙醇水溶液;0度~90度用水;80度~160度用甘油或甘油水溶液;70度~300度用液体石蜡、汽缸润滑油、硅油。

恒温槽是由浴槽、电接点温度计、继电器、加热器、搅拌器和温度计组成,。

继电器必须和电接点温度计、加热器配套使用。

电接点温度计是一支可以导电的特殊温度计,又称为导电表。

当温度升高时,毛细管中水银柱上升与一金属丝接触,两电极导通,使继电器线圈中电流断开,加热器停止加热;当温度降低时,水银柱与金属丝断开,继电器线圈通过电流,使加热器线路接通,温度又回升。

如此,不断反复,使恒温槽控制在一个微小的温度区间波动,被测体系的温度也就限制在一个相应的微小区间内,从而达到恒温的目的。

恒温槽的温度控制装置属于“通”“断”类型,当加热器接通后,恒温介质温度上升,热量的传递使水银温度计中的水银柱上升。

但热量的传递需要时间,因此常出现温度传递的滞后,往往是加热器附近介质的温度超过设定温度,所以恒温槽的温度超过设定温度。

同理,降温时也会出现滞后现象。

由此可知,恒温槽控制的温度有一个波动范围,并不是控制在某一固定不变的温度。

控温效果可以用灵敏度Δt表示:式中,t1为恒温过程中水浴的最高温度,t2为恒温过程中水浴的最低温度。

三、仪器试剂SYP型玻璃恒温水浴:1套(包括加热器和搅拌器)继电器(SWQP数字控温仪,SWQ智能数字恒温控制器)四、实验步骤1.接好线路,经过教师检查无误,接通电源---将SWQP数字控温仪或SWQ智能数字恒温控制器,设定温度为40℃,数字贝克曼温度计“基温选择”为40℃,使加热器加热;使搅拌器搅拌;2.作灵敏度曲线:读取恒温过程中的最高温度和最低温度各20次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将操作步骤中的3、4之数据记录于下表中
时间/min 贝克曼温度 25℃ 计读数 35℃ 0.5 1 1.5 2 2.5 3 3.5…… ……30
1. 以时间为横坐标,温度为纵坐标,绘制不同温度 下的“温度~时间”曲线。
2. 计算不同温度时恒温槽的灵敏度。
六、思考讨论题
• 1. 对于提高恒温槽的灵敏度,可从哪些方面进 行改进? • 2. 试讨论为什么采用温差测量比采用温度测量 更为准确? • 3.如果所需恒定的温度低于室温,如何装配恒 温槽?
4.超级恒温槽灵敏度的测定:待恒温槽调节到25℃
恒温后,观察SWC—ⅡD精密数字温差仪的读数,
利用秒表,每30秒记录一次SWC—ⅡD精密数字
温差仪的读数,测定30min。
5.按上述步骤分别测定25℃、35℃时超级恒温槽的
灵敏度。
6.测量完毕,关闭SWC—ⅡD精密数字温差仪、关
闭超级恒温槽。
五、数据记录和处理:
超级恒温水浴 SWC—ⅡD精密 数字温差仪
(2) 接通电源,打开电源开关并将 “自控与外循环”档调至“自控” 档(当加热器加热时,伴有“嗡嗡 声”,当电子继电器停止加热时, “嗡嗡声”消失),观察SWC— ⅡD精密数字温差仪读数。当读数 达25℃时,使钨丝与水银处于刚刚
接通与断开状态,此时“嗡嗡声”
变速器来调节搅拌温度。 4、温度计:常用1/10℃温度计作为观察温度
用。为了测定恒温槽的灵敏度,可用
1/100℃温度计或贝克曼温度计。
5、感温元件: 它是决定恒温槽灵敏度的关 键部件之一,目前常用接触温度计,又称 水银导电表,其作用相当于一个自动开关, 用于控制加热器的工作状态,从而控制浴
槽所要求的温度,控制精度一般在±0.1K。
接用它测定恒温槽的水温吗?为什么?
三、仪器和试剂:
超级恒温槽水浴一台、SWC— ⅡD精密数字温差仪 一台、接
接触式温度计
触式温度计 一支、秒表一块
四、操作步骤 1、向超级恒温槽中注入清水,离
顶盖2~3cm即可。
2、超级恒温槽的调试: (1)旋转接触式温度计的调节帽
使标铁上端面所指的温度稍低
于25℃处(通常低于0.2~ 0.3℃)。
消失表示停止加热。然后固定调节 帽螺丝。 需要注意的是,决不能以接触 温度计的刻度作为依据,必须以 SWC—ⅡD精密数字温差仪的温度 读数为准。接触温度计所指的数, 只能给我们一个粗略的估计。 “自控与外 循环”档调 电源开关
3.SWC—ⅡD精密数字温差仪的调节:
(1)调节“基温选择”旋扭到合适的位置(如:恒温槽温度设在25℃ 时,基温可选在20℃)。 (2) 按一下“温度/温差” 键,选择测量温差,此时显示屏上显示温差 数,即小数点后面有三位小数。(下图显示的是温度为33.51℃) (3)需要记录温度或温差的读数时,按一下“测量/保持” 键使仪器处 于保持状态,此时“保持”指示灯亮。(下图显示的是“测量”状 态) 。读数完毕再按一下“测量/保持” 键,即可转换到“测量”状 态,进行跟踪测量。
6. 继电器
继电器必须与加热器和接触温度计相连, 才能起到控温作用。实验室常用的继电器 有电子管继电器和晶体管继电器。 衡量恒温水浴的品质好坏,可以用恒温 水浴灵敏度来衡量。通常以实测的最高温 度与最低温度值之差的一半数值来表示其 灵敏度, 即tE = ±(t1- t2)/2。
预习问题
实验中接触式温度计的用途是什么?可以直
恒温槽温度调节与控制及其性能测试
一、实验目的
1. 了解恒温槽的构造及恒温原理。
2. 掌握接触式温度计对恒温槽温度的调节与
控制。
3. 学会测试恒温槽温度的波动性,并能绘制
恒温槽的灵敏度曲线。
二、基本原理
恒温槽所以能维持恒温,主要是依靠恒温控 制器来控制恒温槽的热平衡。当恒温槽因对外散 热而使水温降低时,恒温控制器就使恒温槽内的 加热器工作。待加热到所需的温度时,它又使加 热器停止加热,这样就使槽温保持恒定。 恒温槽一般由浴槽、加热器、搅拌器、温度 计、感温元件、恒温控制器等部分组成,现分别 简单介绍如下:
(接触温度计结构见后面两页)
接触式温度计实物图

接触式温度计重要部分结构图
接触式温度计工作原理:
水银球上部焊有金属丝,温度计上半部有另一金属丝,两者 通过引出线接到继电器的信号反馈端。接触温度计的顶部 有一磁性螺旋调节帽,用来调节金属丝触点的高低。同时, 从温度计调节指示螺母在标尺上的位置可以估读出大致的 控温设定温度值。浴槽温度升高时,水银膨胀并上升至触 点,继电器内线圈通电产生磁场,加热线路弹簧片跳开, 加热器停止加热。随后浴槽热量向外扩散,使温度下降, 水银收缩并与触点脱离,继电器的电磁效应消失,弹簧弹 回,而接通加热器回路,系统温度又开始回升。这样接触 温度计反复工作。而且系统温度得到控制。可以说它是恒 温浴的中枢,对恒温起着关键作用。
1、浴槽:包括容器和工作物质。浴槽内之工作物质一般采
用蒸馏水 。
2、加热器:常用的是电热器。根据恒温槽的容量、恒温温
度以及与环境的温差大小来选择电热器的功率。为了提高
恒温的效率和精度,有时可采用两套加热器。开始时用功
率较大的加热器加热,当温度达到恒定时,再用功率较小
的加热器来维持恒温。
3、搅拌器:一般采用40W的电动搅拌器,用
相关文档
最新文档