七年级数学绝对值PPT教学课件
合集下载
《绝对值》ppt课件

4
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培
七年级数学――绝对值PPT课件

小,绝对值大的反而小
01.11.2020
欢迎101班的同学们!注意听课, 积极思考呵!
例2. 比较下列每组数的大小
(1)
-1和
–
5;
(2)-
5 6
和- 2.7
解法一(利用绝对值比较两个负数的大小)
解: (1)| -1| = 1,| -5 | = 5 ,1﹤5,
所以 - 1> - 5
(2)因为|
-
5 6
博物馆 学校 农场
6千米 6千米
A
B
-6 -5
-4 -3 -2 -1
01
2
3
4
5
6
01.11.2020
欢迎101班的同学们!注意听课, 积极思考呵!
一个数的绝对值与这个数有什么关系?
绝对值的性质: 正数绝对值是它本身:如 5 5 负数的绝对值是它的相反数:如 5 5
0的绝对值是0,如 0 0
如图,在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作|-5|=5。
01.11.2020
欢迎101班的同学们!注意听课, 积极思考呵!
想一想:
互为相反数的两个数的绝对 值有什么关系?
相等
一对相反数虽然分别在原点两边, 但 它们到原点的距离是相等的
01.11.2020
欢迎101班的同学们!注意听课, 积极思考呵!
欢迎各位领导、老师 给予指导
授课人: 中学
01.11.2020
2008年9月
欢迎101班的同学们!注意听课, 积极思考呵!
复习:
1、什么是数轴?
数轴是规定了原点、正方向、单位长度的直线
-2 -1 0 1 2
2、数轴的三要素
人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)

人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
七年级数学上册PPT课件--《绝对值》

-4 ,-(-32),│-0.6│,-0.6,-│4.2│
课堂小结
一、比较两个有理数大小的方法:
几何方法:数轴上左边的点表示的数比右边的 点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数; (2)两个正数,绝对值大的大;
两个负数,绝大值在的反而小.
①若│x│=0,则x=
│x│=3,则x=
;
②若x=—x,则x=
;
③若│x│<3,则x的取值范围
;
④若│x│>3,则x的取值范围
;
文字表述
符号表示
①一个正数的绝对值是它本身 (1)若a > 0,则| a | = a;
②一个负数的绝对值是它的相反数(2)若a < 0,则| a | = -a;
③0的绝对值是0
(3)若a = 0,则| a | = 0;
3、任何一个有理数a的绝对值总是非负数,符号表示|a|≥0
示标导入
我们已知两个正数(或0)之间怎样比较大小,例如: 0<1,1<2,2<3,… 任意两个有理数 (例如-4和-3,-2和0, -1和1)怎样比较大小呢?
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
三:导学施教
在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左 到右的顺序,就是从小到大 的顺序,即右边的 数 大于 左边的数.
义务教育教科书 数学 七年级 上册
1.2 有理数 1.2.4 绝对值(2)
课堂小结
一、比较两个有理数大小的方法:
几何方法:数轴上左边的点表示的数比右边的 点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数; (2)两个正数,绝对值大的大;
两个负数,绝大值在的反而小.
①若│x│=0,则x=
│x│=3,则x=
;
②若x=—x,则x=
;
③若│x│<3,则x的取值范围
;
④若│x│>3,则x的取值范围
;
文字表述
符号表示
①一个正数的绝对值是它本身 (1)若a > 0,则| a | = a;
②一个负数的绝对值是它的相反数(2)若a < 0,则| a | = -a;
③0的绝对值是0
(3)若a = 0,则| a | = 0;
3、任何一个有理数a的绝对值总是非负数,符号表示|a|≥0
示标导入
我们已知两个正数(或0)之间怎样比较大小,例如: 0<1,1<2,2<3,… 任意两个有理数 (例如-4和-3,-2和0, -1和1)怎样比较大小呢?
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
三:导学施教
在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左 到右的顺序,就是从小到大 的顺序,即右边的 数 大于 左边的数.
义务教育教科书 数学 七年级 上册
1.2 有理数 1.2.4 绝对值(2)
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
数学七年级上册1.2.4绝对值(共16张PPT)

两个负数,绝对值大的反而小 .
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.
北师大七年级数学上册《绝对值》课件(共25张PPT)

A.5
B.-5
1 C.5
D.-15
答案:A
2.下列各组数中,互为相反数的是( )
A.2 和-2
B.-2 和12
C.-2 和-12
D.12和 2
答案:A
3.一个数的相反数是12,则这个数是( )
A.-12 C.-2
1 B.2 D.2
答案:A
4.相反数等于本身的数为( )
A.正数
B.负数
C.零
答案:C
本身
相反数
0
4.(1)正数的绝对值是它_____;负相数等的绝对值是它
的_______;0的9绝对值是___.
(2)互为相反数的两个数的绝对值_____.如小-9和9的
绝对值都是____.
(3)两个负数比较大小,绝对值大的反而____.
1.什么是相反数?它如何表示? 2.绝对值如何理解? 3.两个负数如何比较大小?
3 绝对值
自 主预 习
1.了解相反数、绝对值的概念,会求有理数的相反 数和绝对值.(重点)
2.会利用绝对值比较两个负数的大小.(难点) 3.在绝对值概念的形成过程中,渗透数形结合的思 想.
相反数
互为相反数
1.如果两个数只0 有符号不同,互那为么相称反其数中一个数为
另一个数的________,也称这两个数___________.特别
A.12
B.0
答案:D
C.1
D.-2
9.下列各式中,正确的是( )
A.|-0.1|≤|0.01|
B.|-13|<14
C.-|-23|>|-34| 学科网
答案:D
D.-|18|>-17
10.写出一个x的值,使|x-1|=x-1成立.你写出的x的
北师大七年级数学上册《绝对值》课件(共21张PPT)

点将游戏1
A同学任意说出 一个有理数,再 随意地点另一个 同学B回答它的 相反数。
B同学回答后, 也任意说出一个 有理数,再点另 一个同学C回答 它的相反数……
1、teacher affects eternity; he can never tell where his influence stops.教师的影响是永恒的;无法估计他的影响会有多 深远。
作 业:
必做题:
习题2.3,知识技能第2,3,4,5题.
选做题:
若 a a, 则a
0;
若 a a, 则a
0.
也就是说绝对值等于2的数是___ .
2.在数轴上表示下列各数,并求它们的绝对值:
3 2
, 6 , -3 ,
5 4
3.比较下列各组数的大小:
(1) 0.5,3 2; (2) 110,7 2;
(3)
0,
2 3
;
(4) 7 , 7 .
4.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小; (3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等.
小 结:这节课你学到了什么?
1、相反数的意义:只有符号不同的两个数互为相反数 。 0的相反数是 0
2、绝对值 :在数轴上,一个数所对应的点与原点
的距离叫做该数的绝对值.
正数的绝对值是它本身; 负数的绝对值是它的相反数;
0 的绝对值是 0. 互为相反数的两个数的绝对值相等. 3、会用绝对值比较两个负数的大小:
6、does not mean teaching people to kow what they do not know ; it means teachng them to behave as they do not behave. 教育不在于使人知其所未知,而在于按其所未行而行。2021年11月2021/11/252021/11/252021/11/2511/25/2021
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里的数a可以是 正数、负数和0
-10
0
10
例如,A, B两点分别表示10和-10,它们与原点的 距离都是10个单位的长度,所以10和-10的绝对值 都是10,即|10|=10,|-10|=10,显然|0|=0.
概念
由绝对值的定义可知:一个正数的绝对值 是___它__本__身____;一个负数的绝对值是它的 _____相__反__数_________;0的绝对值是___0____.
0
解: |6|=6
|-8|=8
|-3.9|=3.9
5= 5 22
2=2 11 11
|100|=100
|0|=0
练习
2. 判断下列说法是否正确
(1)符号相反的数互为相反数
(×)
(2)符号相反且绝对值相等的数互为相反数( √ )
(3)一个数的绝对值越大,表示它的点在数轴上
越靠右
( ×)
(4)一个数的绝对值越大,表示它的点在数轴上
(1)当a是正数时,|a|=____a________ (2)当a是负数时,|a|=__-__a________ (3)当a是0时,|a|=_____0_______
你可以给 a 取些具体数值检验你填写的结果 是否正确.
练习
1. 写出下列各数的绝对值:
6,
-8,
-3.9 ,
5 2
, 2
11
, 100,
离原点越远
(√ )
人教课标七上
绝对值
思考
两辆汽车从同一处O出发,分别向东、西方向行 驶10km,到达A、B两处.
B
10
O
A
10
-10
0
10
思考:它们行驶的路线相同吗?它们行驶路程的
远近相同吗?
路线不相同,因为方向不同.
远近相同, 如图示, 即线段OA的长度等于OB的长度
概念ห้องสมุดไป่ตู้
一般地数轴上表示数a的点与原点的距离叫做 数a的绝对值(absolute value),记作|a|.
-10
0
10
例如,A, B两点分别表示10和-10,它们与原点的 距离都是10个单位的长度,所以10和-10的绝对值 都是10,即|10|=10,|-10|=10,显然|0|=0.
概念
由绝对值的定义可知:一个正数的绝对值 是___它__本__身____;一个负数的绝对值是它的 _____相__反__数_________;0的绝对值是___0____.
0
解: |6|=6
|-8|=8
|-3.9|=3.9
5= 5 22
2=2 11 11
|100|=100
|0|=0
练习
2. 判断下列说法是否正确
(1)符号相反的数互为相反数
(×)
(2)符号相反且绝对值相等的数互为相反数( √ )
(3)一个数的绝对值越大,表示它的点在数轴上
越靠右
( ×)
(4)一个数的绝对值越大,表示它的点在数轴上
(1)当a是正数时,|a|=____a________ (2)当a是负数时,|a|=__-__a________ (3)当a是0时,|a|=_____0_______
你可以给 a 取些具体数值检验你填写的结果 是否正确.
练习
1. 写出下列各数的绝对值:
6,
-8,
-3.9 ,
5 2
, 2
11
, 100,
离原点越远
(√ )
人教课标七上
绝对值
思考
两辆汽车从同一处O出发,分别向东、西方向行 驶10km,到达A、B两处.
B
10
O
A
10
-10
0
10
思考:它们行驶的路线相同吗?它们行驶路程的
远近相同吗?
路线不相同,因为方向不同.
远近相同, 如图示, 即线段OA的长度等于OB的长度
概念ห้องสมุดไป่ตู้
一般地数轴上表示数a的点与原点的距离叫做 数a的绝对值(absolute value),记作|a|.