隧道支护参数表
隧道施工中喷锚支护有关参数的选择及计算

理论公式 ,总结了喷锚支护有关参数的选择及计算方法 。
[ 中图分类号 ] TD352 + . 5 [ 文献标识码 ] B [ 文章编号 ] 100228951 ( 2002) 0220017204
第 2 期 史马祥 : 隧道施工中喷锚支护有关参数的选择及计算
l1 ≥ dRg
19
4 Kt
=
118 × 2450 = 7315≈74cm 4× 115 × 10
式中 : v — — — 安全系数 , 一般取 v = 115 ; σ — — 岩石单轴抗压强度 (实测得出) , kg/ cm2 ; c — θ— — — 岩石结构面的内摩擦角 。 根据奥地利的腊布希维兹 ( L . V . Rabcewicz) 等 提出的 “剪切破坏理论” 知道 , 围岩稳定性的丧失是 由于地压作用下两侧锥形剪切体 , 径向移动致使喷 层发生剪切破坏 。莫尔强度理论认为中间主应力 σ 2 对岩石影响可不考虑 。这样 , 岩石所受的应力可 近似为平面应力状态 , 即 σ 1 和σ 3 , 而最大主应力 σ 1 为开挖周边的切向应力 , 最小主应力 σ 为开挖周边 3 的径向应力 。根据莫尔强度理论 , 剪切斜面与 σ 3 作 θ 用线成 σ= 45° + 角度 。剪切破坏发生在与开挖 2 θ 周边切线成 σ 的斜面上 。喷层抗剪面的 1 = 45° 2 长度 L 近 似 的 等 于
式中 : P1 — — — 工作风压 , kg/ cm2 ;
P2 — — — 水压 , kg/ cm 。
2
事铁路工程管理工作 。
213 喷头与受喷面的距离和倾角
从宝成复线的实际施工经验来看 , 当喷头与受
单线铁路隧道缓倾层地质条件下支护参数及施工技术

单线铁路隧道缓倾层地质条件下支护参数及施工技术摘要:本文以大瑞铁路老尖山隧道为例,介绍了碳质灰岩地层条件下单线铁路隧道在缓倾层岩层下围岩分级的条件及支护措施,总结了该地层条件下机械设备组合及快速施工技术,为同类工程可提供参考。
关键词:单线铁路隧道,缓倾层,全断面施工,快速施工1工程概况大瑞铁路位于云贵高原的西部边缘,著名的横断山南段,地势错综复杂,线路为国铁单线I级,设计速度140km/h。
老尖山隧道位于永新~怒江区间,为单线铁路隧道,全长7993m。
隧区属底中山剥蚀、溶蚀地貌,沟谷纵横,地形起伏较大,自然坡度一般25°~55°,局部为陡壁。
最高峰约1750m,最低为怒江河谷,高程约640m,相对高差1100m,隧道最大埋深768m。
2地质及水文情况老尖山隧道位于次级断裂和褶皱组成的怒江南北向构造带,为一断裂破坏深剧的复式向斜构造。
隧道洞身基岩大部裸露,岩层平行不整合接触,节理发育~较发育,闭合性节理,部分地段裂隙宽张、岩石较破碎,地下水不发育。
洞身穿越地段岩性主要为白云质灰岩、泥质灰岩、碳质灰岩,设计碳质灰岩地层1879m,占隧道总长23.5%,整体岩石单轴天然饱和极限抗压强度23.3~66.8MPa。
其中已揭示碳质灰岩地段岩层层厚3cm~7cm,薄层状,岩层产状:层理N35°W/38°NE (9.2°),节理发育,地下水不发育。
现场揭示地质情况见图1。
图1 现场揭露地质情况3围岩分级及支护措施围岩级别分级应由岩石坚硬程度和岩体完整程度两个因素确定[1],应综合考虑围岩主要工程地质条件,开挖后的稳定状态,弹性纵波速度等因素,根据特殊地质现象如地下水状态、地应力高低、围岩的膨胀性等进行修正。
老尖山隧道开挖揭示碳质灰岩地段岩层节理较发育,属闭合性节理,实测Rc值49.7mpa、57.3mpa、47.8mpa,地震波法探测围岩弹性纵波速度均值3.43km/s。
地铁暗挖隧道方案(王恒)

地铁暗挖隧道⽅案(王恒)暗挖隧道初⽀施⼯⽅法及地表沉降原因分析、控制措施中铁七局三公司王恒⼀、⼯程概况1、地质概况区间沿线范围内上覆第四系全新统⼈⼯堆积层(Q4ml)、海积层(Q4m)、冲积层(Q4m+al)、花岗岩残积层(Q el),下伏燕⼭期花岗岩(γ53)。
区间隧道洞⾝处于地下⽔⽔位以下,主要从砾质粘性⼟、全、强、中、微风化岩⽯中通过。
隧道结构拱顶覆⼟10.5~15.34m。
其埋深位于地下⽔位以下,地下⽔⽔压⼒对隧道施⼯及衬砌结构有较⼤影响。
2、⽔⽂地质地下⽔按赋存条件主要分为孔隙⽔及基岩裂隙⽔。
孔隙⽔主要赋存在第四系砂层、粘性⼟及残积层中。
基岩裂隙⽔主要赋存在花岗岩强~中等风化层中,略具承压性。
地下⽔位埋深0.6~3.2m。
⼆、⼯程控制重点地表沉降的控制地铁区间多沿城市主要街道的地下穿过,两侧多为住宅楼及商⽤楼,必须控制好区间隧道施⼯产⽣的地表沉降,以最⼤程度减少对周边建筑安全的影响。
应对措施:加强隧道初期⽀护施⼯质量的控制,严格按照新奥法的施⼯做好监控量测、光⾯爆破、锚喷⽀护。
隧道开挖中减少对围岩的扰动,采取短进尺、弱爆破原则组织施⼯。
对围岩软硬不均,尤其是下部微风化且岩层较硬,上部全风化或⼟层地段必须先对上部全风化岩层或者⼟层采取预注浆加固再进⾏开挖,确保⼟体开挖的稳定。
三、暗挖隧道施⼯⼯艺及⽅法1、区间隧道⽀护参数区间隧道初期⽀护分为A、B两种类型。
初期⽀护采⽤⼩导管超前注浆、砂浆锚杆、钢筋⽹、格栅钢架及喷射砼组成联合⽀护体系,⼆衬为模筑钢筋砼。
Ⅳ、Ⅴ级围岩时,应采⽤B型断⾯⽀护形式。
Ⅵ级围岩时,应采⽤A 型断⾯⽀护形式。
表1 暗挖隧道衬砌⽀护参数表隧道断⾯如图3-1、3-2。
图3-1区间A型断⾯⽀护形式图图3-2区间B型断⾯⽀护形式图2、区间暗挖隧道施⼯原则区间暗挖隧道采⽤新奥法施⼯。
在隧道施⼯中开挖、⽀护遵循“管超前、严注浆、短开挖、强⽀护、早封闭、勤量测”原则。
(1)管超前:采⽤注浆⼩导管加固前⽅围岩。
缙云山隧道(进口端)洞身初期支护施工技术方案

名目缙云山隧道〔进口端〕二衬施工技术方案一、编制依据与原那么编制依据1、?公路工程技术标准?〔JTGB01-2021〕;2、?公路隧道施工技术标准?〔JTGF10-2021〕;3、?公路隧道施工技术细那么?〔JTG/TF60~2021〕4、?公路工程质量检验评定标准?〔JTGF80/1-2021〕;5、?公路工程施工平安技术标准?〔JTGF90-2021〕;6、?钢筋焊接及验收规程?〔JGJ18-2021〕;7、重庆九永高速公路JY1合同段两时期施工图设计文件;8、?中交第一公路工程局施工方案治理方法?;9、?公路工程施工工艺标准?中交一公局;10、?施工现场临时用电平安技术标准?〔JGJ46-2005〕;11、?建筑机械使用平安技术规程?〔JGJ33-2021〕;12、?重庆市公路工程质量操纵强制性要求?〔渝交委〔2021〕79号〕;13、?重庆市公路水运工程平安生产强制性要求?〔渝交委〔2021〕81号〕;14、我部?实施性施工组织设计?。
1.2编制原那么严格遵守、地点性要求、设计标准、施工标准和质量评定与验收标准。
坚持技术先进性、科学合理性、经济适用性、平安可靠性与实事求是相结合;1、在充分理解设计文件的根底上,以设计图纸为依据,采纳先进、合理、经济、可行的施工方案。
2、整个工程全过程对环境破坏最小,采取必要环境保卫措施,防止四面环境的破坏。
3、充分应用先进的科学技术和施工设备,做到机械化作业、标准化作业、流水作业,坚持技术先进性、科学合理性、经济适用性、平安可靠性相结合原那么。
4、强化质量治理,树立优良工程瞧念,创一流施工水平,创精品工程。
5、实施工程法治理,通过对劳务、设备、材料、资金、方案、信息、时刻与空间条件的优化处置,实现本钞票、工期、质量及社会效益的预期目标。
二、工程概况2.1地形、地貌缙云山隧道呈近东西向横穿缙云山南段。
缙云山为北碚东向条形山,山体狭长。
工程布设段宽约2.9Km。
隧道钢支撑支护施工方案

1、工程概况耿家庄隧道位于五台县耿家庄东侧约100米处,设计为左右线分离式,左线起讫桩号为ZK6+635至ZK7+600,长度为965m,右线起讫桩号为YK6+672至YK7+600,长度为928m,双洞总长为1893m。
隧道设计速度为80km/h,为双向四车道,双洞单向行车。
隧道主洞建筑界限宽度为10.25m,高度为5.0m。
隧道内轮廓净空面积为64.62㎡。
本隧道设有3处人行横通道,1处车行横通道。
隧止区位于构造剥蚀、侵蚀低中山区,山体陡峭,冲沟发育。
微地貌表现为基岩山脊、冲、沟陡坡等。
隧道地形总体北高南低。
隧址区范围内植被不发育,以杂草丛及灌木为主。
隧址区地处五台山块隆南部之系舟山掀向斜的东南翼,为一单斜构造,地层产状平缓,地质构造简单。
勘察期间,未发现有影响洞体稳定性的断裂构造存在。
现将各组地层岩性特征及其分布情况简述如下:第四系统残坡积碎石土该套地层仅分布于盂县端洞口段及隧址区缓坡处,岩性为碎石土,土质不均,分选差,碎石成份主要为灰岩,菱角状,含30%~40%粉质粘土,局部粉质粘土含量达70%中密。
厚度17.60—28.20米。
奥陶系下统白云质灰岩本隧道左右线洞身围岩主要由该地层组成,岩性为白云质灰岩,灰白色,间夹薄层状泥质条带灰岩、角砾状灰岩。
强~微风化,隐晶结构,中厚层状~中薄层状构造。
强风化带厚度20~25米,局部大于30米,岩芯以碎石状为主,局部为扁柱状,岩体节理裂隙较发育,呈中薄层状结构,岩体完整性较差;微风化带岩体节理裂隙不发育,呈中厚层状结构,岩体完整性较好。
以上岩层产状为235°∠15°综合洞体埋深和围岩结构、产状等特点分析,本隧道岩体工程地质条件一般。
隧道围岩岩土力学指标见表1。
岩土物理力学指标表表1隧址区地表水系为清水河,水流受季节影响变化较大,冬季仅部分河道有少量间断水,雨季流量较大。
洞身范围内无地下水,地下水对隧道洞身无较大影响。
根据清水河地表水水质分析报告,隧址区地表水对混凝土无腐蚀性。
隧道Ⅳ级围岩开挖支护方案

隧道Ⅳ级围岩开挖支护施工方案编制:复核:审核:二〇一六年四月目录1 编制原则、依据 (1)1.1 编制原则 (1)1.2 编制依据 (1)2 工程简介 (2)2.1工程概况 (2)2.2工程地质 (2)2.3地震动参数 (3)2.4气象特征 (3)2.5水文地质 (3)3 隧道开挖施工 (3)3.1 方案设计 (3)3.2 施工工艺 (4)3.3 超前小导管 (4)3.4 台阶法 (7)3.5超前地质预报 (8)3.6 爆破施工 (10)3.7 出渣运输 (14)4 监控量测 (14)4.1 量测项目 (14)4.2 量测方法和要求 (15)4.3 监测资料整理、数据分析及反馈 (15)4.4 监控量测质量保证措施 (16)5 初期支护施工 (16)5.1 径向砂浆锚杆施工 (16)5.2 钢架施工 (18)5.3 钢筋网片施工 (21)5.4 喷射混凝土施工 (23)6 劳动力组织 (27)6.1 采用架子队用工管理模式 (27)6.2 劳动力进场计划 (28)7 质量保证措施 (28)7.1 控制措施 (28)7.2 技术措施 (31)8 安全保证措施 (32)8.1 技术保证措施 (33)8.2 隧道施工安全保证措施 (35)8.3 环保、水保措施 (42)1 编制原则、依据1.1 编制原则遵循设计文件的原则。
在编制施工方案时,认真阅读核对施工图设计文件资料,了解设计意图,掌握现场情况,严格按设计资料和设计原则编制,满足设计标准和要求。
遵循“安全第一、预防为主”和“管生产必须管安全”的原则。
严格按照铁路施工安全操作规程,从制度、管理、方案、资源方面制定切实可行的措施,确保施工安全,服从建设单位指令,服从监理工程师的监督检查,严肃安全纪律,严格按规程办事。
遵循“科技是第一生产力”的原则。
充分应用“四新”成果,充分发挥科技在施工生产中的先导保障作用。
遵循标准化管理原则。
确保质量、安全、环境三体系在本项目工程施工中自始至终得到有效运行。
2 高速铁路隧道净空断面及衬砌支护参数

单线圆形结构,有
效面积66m ;盾 构外径10.8m, 内径9.8m,管片 厚度50cm。
2
单洞双线和双洞单线方案比较:
高速铁路均设计为双线,因此存在单
洞双线和双洞单线的比较: 从地质条件、建设工期、施工难度和 方法、运营通风、防灾救援、工程投资、 空气动力学影响等方面综合考虑进行选择。
单洞双线和双洞单线方案比较:
一般隧道在边墙底均加强。研究与试验证明,边墙与仰
拱若采用顺接则可改善受力状况,故隧道采用曲墙式衬 砌。
衬砌支护参数的特点
衬砌支护参数的特点
衬砌支护参数的特点
衬砌结构支护参数
II级无仰拱衬砌结构
衬砌结构支护参数
II级无仰拱衬砌结构 底板配筋
衬砌结构支护参数
II级有仰拱衬砌结构
衬砌结构支护参数
范围内设置一些设备,如接触导线张力调整器和接触导线开关 以及接头的紧回装置等。 工程技术作业空间在安全空间和救援通道之外,其宽度应 为0.3m。不得用工程技术作业空间来满足隧道建设的施工误 差。
断面形式
断面形式
断面形式
断面形式
狮子洋隧道位于广 深港客运专线上,
国内第一座水下高
速铁路隧道, 350km/h,双洞
优缺点比较: 单洞双线阻塞比小,能有效提高乘车舒适度;双洞单线 有利于防灾救援; 地质条件差,考虑施工难度和风险,宜选用用TBM或盾构,考虑施工风险,采用双洞 单线;运营通风方面,双洞单线利用列车活塞风更有利。
单洞双线和双洞单线方案比较:
优缺点比较:
选择原则:
隧道长度大于20km,从防灾救援方面考虑,采用双洞单
线方案。 兰武二线乌鞘岭隧道(20050m);石太客运专线太行 山隧道(27839m)。
隧道初期支护及衬砌类型一览表

锚杆
φ 22*3.0m砂浆锚杆,每环10.5 根间距1.0m*1.0m. φ 22*2.5m砂浆锚杆,每环7.5 根间距1.2m*1.2m. φ 22*2.5m砂浆锚杆,每榀11.5 根间距1.0m*0.8m φ 25*3.5m中空锚杆,每榀11.5 根间距1.0m*0.8m φ 22*2.5m砂浆锚杆,每榀11.5 根间距1.0m*0.8m φ 22*3.5m砂浆锚杆,每榀12.5 根间距1.0m*0.8m φ 22*2.5m砂浆锚杆,每榀11.5 根间距1.0m*0.8m φ 22*2.5m砂浆锚杆,每环7.5 根间距1.2m*1.2m. φ 22*2.0m砂浆锚杆,每环5.5 根间距1.5m*1.5m. φ 22*3.0m砂浆锚杆,每环10.5 根间距1.0m*1.0m. φ 22*2.0m砂浆锚杆,每环5.5 根间距1.5m*1.5m. φ 22*2.5m砂浆锚杆,每榀11.5 根间距1.0m*0.8m φ 22*3.0m砂浆锚杆,每榀10.5 根间距1.0m*1.0m φ 25*3.0m中空锚杆,每榀11.5 根间距1.0m*0.6m
无
初期支护 超前支护 喷射砼
C25砼 (18cm) C25砼 (12cm) C25砼 (22cm) C25砼 (25cm) C25砼 (22cm) C25砼 (24cm) C25砼 (22cm) C25砼 (12cm) C25砼 (10cm) C25砼 (18cm) C25砼 (10cm) C25砼 (22cm) C25砼 (22cm) C25砼 (25cm)
小导管3m/环, 4.5m*45根
中梁子隧道左线初期支护及衬砌类型一览表(二)第三套图纸
序号 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 起止里程 ZK5+509-ZK5+549 ZK5+549-ZK5+650 ZK5+650-ZK5+950 ZK5+950-ZK6+090 ZK6+090-ZK6+261 ZK6+261-ZK6+301 ZK6+301-ZK6+390 ZK6+390-ZK6+750 ZK6+750-ZK7+014 ZK7+014-ZK7+054 ZK7+054-ZK7+130 ZK7+130-ZK7+380 ZK7+380-ZK7+690 ZK7+690-ZK7+780 ZK7+780-ZK7+795 长度 每延米开挖 衬砌类型 方量(m³) (米) 40 101 300 140 171 40 89 360 264 40 76 250 310 90 15 S3jt SF3a SF4a SF5b SF4a S4jt SF4a SF3a SF3b S3jt SF3b SF4a SF4b SF5a SFmb 112.35
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单层
C20喷射砼
厚12cm
-
-
拱部35cm
小净距隧道复合式衬砌支护设计参数表
(10m≤测设线间距<18m)
衬砌
类型
围岩
级别
超前
支护
初期支护
预留变形量
二次衬砌
锚杆
钢筋网
喷射砼
钢拱架
XXS5a
Ⅴ级土质
浅埋
Φ108大管棚
侧:Φ22药卷锚杆,L=6.0m纵环间距50×120cm;外侧:Φ22药卷锚杆L=3.5m,
(纵)80*100(环)
Φ8钢筋网25x25cm
双层
C20
喷射砼
厚24cm
Ⅰ18工字钢
间距80cm
10cm
拱部、仰拱45cm
(钢筋)
LS4b
Ⅳ级
深埋
Φ42小钢管,长3.5m,环向40cm
Φ22药卷锚杆L=3.5m
(纵)100*100(环)
Φ8钢筋网20x20cm
单层
C20
喷射砼
厚22cm
Φ22格栅钢拱架
拱部、
仰拱40cm(钢筋)
XS4b
Ⅳ级
深埋
Φ22锚杆,长4.0m,环向40cm
侧:Φ22药卷锚杆,L=4.5m纵环间距100×120cm;外侧:Φ22药卷锚杆L=3.0m,
(纵)100*120(环)
Φ8钢筋网25x25cm
单层
C20喷射砼
厚20cm
Φ22格栅钢拱架
间距100cm
7cm
拱部、仰拱40cm
局部Φ8钢筋网25x25cm
单层
C20喷射砼
厚8cm
-
3cm
拱部30cm
小净距隧道复合式衬砌支护设计参数表
(18m≤测设线间距<25m)
衬砌
类型
围岩
级别
超前
支护
初期支护
预留变形量
二次衬砌
锚杆
钢筋网
喷射砼
钢拱架
XS5a
Ⅴ级
浅埋
Φ108大管棚
侧:Φ22药卷锚杆,L=6.0m纵环间距60×120cm;外侧:Φ22药卷锚杆L=3.5m,(纵)60*120(环)
(纵)120*120(环)
Φ8钢筋网25x25cm
单层
C20喷射砼
厚22cm
Φ22格栅
钢拱架
间距120cm
7cm
拱、墙部40cm
S3
Ⅲ级
-
Φ22药卷锚杆L=2.5m
(纵)120*120(环)
Φ8钢筋网25x25cm单层
C20喷射砼
厚10cm
-
5cm
拱部35cm
S2
Ⅱ级
-
Φ22药卷锚杆
L=2.0m
局部
-
4cm
拱部30cm
连拱隧道复合式衬砌支护设计参数表
衬砌
类型
围岩
级别
超前
支护
初期支护
预留变形量
二次衬砌
锚杆
钢筋网
喷射砼
钢拱架
LS5a
Ⅴ级
浅埋
Φ108大管棚或Φ42小导管
Φ22药卷锚杆L=4.0m
(纵)60*80(环)
Φ8钢筋网20x20cm
双层
C20
喷射砼
厚26cm
Ⅰ20b工字钢间距60cm
(全封闭)
Φ8钢筋网20x20cm
单层
C20喷射砼
厚24cm
Ⅰ18工字钢
间距80cm
10cm
拱部、仰拱45cm(钢筋)
ST3
Ⅲ级
-
Φ22药卷锚杆L=3.0m,(纵)120*120(环)
Φ8钢筋网25x25cm
单层
C20喷射砼
厚22cm
Φ22格栅钢拱架
间距120cm
6cm
拱部40cm
ST2
Ⅱ级
-
Φ22药卷锚杆L=3.0m,(纵)120*120(环)
间距100cm
10cm
拱部、仰拱45cm
LS3
Ⅲ级
-
Φ22药卷锚杆L=3.0m
(纵)120*120(环)
Φ8钢筋网25x25cm
单层
C20
喷射砼
厚15cm
-
7cm
拱部、仰拱40cm
Φ8钢筋网20x20cm
双层
C20
喷射砼
厚24cm
Ⅰ18工字钢
间距50cm
15cm
拱部、仰拱45cm
(钢筋)
XXS5c
Ⅴ级石质
深埋
Φ42小导管,环向40cm
侧:Φ22药卷锚杆,L=6.0m纵环间距70×120cm;外侧:Φ22药卷锚杆L=3.5m,(纵)70*120(环)
Φ8钢筋网20x20cm
双层
间距80cm
10cm
拱部、仰拱45cm
(钢筋)
XS4a
Ⅳ级
浅埋
Φ22锚杆,长3.5m,环向40cm
侧:Φ22药卷锚杆,L=5.0m纵环间距100×120cm;外侧:Φ22药卷锚杆L=3.0m,
(纵)100*120(环)
Φ8钢筋网25x25cm
单层
C20喷射砼
厚22cm
Ⅰ16工字钢
间距100cm
7cm
拱部、仰拱50cm(钢筋)
S5b
Ⅴ级
深埋
Φ108大管棚或Φ42小导管
Φ22药卷锚杆L=3.5m
(纵)60*120(环)
Φ8钢筋网20x20cm
双层
C20喷射砼
厚24cm
Ⅰ18工字钢
间距60cm
(全封闭)
12cm
拱部、仰拱45cm(钢筋)
S5c
Ⅴ级
深埋
灰岩
Φ42小导管,长3.5m,环向40cm
Φ22药卷锚杆L=3.5m
Φ8钢筋网20x20cm
双层
C20喷射砼
厚26cm
Ⅰ20b工字钢间距60cm(全封闭)
12cm
拱部、仰拱50cm
(钢筋)
XS5b
Ⅴ级
浅埋
Φ108大管棚或Φ42小导管
侧:Φ22药卷锚杆,L=6.0m纵环间距60×120cm;外侧:Φ22药卷锚杆L=3.5m,(纵)60*120(环)
Φ8钢筋网20x20cm
分离式隧道复合式衬砌支护设计参数表
(测设线间距≥25m)
衬砌
类型
围岩
级别
超前
支护
初期支护
预留变形量二次衬砌锚杆源自钢筋网喷射砼钢拱架
S5a
Ⅴ级
浅埋
Φ108大管棚
Φ22药卷锚杆L=3.5m
(纵)60*120(环)
Φ8钢筋网20x20cm
双层
C20喷射砼
厚26cm
Ⅰ20b工字钢间距60cm
(全封闭)
12cm
双层
C20喷射砼
厚24cm
Ⅰ18工字钢
间距60cm
12cm
拱部、仰拱45cm
(钢筋)
XS5c
Ⅴ级
深埋
灰岩
Φ42小导管,环向40cm
侧:Φ22药卷锚杆,L=6.0m纵环间距80×120cm;外侧:Φ22药卷锚杆L=3.5m,(纵)80*120(环)
Φ8钢筋网20x20cm
双层
C20喷射砼
厚24cm
Ⅰ18工字钢
Ⅰ16工字钢
间距80cm
10cm
拱部、
仰拱45cm
XXS4b
Ⅳ级
深埋
Φ22锚杆,长4.0m,环向40cm
侧:Φ22药卷锚杆,L=4.5m纵环间距100×120cm;外侧:Φ22药卷锚杆L=3.0m,
(纵)100*120(环)
Φ8钢筋网25x25cm
单层
C20
喷射砼
厚20cm
Φ22格栅钢拱架
间距100cm
8cm
拱部、仰拱40cm
XXS4c
Ⅳ级
深埋
灰岩
Φ22锚杆,长4.0m,环向40cm
侧:Φ22药卷锚杆,L=4.5m纵环间距120×120cm;外侧:Φ22药卷锚杆L=3.0m,
(纵)120*120(环)
Φ8钢筋网25x25cm
单层
C20
喷射砼
厚22cm
Φ22格栅钢拱架
间距120cm
7cm
拱部、仰拱40cm
(纵)120*120(环)
Φ8钢筋网25x25cm
单层
C20喷射砼
厚10cm
-
5cm
拱部35cm
XS2
Ⅱ级
-
Φ22药卷锚杆
L=2.5m
局部
局部Φ8
钢筋网25x25cm
单层
C20喷射砼
厚8cm
-
3cm
拱部30cm
ST4
Ⅳ级
Φ42小导管,长4.0m,环向40cm
Φ22药卷锚杆L=3.5m,(纵)80*120(环)
XS4c
Ⅳ级
深埋
灰岩
Φ22锚杆,长4.0m,环向40cm
侧:Φ22药卷锚杆,L=4.5m纵环间距120×120cm;外侧:Φ22药卷锚杆L=3.0m,
(纵)120*120(环)
Φ8钢筋网25x25cm
单层
C20喷射砼
厚22cm
Φ22格栅钢拱架
间距120cm
7cm
拱部、仰拱40cm
XS3
Ⅲ级
-
侧:Φ22注浆锚杆,L=4.0m纵环间距120×120cm;外侧:Φ22药卷锚杆L=2.5m,
7cm
拱部、
仰拱40cm(钢筋)
S4b
Ⅳ级
深埋
Φ22锚杆,长4.0m,环向40cm