小学升初中数学应用题专题(带问题详解偏难)
小升初数学应用题大全100例附答案(完整版)

小升初数学应用题大全100例附答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:1 桶水可灌3/4 壶水,1 壶水冲2 杯水,所以1 桶水可以冲3/4 ×2 = 3/2 = 1.5 杯水。
2. 小明看一本120 页的故事书,已经看了全书的5/6,还剩多少页没看?答案:全书120 页,已经看了全书的5/6,即看了120×5/6 = 100 页,还剩120 - 100 = 20 页。
3. 一个长方形的长是8 厘米,宽是长的1/4,这个长方形的面积是多少?答案:宽是长的1/4,所以宽为8×1/4 = 2 厘米,面积= 长×宽= 8×2 = 16 平方厘米。
4. 一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达。
若要4 小时到达,则每小时需要多行多少千米?答案:甲乙两地的距离为60×5 = 300 千米。
若4 小时到达,速度应为300÷4 = 75 千米/小时,每小时需要多行75 - 60 = 15 千米。
5. 某工厂有男职工120 人,女职工人数是男职工人数的4/5,这个工厂共有职工多少人?答案:女职工人数为120×4/5 = 96 人,全厂职工人数为120 + 96 = 216 人。
6. 学校买来180 本图书,按4:5 分给五年级和六年级,五年级分得多少本?答案:一共分成4 + 5 = 9 份,每份180÷9 = 20 本,五年级分得4 份,即20×4 = 80 本。
7. 果园里有苹果树240 棵,梨树的棵数比苹果树少1/4,梨树有多少棵?答案:梨树比苹果树少1/4,所以梨树的棵数为240×(1 - 1/4) = 180 棵。
8. 修一条路,已经修了全长的3/7 ,还剩360 米没修,这条路全长多少米?答案:没修的占全长的1 - 3/7 = 4/7 ,全长为360÷4/7 = 630 米。
小学升初中数学应用题150道及答案

小学升初中数学应用题150道及答案1. 小明有10 个苹果,小红的苹果数比小明多5 个,小红有多少个苹果?-解题提示:用小明的苹果数加上5 就是小红的苹果数。
-答案:10 + 5 = 15(个)2. 商店里有30 支铅笔,卖出12 支,还剩多少支?-解题提示:用原有的铅笔数减去卖出的就是剩余的。
-答案:30 - 12 = 18(支)3. 一本书有80 页,小明第一天看了25 页,第二天看了30 页,还剩多少页没看?-解题提示:用总页数依次减去前两天看的页数。
-答案:80 - 25 - 30 = 25(页)4. 一个长方形的长是12 厘米,宽比长短3 厘米,这个长方形的周长是多少厘米?-解题提示:先求出宽,再根据长方形周长= (长+ 宽)×2 计算。
-答案:宽为12 - 3 = 9 厘米,周长= (12 + 9)×2 = 42 厘米5. 同学们排队做操,每行站15 人,正好站8 行。
如果每行站20 人,可以站多少行?-解题提示:先算出总人数,再除以每行站的人数。
-答案:总人数为15×8 = 120 人,120÷20 = 6 行6. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?-解题提示:先求出速度,再用速度乘以时间。
-答案:速度为180÷3 = 60 千米/小时,5 小时行驶60×5 = 300 千米7. 果园里有苹果树250 棵,梨树比苹果树少50 棵,梨树有多少棵?-解题提示:用苹果树的数量减去50 。
-答案:250 - 50 = 200(棵)8. 学校买了5 个篮球,每个80 元,又买了2 个足球,一共花了500 元,一个足球多少钱?-解题提示:先算出买篮球花的钱,用总钱数减去买篮球的钱就是买足球的钱,再除以足球个数。
-答案:买篮球花5×80 = 400 元,买足球花500 - 400 = 100 元,一个足球100÷2 = 50 元9. 一条路长600 米,已经修了240 米,剩下的要6 天修完,平均每天修多少米?-解题提示:先算出剩下的长度,再除以天数。
小升初较难必考数学题

小升初较难必考数学题一、工程问题1. 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。
两队合作3天后,剩下的工程由乙队单独完成,还需要多少天?解析:- 把这项工程的工作量看作单位“1”。
- 根据工作效率 = 工作量÷工作时间,甲队的工作效率为1÷10=(1)/(10),乙队的工作效率为1÷15=(1)/(15)。
- 两队合作3天的工作量为((1)/(10)+(1)/(15))×3。
- 先计算括号内的值:(1)/(10)+(1)/(15)=(3 + 2)/(30)=(1)/(6)。
- 再乘以3得到(1)/(6)×3=(1)/(2)。
- 剩下的工作量为1-(1)/(2)=(1)/(2)。
- 乙队单独完成剩下工程需要的时间为(1)/(2)÷(1)/(15)=(1)/(2)×15 = 7.5(天)2. 修一条路,甲、乙两队合作8天完成。
如果甲队单独修12天可以完成。
实际上先由乙队修了若干天后,再由甲队继续修,全部完成时共用了15天。
求甲、乙两队各修了多少天?解析:- 设乙队的工作效率为x。
- 因为甲、乙两队合作的工作效率为(1)/(8),甲队单独的工作效率为(1)/(12),则x=(1)/(8)-(1)/(12)=(3 - 2)/(24)=(1)/(24)。
- 设甲队修了y天,则乙队修了(15 - y)天。
- 根据工作量 = 工作效率×工作时间,可得到方程(1)/(12)y+(1)/(24)(15 - y)=1。
- 去括号得(1)/(12)y+(15)/(24)-(1)/(24)y = 1。
- 移项合并同类项得((1)/(12)-(1)/(24))y=1-(15)/(24)。
- 即(1)/(24)y=(9)/(24),解得y = 9。
- 所以甲队修了9天,乙队修了15 - 9=6天。
二、行程问题1. 甲、乙两车分别从A、B两地同时相向而行,速度比是5:3。
【小升初】小升初数学经典难题应用题20题 (10)

小学数学竞赛难题20题含答案1.商店里有6筐苹果,它们的重量分别是:15、16、18、19、20、31(千克),两个顾客买去了其中的5筐苹果,且一位顾客买走的苹果的重量的另一位顾客的两倍,剩下的那筐苹果只能是多少千克?2.期中考试中,王英的语文、数学的平均成绩是92分,加上外语后,三门的平均成绩是93分,外语得了多少分?3.在下图的玻璃鱼缸中放入一块高为1.5dm、体积为5dm³的假山石,如果水管以每分钟4dm³的流量向鱼缸内注水,至少需要多长时间才能把假山石完全淹没?4.图(1)是一副面积为1平方分米的七巧板拼成的正方形;图(2)是一个长方形,其中阴影部分由上面一副七巧板拼成,那么长方形ABCD的面积是多少平方分米?5.A、B、C、D四个盒子中依次放有6,4,5,3个球。
第1个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子;然后第2个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子;如此进行下去,……。
求当34位小朋友放完后.B盒子中放有球多少个?6.求阴影部分的面积.(单位:厘米)半圆的直径是3.6厘米.7.求如图的体积:单位(厘米)8.如下图,将直径AB为3厘米的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积(取π=3).9.如图,大正方形的边长是8米,把它平均分成两份得到一个长方形①,剩下的再平均分,得到一个正方形②,按照这个方法一直分下去……把图形①至⑤都涂成阴影,c(1)它们的面积和,列式是:()+()+()+()+();求和的简便方法是()。
(2)根据此题的简便思路,简便计算下题:256+128+64+32+16+8+4+2+1。
10.小马的姐夫在开发区办了一个工厂,投产后核算,产品的成本分两部分,一部分是直接生产成本,每个需8元,另一部分是管理、宣传、营销等与产品数量无关的费用,全部需250000元。
如果此产品的定价为15元,那么要使利润达到营业额的20%,至少要生产多少个产品?11.牧场上有一片青草,每天都生长得一样快,这片青草供给10头牛吃,可以吃22天,或者提供给16头牛吃,可以吃10天,如果供给27头牛吃,可以吃几天?12.一个100米长的传送带正以6米/秒的速度向前运行。
小升初考试数学难题及答案

2024年小升初考试数学难题及答案2024年小升初考试数学难题及答案问题一:一个长方形的周长是24厘米,长和宽的比是2:1。
求这个长方形的面积是多少平方厘米?答案:这是一个长方形周长和长宽比例的问题。
根据周长公式,我们可以列出方程:2(l + w) = 24,其中l为长,w为宽。
根据题目中的长宽比例,我们可以列出另一个方程:l/w = 2/1。
解这个方程组,可以得到长为8厘米,宽为4厘米。
因此,这个长方形的面积为32平方厘米。
问题二:一个圆柱体的体积是314立方厘米,底面半径为5厘米。
求这个圆柱体的高是多少厘米?答案:这是一个圆柱体体积和底面半径的问题。
根据体积公式,我们可以列出方程:πr²h = 314,其中r为底面半径,h为高。
根据题目中的条件,已知圆柱体的体积和底面半径,代入公式中,得到高为8厘米。
因此,这个圆柱体的高是8厘米。
问题三:一个等腰三角形的顶角是70度,底角是45度。
求这个等腰三角形的底边是多少厘米?答案:这是一个等腰三角形角度的问题。
根据角度和三角形边长的关系,我们可以列出方程:底边/斜边 = 余弦(底角),其中底角为45度,斜边为1(假设斜边长度为1)。
根据余弦公式和题目中的角度,代入公式中,得到底边为0.7071厘米。
因此,这个等腰三角形的底边是0.7071厘米。
小升初数学应用题易错题难题集锦通用版小升初数学应用题是考试的重点和难点,对于即将参加小升初考试的学生来说,了解和应用解决这类问题的策略至关重要。
本文将列举一些常见的小升初数学应用题易错题和难题,并给出解析和例题演练,帮助读者更好地掌握解决这类问题的技巧和方法。
一、行程问题1、甲、乙两车同时从A、B两地相对开出,经过6小时相遇。
已知甲车每小时行驶60千米,乙车每小时行驶70千米。
求A、B两地的距离。
解析:此题为相对速度问题,可采用相对速度的公式来求解。
2、小明从家到学校需要步行30分钟,如果他以每分钟60米的速度行走,那么他家到学校的距离是多少?解析:此题为简单的速度、时间、距离问题,可使用速度公式来求解。
小升初数学应用题40道附答案(精练)

小升初数学应用题40道一.解答题(共40题,共235分)1.玩具厂生产一种电动玩具,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几?2.彬彬将自己的压岁钱5000元存人银行,他想将钱存一年,到期后将利息捐给红十字会,如果按照年利率4.14%计算,彬彬可以捐出多少钱?他从银行里一共可以取回多少钱?3.解答题。
(1)一台冰箱,打八折比打九折少花320元,这台冰箱原价多少元?(2)一种洗衣机加价二成五后售价为980元,这种商品的进价是多少元?4.把一个体积是282.6cm3的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高?(π取3.14)5.下图是根据乐乐今天的早餐制作的统计图。
(1)乐乐今天的早餐是按怎样的比搭配的?如果乐乐今天早餐吃了50克鸡蛋,则他早餐一共吃了多少克食物?(2)乐乐的妈妈按同样的比大约吃了420克早餐,算算妈妈今天的早餐中各种食物大约分别吃了多少?6.某服装店卖一种裙子,原来每条售价为120元,是进价的150%。
现在店主计划打折促销,但要保证每条裙子赚的钱不少于10元。
问:折扣不能低于几折?7.1990年~1995年下列国家年平均森林面积(单位:平方千米)的变化情况是:如果规定将“增加”记为正,请用正数和负数表示这六个国家1990年~1995年年平均森林面积的增长量。
8.一个圆柱体的蓄水池,从里面量底面周长31.4米,深2米,在它的内壁与底面抹上水泥。
(1)抹水泥的面积是多少平方米?(2)蓄水池能蓄多少吨水?(每立方米水约重1.1吨)9.压路机前轮直径10分米,宽2.5米,前轮转一周,可以压路多少平方米?如果平均每分前进50米,这台压路机每时压路多少平方米?10.一件西服原价180元,现在的价格比原来增加了10%,现在的价格是多少元?11.如图,用彩带捆扎一个圆柱形礼盒,打结处用了35厘米长的彩带,礼盒的底面周长是94.2厘米,高是10厘米,求一共用了多长的彩带?12.一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?13.幼儿园买回240个苹果,按照大、中、小三个幼儿班的人数分配给各个班。
2024年黑龙江省鸡西市小升初数学应用题专项训练题试卷二(含答案及精讲)

2024年黑龙江省鸡西市小升初数学应用题专项训练题试卷二(含答案及精讲)学校:________ 班级:________ 姓名:________ 考号:________一、思维应用题(50题,每题2分)1.修路队修一段路,头3天修了135米,照这样速度,又修了8天才修完这段路,这段路长多少米?2.一个圆柱形容器,底面半径为5厘米,深20厘米,这时盛水15厘米.现将一个底面半径2厘米,高为17厘米的铁圆柱垂直放入容器中,这时的水深是多少厘米.3.甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地,2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地.问:什么时候两车在途中相遇?4.商店购进875瓶饮料,第一天卖了229瓶,第二天卖了297瓶.一共卖了多少瓶?5.一批货物共有500吨,已运走251吨.(1)运走的货物占这批货物的几分之几?(2)剩下的货物占这批会务的几分之几?6.有一块梯形麦田,上底是60米,下底是40米,高是75米,这块麦田的面积是多少平方米?7.检验一批零件,合格的有198个,不合格的2个,不合格率是多少?8.化肥厂生产一批化肥,第一天生产20吨,比第二天多生产25%,第二天生产的化肥数量正好是这批化肥的12.5%.这批化肥一共有多少吨?9.甲、乙两船在静水的速度分别是每小时36千米和每小时28千米,今从相隔192千米的两港同时面对面行驶,甲船逆水而上,乙船顺水而下,那么几小时后两船相遇?10.一个一面靠墙的直径为8米的半圆形养鸡场,现在要把周围用篱笆围起来(靠墙的一面不围)需要长多少米的篱笆.11.甲、乙、丙三人参加数学竞赛,甲、乙的总分是153分,乙、丙的总分是173分,甲、丙的总分是160分,甲、乙、丙三人的平均分是多少.12.汽车以每小时45千米的速度从甲地开往乙地,40分钟后,已知已行的路程与余下的路程比是1:2,问甲、乙两地相距多少千米?13.师、徒二人加工900个零件,师傅独做15小时可以完工,徒弟独做需22.5小时才能完工.若二人同时工作,多少小时可以完工?完工时各加工了多少个零件?14.我班一共有36人,女生有20人.(1)女同学的人数占全班人数的几分之几?(2)男同学的人数占全班人数的几分之几?15.一个圆柱体的侧面积是108cm2,底面半径是6cm,求这个圆柱体的体积.16.某公司要运30吨货物到外地,下表是三种不同的货车载重及运费情况:载重量分别为4、5、6吨;运送一次的费用分别为300、400、500;请你帮助这个公司设计几种运货方案并选出最佳方案.17.商店以批发价买进一批牙刷,每支0.35元,零售价每支0.40元,当还剩下200支没卖时,计算扣除所有成本已获利200元.商店买进牙刷多少支?(提示:用方程解)18.植树节,六年级同学来到山坡植树,原计划每人值7棵,需要25人,实际每人植5棵,还要增加多少人?19.一辆车从甲到乙,速度提高25%,时间减少多少百分数?20.某养鸡场专业户,养母鸡706只,小鸡244只,母鸡和小鸡卖出同样多只后,剩下的母鸡是小鸡的4倍,母鸡和小鸡一共卖出多少只?21.甲数比乙多2/5,乙数是15/8,甲数是多少?22.妈妈让小明带了一些钱去买文具,如果买每本5角的练习本,可以买20本,如果用这些钱买每支18角的圆珠笔,一共买要6支,小明带去的钱够不够?为什么?23.师徒二人用25/4小时合作完成了925个零件,已知师傅每小时生产78个,徒弟每小时生产多少个?24.五年级数学小组和计算机小组共有39人,数学小组的人数比计算机小组的2倍少3人.数学小组和计算机小组各有多少人?25.商店里原有蓝书包41个,又购进绿书包30个.今天共卖出书包39个,现在商店还剩多少个书包?26.红星小学六年级三个班共有学生227人,已知甲班人数的3/4等于乙班的7/6,乙班人数的2/3等于丙班的7/11.甲班、乙班、丙班各有多少人?27.一辆汽车从甲城开往乙城,平均每小时行驶110千米,行驶3小时后离乙城还有201千米,两城之间的公路长多少千米?28.某工程队抢修一条公路,计划40天完成任务.其中前3天修了120米,还剩1520米.照这样的工作效率,该工程队能按计划天数完成任务吗?为什么?(请列式说明)29.五年级有学生120人,相当于六年级学生人数的3/4,六年级一共有多少人.30.工人师傅要修一条水渠,原计划每天修0.45千米,30天完成,实际每天的工作效率是原计划的1.2倍,完成这项任务,实际需要多少天?31.老王从甲城骑自行车到乙城去办事,每小时骑15千米,回来时改骑摩托车,每小时骑33千米,骑摩托车比骑自行车少用1.8小时,求甲、乙两城间的距离.32.在一个长6分米,宽4分米,高3分米的长方体玻璃缸中,水深2分米,把一个颗岩石完全放入水中后,水面上升了2.5分米,求该岩石的体积.33.一桶油,用去25%,还剩下下21千克,这桶油原来有多少千克?34.甲、乙、丙三人共有100元钱.其中丙比甲少18元,且甲乙之和与乙丙之和的比是7:5,那么丙有多少元.35.一块长方形的地,长75米、宽30米,用1:1000的比例尺把它画在图纸上,长应画多少厘米,画出的长方形面积是多少平方厘米?36.商店有黄气球75个,红气球63个,花气球的个数比黄气球和红气球的总数少30个,花气球有多少个?37.植树节前夕,学校组织一批树苗,把这些树苗的60%按2:3的比例分配给六(1)、六(2)班,已知六(1)班分得树苗30棵,学校运来树苗多少棵?38.甲、乙两城相距352千米,一辆汽车从甲城开往乙城,2小时后,一辆摩托车从乙城开往甲城.汽车每小时行40千米,相当于摩托车每小时行的路程的8/9.摩托车开出几小时后两车相遇?39.小华今年1月1日把积攒的200元零用钱存入银行,定期三年.准备到期后把利息捐赠给“希望工程”.如果年利率按2.70%计算,到期可获得利息多少元?40.学校为40名教职工每人做一套校服,已知每件衣服76元,每条裤子64元,做这些校服一共花了多少钱?41.师徒两人共同做一批零件,师傅每小时做20个零件,是徒弟每小时做零件数的2倍,师徒两人共同完成一批任务用了3小时,这批零件有多少个?42.一架飞机平均每小时飞行803千米,从甲城到乙城共飞了19小时,甲乙两城有多少千米?43.六年级一班今天有43人到校,7人请假,六年级一班今天的出勤率是多少?44.建筑工地运来一批水泥,第一天用去总数的40%,第二天比第一天少用9吨,此时还剩17.5吨.这批水泥原有多少吨?45.红光小学组织师生去秋游,老师28人,学生456人,每辆旅游车有40个座位,要保证每人都有座位,需要准备几辆旅游车?46.六年级男生植树130棵,女生植树80棵,男生比女生多百分之几?女生植树棵数是总植树棵数的几分之几?47.从甲地到乙地的水路有375千米,江水的流速是每小时5千米,一艘客轮在静水中每小时行驶20千米.它在甲、乙两地往返一次需要几个小时.48.一列客车以每小时90千米的速度从甲站出发,4小时可到达乙站,有一列货车从乙站开出,6小时可以到达甲站。
小升初数学高难度应用试题及答案

小升初数学高难度应用试题及答案如下:以题中的等量为等量关系建立方程例题:有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出剩下的两桶油重量相等,两桶油原来各有多少千克?解设:乙桶油为X千克,那么甲桶油为2X千克甲桶剩下的油=乙桶剩下的油2X一25.8=X一5.22X一X=25.8一5.2X=20.62X=20.6×2=41.2答:甲桶油重4102千克,乙桶油重20.6千克,练一练:① 甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18吨,乙厂每天用12吨,多少天后两厂剩下的钢材相等?② 一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?③ 甲车间有54人,乙车间有48人,在式作时,为了使两车间人数相等,甲车间应调多少人去乙车间?④ 超市存有大米的袋数是面粉的3倍,大米买掉180袋,面粉买掉50袋后,大米、面粉剩下的袋数相等,大米、面粉原各多少袋?⑤ 某校有苦于人住校。
若每一间宿舍住6人,则多出34人;若每一间宿舍住7人,则多出4间宿舍。
问有多少人住校?有几间宿舍?⑥ 甲仓所存的面粉是乙仓的3倍,如果从甲仓运走900千克,从乙仓运出80千克,则两仓所存的面粉相等,两仓原有面粉各多少千克?⑦ 有箱桔子,甲箱的重量是乙箱的1.8倍,如果从甲箱中取出1.2千克放篱乙箱,那么两箱的重量相等了,原来甲乙两箱各多少千克?⑧ 一个通讯员骑自行车要在规定的时间内把信件送到某地,他每小时15千米查以早到24分钟,每小时骑12千米要迟到15分钟,规定时间是多少?他去某地的路程有多远?⑨ 一列火车从甲地开往乙地每小时 50千米,一小时后另一列火车也从甲地开往乙地每小时行60千米,结果两列火车同时到达乙3地,甲、乙两地相距多少千米?⑩甲级糖每千克16.60元,乙级糖每千克8.80元。
商店用80千克甲级糖和若干乙级糖混合后平均每千克售价14.00元,乙级糖要多少千克?以较大的量或几倍数为等量关系建立方程例题:两筐苹果,每筐的个数相等,从甲筐卖出150个,从乙筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来每筐有多少个?解设:原来每筐X个甲筐剩下的=乙筐剩下的3倍X一150=X一194×3X一150=3X一5822X=432X=216答:原来甲筐有苹果216。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:应用题专题一、和差倍问题(一)和差问题:已知两个数的和及两个数的差,求这两个数。
方法①:(和-差)2÷=较小数,和-较小数=较大数方法②:(和+差)2÷=较大数,和-较大数=较小数例如:两个数的和是15,差是5,求这两个数。
方法:(155)25+÷=.-÷=,(155)210(二)和倍问题:已知两个数的和及这两个数的倍数关系,求这两个数。
方法:和÷(倍数1=倍数(较小数)+)11倍数(较小数)⨯倍数=几倍数(较大数)或和1-倍数(较小数)=几倍数(较大数)例如:两个数的和为50,大数是小数的4倍,求这两个数。
方法:50(41)10⨯=÷+=10440(三)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数。
方法:差÷(倍数1=倍数(较小数)-)11倍数(较小数)⨯倍数=几倍数(较大数)或和1-倍数(较小数)=几倍数(较大数)例如:两个数的差为80,大数是小数的5倍,求这两个数。
方法:80(51)20⨯=÷-=205100二、年龄问题年龄问题的三大规律:1.两人的年龄差是不变的;2.两人年龄的倍数关系是变化的量;3.随着时间的推移,两人的年龄都是增加相等的量.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差.三、植树问题(一)不封闭型(直线)植树问题1直线两端植树:棵数=段数1+;+=全长÷株距1全长=株距⨯(棵数1-);株距=全长÷(棵数1-);2直线一端植树:全长=株距⨯棵数;棵数=全长÷株距;株距=全长÷棵数;3直线两端都不植树:棵数=段数1-;-=全长÷株距1株距=全长÷(棵数1+);(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数⨯棵距;棵距=总距离÷棵数.四、方阵问题在方阵问题中,横的排叫做行,竖的排叫做列,如果行数和列数都相等,则正好排成一个正方形,就是所谓的“方阵”。
方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2,每层总数就少8.②每边人(或物)数和每层总数的关系:每层总数[=每边人(或物)数1]4⨯;每边人(或物)数=每层总数41÷+.③实心方阵:总人(或物)数=每边人(或物)数×每边人(或物)数.五、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.六、盈亏问题按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.一般地,一批物品分给一定数量的人,第一种分配方法有多余的物品(盈),第二种分配方法则不足(亏),当两种分配方法相差n个物品时,那就有:盈数+亏数=人数n⨯,这是关于盈亏问题很重要的一个关系式.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数,(盈-盈)÷两次分得之差=人数或单位数,(亏-亏)÷两次分得之差=人数或单位数.解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下“亏”,“亏”多少?找到盈亏的根源和几次盈亏结果不同的原因.另外在解题后,应进行验算.七、假设问题鸡兔同笼,这是一个古老的数学问题,在现实生活中也是普遍存在的.重点掌握鸡兔同笼问题的解法——假设法,并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数八、牛吃草问题(一)牛吃草的由来在英国伟大的科学家牛顿所著的《普通算术》一书中有一道非常有名的关于牛在牧场上吃草的题目:“12头牛4周吃牧草133格尔(格尔:牧场面积单位),同样的牧草,21头牛9周吃10格尔.问24格尔牧草,多少头牛吃18周吃完?”后来人们就把这类题目称为“牛顿问题”,也称为“牛吃草”问题.(二)牛吃草的解题步骤同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.(三)牛吃草的变式题“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.(四)多块草地的牛吃草问题多块草地的“牛吃草”问题,一般要将草地面积变得统一,一般情况下可以找多块草地面积的最小公倍数,这样可以避开小数分数运算,但如果数据较大时我们一般把面积统一为“1”相对会简单些。
九、工程问题工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”,这一类问题称之为“工程问题”。
1.解题关键是把“一项工程”看成一个单位,运用公式:工作效率×工作时间=工作总量,表示出各个工程队(人员)或其组合在统一标准和单位下的工作效率。
2.利用常见的数学思想方法,如代换法、比例法、列表法、方程法等。
抛开“工作总量”,和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后利用先前的假设“把整个工程看成一个单位”,求得问题答案,一般情况下,工程问题求的是时间。
有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠”,甚至会表现为“行程问题”、“经济价格问题”等等,工程问题不仅指一种题型,更是一种解题方法。
十、浓度问题将糖溶于水就得到了糖水,糖水甜的程度是由糖与糖水二者重量的比值决定的.糖与糖水重量的比值叫糖水的浓度,这个比值一般我们将它写成百分数.其中糖叫溶质,水叫溶剂,糖水叫溶液.不光是糖水中存在着浓度,我们日常生活中的盐水、酒精等溶液只能够都存在着浓度的问题.⑴浓度问题相关公式:=+溶液溶质溶剂;100%100%⨯=⨯+=溶质溶剂溶质溶质浓度溶液. ⑵常用方法:①抓不变量:一般情况下在经济问题中成本是不变量,浓度问题中溶剂是不变量,我们可以用画图来分析; ②方程法:对于经济浓度问题,采用方程来求解是简便、有效的方法;③十字交叉法:(甲溶液浓度大于乙溶液浓度);形象表达:④浓度三角:浓度三角在解决浓度问题时非常有用.十一、利润问题商店出售商品时,为了获得最大的利润,商家总是“低进高出”,只有这样才能赚取差价,这个差价就会产生利润.实际上,在商品贸易上的许多数学问题都会涉及到三个量:成本、利润及定价.成本——购进商品所需的本钱,又叫进价或成本价;定价——商品出售的价格,又叫售价或卖卖价;利润——产品定价中高于成本以上的那一部分.为了衡量获得利润的大小,通常采用:“利润百分数”或“利润率”这个量:100%100%1100%-=+=⨯=⨯=⎛⎫-⨯ ⎪⎝⎭售价成本售价成本利润,利润率利润售价成本成本成本由上面的公式还可以引申出下面两个公式: 1⨯售价=成本(+利润率),=售价成本1+利润率.二:习题1.商店进了300支钢笔,每售出1支,可获40%的利润当这批钢笔售出芸时,共获得利润750元,求每支钢笔的进货价.2.商场以每个3.2元的价格购进了一批文具盒,每个售价5元,还剩下80个没售出时,除了成本已经获利500元.问这批文具盒一共有多少个?3.人民商厦运来一批彩电,按定价出售可以获利2.8万元,如果按定价的九五折出售,则仍可获利2000元.问彩电的成本价共是多少元?4.红星商场进了一批玩具,六月一日这天以定价的八折出售,当天售出的玩具仍可获得10%的利润,问这批玩具定价时的利润是百分之几?5.一批商品,按照能获得50%的利润定价,结果只销掉了70%的商品.为尽快将剩下的商品销售出去,商店决定打折出售,这样所获得的全部利润是原来能获利润的82%.问剩下的商品打了多少折出售?6.有300克浓度为10%的盐水.现在要将这盐水的浓度变为8%,问应加入多少克水?7.要从含糖16%的20千克糖水中蒸去水分,制出含糖20%的糖水,问应当蒸去多少千克水分?8.要配制浓度为20%的硫酸溶液1000克,需要用浓度为18%和23%的硫酸溶液各多少克?9.大瓶酒精溶液是小瓶酒精溶液的2倍,大瓶酒精溶液的浓度为20%,小瓶酒精溶液的浓度为35%.将两瓶酒精溶液混合后,酒精溶液的浓度是多少?10. 在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%、62.5%和23.已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,听含纯酒精的百分数将达56%,那么,丙缸中纯酒精的量是多少千克?(1997年小学数学奥林匹克预赛C 卷第12题)11. 甲瓶中有纯酒精11升,乙瓶中有水15升,第一次将甲瓶中的一部分酒精倒入乙瓶中,使酒精和水混合.第二次将乙瓶中的一部分混合液倒入甲瓶中.这样,甲瓶中的纯酒精含量为62.5%,乙瓶中的纯酒精含量为25%.问第二次从乙瓶倒人甲瓶的混合液是多少升?12. 李明和王林在周长为400米的环形跑道上练习跑步,李明每分钟跑200米,是王林每分钟跑的98,如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?13. 从360米长的环形跑道上的同一地点向相同方向跑步,甲每分钟跑305米,乙每分钟跑275米,两人起跑后,问第一次相遇在离起点多少米处?14. 绕湖一周是21.1千米,小明和小华从湖边同一地点同时相背而行小明以每小时4.6千米的速度每走1小时后就休息5分钟,小华以每小时5.4千米的速度每走50分钟后就休息10分钟,问两人出发后多少小时相遇?15. 12点整时,钟面上的时针、分针和秒针刚好重合.那么,再过多长时间,钟面上的时针和分针再次重合?重合时,时针、分针分别走了几圈几格?(钟面一圈分成60格)16. 有一个台式钟,在3月29日零时比标准时间慢4分半,它一直走到4月5日上午7时,比标准时间快3分钟,那么这个台钟所指时间是正确的时刻在几月几日几时?17.小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红有________岁,妈妈有__岁.18.甲、乙、丙、丁四个人一共做了370个零件,如果把甲做的个数加2,乙做的个数减3,丙做的个数乘2,丁做的个数除以2,四个人做的零件个数正好相等,问四个人各做多少个零件?19.叔叔比小华大20岁,明年叔叔的年龄是小华的3倍,小华今年_______岁.20.女儿今年(1994年)12岁,妈妈对女儿说:“当你有我这么大岁数时,我已经60岁喽!”问:妈妈12岁时,是哪一年?21.五位老人的年龄互不相同,其中年龄最大的比年龄最小的大6岁,已知他们的平均年龄为85岁,其中年龄最大的一位老人为________.22.今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍,儿子今年_______岁。