均值不等式教学设计
教学设计1:2.2.4 第1课时 均值不等式

2.2.4 第1课时 均值不等式教学目标1.探索并了解均值不等式的证明过程,理解均值不等式成立的条件,等号成立的条件及几何意义;2.会用均值不等式及其变形形式解决证明不等式、比较大小、求取值范围等问题;3.掌握运用均值不等式a +b2≥ab 求最值的常用方法及需注意的问题.教学知识梳理知识点一 均值不等式(1)如果a ,b 都是正数,那么a +b2≥ab ,当且仅当a =b 时,等号成立.此结论通常称为均值不等式,也称为基本不等式.(2)对任意两个正实数a ,b ,我们称a +b2为a ,b 的算术平均值,称ab 为a ,b 的几何平均值.因而,均值不等式可叙述为:两个正实数的算术平均值不小于它们的几何平均值. 思考1.如何证明均值不等式?提示:因为a >0,b >0,所以a +b 2-ab =a +b -2ab 2=(a -b )22≥0,即a +b2≥ab .当且仅当a =b ,即a =b 时,等号成立. 2.从几何角度如何解释均值不等式? 提示:以长为a +b 的线段为直径作圆,在直线AB 上取点C ,使AC =a ,CB =b .过点C 作垂直于直线AB 的弦DD ′,连接AD 、DB ,如图,连接BD ′,易证Rt △ACD ∽Rt △DCB ,那么CD 2=AC ·CB ,得CD =ab .这个圆的半径为a +b 2,显然,它大于或等于CD ,即a +b2≥ab .当且仅当点C 与圆心重合,即a =b 时,等号成立. 知识点二 均值不等式的应用设x ,y 都为正数,则有如下关系:(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24;(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 思考3.如何证明“和定积最大,积定和最小”? 提示:(1)∵x ,y 都是正数,∴x +y2≥xy .又x +y =s ,∴xy ≤(x +y 2)2=s 24,当且仅当x =y 时,取等号.故若x +y =s ,当x =y 时,积xy 取得最大值s 24.(2)∵x ,y 都是正数,∴x +y2≥xy ,当且仅当x =y 时,等号成立.又xy =p ,∴x +y ≥2p .故若xy =p ,当x =y 时,和x +y 取得最小值2p . 教学案例类型一 均值不等式应用的条件[例1] 下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +ab≥2b a ·a b=2 B .若x ,y ∈R ,则⎪⎪⎪⎪x +4y =|x |+4|y |≥2|x |·4|y |C .若x 为负实数,则x +4x ≥-2x ·4x=-4 D .若x ≠0,则x 2+1x2≥2x 2·1x2=2 【解析】因a ,b ∈R ,故当a ,b 异号时,b a 与ab 均负,故直接用均值不等式是错误的,则A选项错误;若x ,y ∈R ,⎪⎪⎪⎪x +4y =|x |+4|y |≥2|x |·4|y |,没有条件xy >0,不成立,所以B 选项错误;C 选项中,在x <0时,4x <0,故不能直接用均值不等式,正确书写为:x +4x=-⎣⎡⎦⎤(-x )+⎝⎛⎭⎫-4x ≤-2(-x )·⎝⎛⎭⎫-4x =-4,故C 选项错误;故选D. 【答案】D 通法提炼在应用均值不等式时,一定要注意是否满足条件,即a >0,b >0,若条件不满足时,则应拼凑出条件,即问题一端出现“和式”,另一端出现“积式”,便于运用均值不等式. [变式训练1] 已知a ,b ∈R ,且ab >0,则下列结论恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +a b≥2【解析】利用均值不等式需注意各数必须是正数,不等式a 2+b 2≥2ab 的使用条件是a ,b ∈R .对于A ,当a =b 时,a 2+b 2=2ab ,所以A 错误;对于B ,C ,虽然ab >0,只能说明a ,b 同号,当a ,b 都小于0时,B ,C 错误; 对于D ,因为ab >0,所以b a >0,ab >0.所以b a +ab ≥2b a ·a b ,即b a +ab≥2成立. 【答案】D类型二 用均值不等式证明不等式 [例2] 已知a 、b 、c 是正实数,求证:bc a +ac b +abc ≥a +b +c .证明:∵a 、b 、c 是正实数, ∴bc a +acb ≥2bc a ·ac b =2c (当且仅当bc a =acb ,即a =b 时,取等号); ac b +ab c ≥2ac b ·ab c =2a (当且仅当ac b =abc ,即b =c 时,取等号); ab c +bc a≥2ab c ·bc a =2b (当且仅当bc a =abc ,即a =c 时,取等号); 上面3个不等式相加得2·bc a +2·ac b +2·abc ≥2a +2b +2c (当且仅当a =b =c 时,取等号).∴bc a +ac b +abc ≥a +b +c . 通法提炼1.使用均值不等式时,一定要注意是否满足条件,等号能否成立.2.对于证明多项和的不等式时,可以考虑分段应用均值不等式或其变形,然后整体相加(乘)得结论.[变式训练2] 已知a >0,b >0,c >0,求证:a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .证明:因为a >0,b >0,c >0, 故a 2b 2+b 2c 2≥2a 2b 2·b 2c 2=2ab 2c , b 2c 2+c 2a 2≥2b 2c 2·c 2a 2=2abc 2, c 2a 2+a 2b 2≥2c 2a 2·a 2b 2=2a 2bc .将上述三式相加,得2(a 2b 2+b 2c 2+c 2a 2)≥2abc (a +b +c ), 又a +b +c >0,故a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .[例3] 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c≥9.证明:方法一:∵a >0,b >0,c >0, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.即1a +1b +1c ≥9(当且仅当a =b =c 时取等号). 方法二:∵a >0,b >0,c >0, ∴1a +1b +1c =(a +b +c )(1a +1b +1c ) =1+b a +c a +a b +1+c b +a c +b c +1=3+(b a +a b )+(c a +a c )+(c b +b c )≥3+2+2+2=9.∴1a +1b +1c ≥9(当且仅当a =b =c 时取等号). 通法提炼含条件的不等式证明问题,要将条件与结论结合起来,寻找出变形的思路,构造出均值不等式,在条件“a +b +c =1”下,1的代换一般有两种情况,切忌两次使用均值不等式,用传递性证明,有时等号不能同时取到.[变式训练3] 已知a >0,b >0,c >0,且a +b +c =1,求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.证明:∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=a +b +c a -1=b +c a ≥2bc a >0, 同理1b -1≥2ac b >0,1c -1≥2ab c >0,∴⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8ab ac bc abc =8 (当且仅当a =b =c 时取等号). 类型三 利用均值不等式求最值[例4] (1)已知0<x <13,则x (1-3x )的最大值为( )A .112B .1C .19D .12(2)已知x >0,y >0,且满足2x +8y=1,则x +y 的最小值为________.【解析】(1)因为0<x <13,所以1-3x >0,所以x (1-3x )=13·3x (1-3x )≤13⎣⎡⎦⎤3x +(1-3x )22=112,当且仅当3x =1-3x ,即x =16时,等号成立,所以x =16时,x (1-3x )取得最大值112. (2)∵x +y =(x +y )·1=(x +y )·⎝⎛⎭⎫2x +8y =2+8+2y x +8x y ,x >0,y >0,∴2y x >0,8xy >0,x +y ≥10+216=18,当且仅当2y x =8x y 时等号成立,即y 2=4x 2,∴y =2x .又2x +8y =1,∴x =6,y =12,∴当x =6,y =12时,x +y 有最小值18.【答案】(1)A (2)18 通法提炼求和式的最小值时应使积为定值,求积式的最大值时应使和为定值适当变形,合理发现拆分项或配凑因式是常用的解题技巧,不要忽略等号成立的条件. [变式训练4] (1)已知x >-3,则x +1x +3的最小值为 .【解析】因为x >-3,所以x +3>0,则x +1x +3=x +3+1x +3-3≥2(x +3)·1x +3-3=-1,当且仅当x +3=1x +3,即x =-2时等号成立,所以x +1x +3有最小值,最小值为-1.【答案】-1(2)设a >0,b >0,且a +b =2,则1a +1b的最小值为 .【解析】因为a +b =2,所以12(a +b )=1,所以1a +1b =12⎝⎛⎭⎫1a +1b (a +b )=12⎝⎛⎭⎫2+b a +a b , 因为a >0,b >0,故b a >0,a b >0,所以1a +1b =12⎝⎛⎭⎫2+b a +a b ≥12⎝⎛⎭⎫2+2b a ·a b = 2⎝⎛⎭⎫当且仅当b a =a b ,即a =b =1时等号成立,所以1a +1b的最小值为2. 【答案】2 课堂达标1.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =0【解析】a 2+1-2a =(a -1)2≥0,∴a =1时,等号成立. 【答案】B2.已知x <0,则x +1x-2有( )A .最大值0B .最小值0C .最大值-4D .最小值-4【解析】因为x <0,所以x +1x -2=-⎣⎡⎦⎤(-x )+1-x -2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.故选C.【答案】C3.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.4.已知a >0,b >0,c >0,求证:(1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abcabc=8(当且仅当a =b =c 时取“=”).。
§3.2 均值不等式 教案(一)

§3.2 均值不等式 教案(一)第1课时授课类型:新授课【教学目标】1.知识与技能:学会推导并掌握均值不等式,理解这个均值不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b ab +≤的证明过程; 【教学难点】均值不等式2a b ab +≤等号成立条件 【教学过程】 1.课题导入均值不等式2a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。
你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系。
2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。
这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。
由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。
当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。
2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a3.思考证明:你能给出它的证明吗?证明:因为 222)(2b a ab b a -=-+当22,()0,,()0,a b a b a b a b ≠->=-=时当时所以,0)(2≥-b a ,即.2)(22ab b a ≥+4.1)从几何图形的面积关系认识基本不等式2a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥,通常我们把上式写作:(a>0,b>0)2a b ab +≤2)从不等式的性质推导基本不等式2a b ab +≤ 用分析法证明:要证 2a b ab +≥ (1) 只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。
《均值不等式》教案2

《均值不等式》教案一、 教学目标推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理。
二、 教学重难点重点:推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理。
难点:利用均值定理求极值。
三、教学方法引导法四、课时1课时五、教学过程均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)3. 已知x,y ∈R +,x+y=s,xy=p.①若p 为定值,那么当且仅当 时,s=x+y 有 ; ②若s 为定值,那么当且仅当 时,p=xy 有 。
(2)求最值的条件“一正,二定,三取等” 应用一:求最值解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
(教案)均值不等式

均值不等式及其应用【第1课时】【教学过程】一、新知初探1.算术平均值与几何平均值对于正数a ,b ,常把a +b2叫做a ,b 的算术平均值,把ab 叫做a ,b 的几何平均值. 2.均值不等式(1)当a >0,b >0a =b 时,等号成立; (2)均值不等式的常见变形 ①当a >0,b >0,则a +b ≥2ab ;②若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22. 二、初试身手1.不等式a 2+1≥2a 中等号成立的条件是( ) A .a =±1 B .a =1 C .a =-1 D .a =0答案:B解析:当a 2+1=2a ,即(a -1)2=0,即a =1时“=”成立. 2.已知a ,b ∈(0,1),且a ≠b ,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b 答案:D解析:∵a ,b ∈(0,1),∴a 2<a ,b 2<b , ∴a 2+b 2<a +b ,又a 2+b 2>2ab (a ≠b ), ∴2ab <a 2+b 2<a +b .又∵a +b >2ab (a ≠b ),∴a +b 最大.3.已知ab =1,a >0,b >0,则a +b 的最小值为( ) A .1 B .2 C .4 D .8 答案:B解析:∵a >0,b >0,∴a +b ≥2ab =2,当且仅当a =b =1时取等号,故a +b 的最小值为2.4.当a ,b ∈R 时,下列不等关系成立的是________. ①a +b2≥ab ;②a -b ≥2ab ;③a 2+b 2≥2ab ;④a 2-b 2≥2ab . 答案:③解析:根据a 2+b 22≥ab ,a +b2≥ab 成立的条件判断,知①②④错,只有③正确. 三、合作探究类型1:对均值不等式的理解例1:给出下面三个推导过程:①∵a ,b 为正实数,∴b a +a b ≥2b a ·ab =2;②∵a ∈R ,a ≠0,∴4a +a ≥24a ·a =4;③∵x ,y ∈R ,xy <0,∴x y +y x =--x y +-yx ≤-2⎝ ⎛⎭⎪⎫-x y ⎝ ⎛⎭⎪⎫-y x =-2. 其中正确的推导为( ) A .①② B .①③ C .②③ D .①②③答案:B解析:①∵a ,b 为正实数,∴b a ,ab 为正实数,符合均值不等式的条件,故①的推导正确. ②∵a ∈R ,a ≠0,不符合均值不等式的条件, ∴4a +a ≥24a ·a =4是错误的.③由xy <0,得x y ,y x 均为负数,但在推导过程中将整体x y +y x 提出负号后,⎝ ⎛⎭⎪⎫-x y ,⎝ ⎛⎭⎪⎫-y x 均变为正数,符合均值不等式的条件,故③正确.规律方法1.均值不等式ab ≤a +b2 (a >0,b >0)反映了两个正数的和与积之间的关系. 2.对均值不等式的准确掌握要抓住以下两个方面: (1)定理成立的条件是a ,b 都是正数.(2)“当且仅当”的含义:当a =b 时,ab ≤a +b 2的等号成立,即a =b ⇒a +b2=ab ;仅当a =b 时,a +b 2≥ab 的等号成立,即a +b2=ab ⇒a =b .跟踪训练1.下列不等式的推导过程正确的是________.①若x >1,则x +1x ≥2x ·1x =2;②若x <0,则x +4x =-⎣⎢⎡⎦⎥⎤-x +⎝ ⎛⎭⎪⎫-4x ≤-2-x ·⎝ ⎛⎭⎪⎫-4x =-4;③若a ,b ∈R ,则b a +a b ≥2b a ·ab =2. 答案:②解析:①中忽视了均值不等式等号成立的条件,当x =1x 时,即x =1时,x +1x ≥2等号成立,因为x >1,所以x +1x >2,③中忽视了利用均值不等式时每一项必须为正数这一条件.类型2:利用均值不等式比较大小例2:(1)已知a ,b ∈(0,+∞),则下列各式中不一定成立的是( )A .a +b ≥2abB .b a +ab ≥2C .a 2+b 2ab≥2ab D .2ab a +b ≥ab(2)已知a ,b ,c 是两两不等的实数,则p =a 2+b 2+c 2与q =ab +bc +ca 的大小关系是________.答案:(1)D(2)a 2+b 2+c 2>ab +bc +ac解析:(1)由a +b2≥ab 得a +b =2ab , ∴A 成立;∵b a +a b ≥2b a ·ab =2,∴B 成立;∵a 2+b 2ab ≥2ab ab =2ab ,∴C 成立;∵2ab a +b ≤2ab 2ab =ab ,∴D 不一定成立. (2)∵a ,b ,c 互不相等,∴a 2+b 2>2ab ,b 2+c 2>2bc ,a 2+c 2>2ac . ∴2(a 2+b 2+c 2)>2(ab +bc +ac ). 即a 2+b 2+c 2>ab +bc +ac . 规律方法1.在理解均值不等式时,要从形式到内含中理解,特别要关注条件.2.运用均值不等式比较大小时应注意成立的条件,即a +b ≥2ab 成立的条件是a >0,b >0,等号成立的条件是a =b ;a 2+b 2≥2ab 成立的条件是a ,b ∈R ,等号成立的条件是a =b .跟踪训练2.如果0<a <b <1,P =a +b 2,Q =ab ,M =a +b ,那么P ,Q ,M 的大小顺序是( ) A .P >Q >M B .M >P >Q C .Q >M >P D .M >Q >P答案:B解析:显然a +b 2>ab ,又因为a +b 2<a +b ⎝⎛⎭⎪⎫由a +b >a +b 24也就是a +b 4<1可得,所a +b >a +b2>ab .故M >P >Q .类型3:利用均值不等式证明不等式例3:已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c >9.思路点拨:看到1a +1b +1c >9,想到将“1”换成“a +b +c ”,裂项构造均值不等式的形式,用均值不等式证明.证明:∵a ,b ,c ∈R +,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2b a ·a b +2c a ·a c +2c b ·bc=3+2+2+2 =9.当且仅当a =b =c 时取等号, ∴1a +1b +1c >9. 母题探究本例条件不变,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1>8.证明:∵a ,b ,c ∈R +,且a +b +c =1,∴1a -1=b +c a >0,1b -1=a +c b >0,1c -1=a +b c >0, ∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1 =b +c a ·a +c b ·a +b c ≥2bc ·2ac ·2ab abc =8,当且仅当a =b =c 时取等号, ∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1>8. 规律方法1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用均值不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用均值不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用均值不等式时的一种重要技能,也是证明不等式时的一种常用方法.跟踪训练3.已知a ,b ,c ∈R ,求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 证明:由均值不等式可得 a 4+b 4=(a 2)2+(b 2)2≥2a 2b 2, 同理,b 4+c 4≥2b 2c 2, c 4+a 4≥2a 2c 2,∴(a 4+b 4)+(b 4+c 4)+(c 4+a 4)≥2a 2b 2+2b 2c 2+2a 2c 2, 从而a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.4.已知a >1,b >0,1a +3b =1,求证:a +2b ≥26+7.证明:由1a +3b =1,得b =3aa -1(a >1),则a +2b =a +6aa -1=a +6a -1+6a -1=a +6a -1+6=(a -1)+6a -1+7≥26+7, 当且仅当a -1=6a -1时,即a =1+6时,取等号. 四、课堂小结1.应用均值不等式时要时刻注意其成立的条件,只有当a >0,b >0时,才会有ab ≤a +b 2.对于“当且仅当……时,‘=’成立…”这句话要从两个方面理解:一方面,当a =b 时,a +b2ab ;另一方面:当a +b2=ab 时,也有a =b .2.应用均值不等式证明不等式的关键在于进行“拼”“凑”“拆”“合”“放缩”等变形,构造出符合均值不等式的条件结构. 五、当堂达标1.思考辨析(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( )(2)若a ≠0,则a +1a ≥2a ·1a =2.( )(3)若a >0,b >0,则ab ≤⎝ ⎛⎭⎪⎫a +b 22.( ) 提示:(1)任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)只有当a >0时,根据均值不等式,才有不等式a +1a ≥2a ·1a =2成立.(3)因为ab ≤a +b 2,所以ab ≤⎝⎛⎭⎪⎫a +b 22. 答案:(1)×(2)×(3)√2.设a >b >0,则下列不等式中一定成立的是( )A .a -b <0B .0<ab <1C .ab <a +b2 D .ab >a +b 答案:C解析:∵a >b >0,由均值不等式知ab <a +b2一定成立.3.不等式9x -2+(x -2)≥6(其中x >2)中等号成立的条件是( )A .x =3B .x =-3C .x =5D .x =-5答案:C解析:由均值不等式知等号成立的条件为9x -2=x -2,即x =5(x =-1舍去). 4.设a >0,b >0,证明:b 2a +a 2b ≥a +b . 证明:∵a >0,b >0, ∴b 2a +a ≥2b ,a 2b +b ≥2a , ∴b 2a +a 2b ≥a +b .【第2课时】【教学过程】一、新知初探已知x ,y 都是正数.(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24. (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 上述命题可归纳为口诀:积定和最小,和定积最大. 二、初试身手1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A .72B .4C .92D .5 答案:C解析:∵a +b =2,∴a +b2=1. ∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92 ⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.2.若x >0,则x +2x 的最小值是________. 答案:22解析:x +2x ≥2x ·2x =22,当且仅当x =2时,等号成立.3.设x ,y ∈N *满足x +y =20,则xy 的最大值为________. 答案:100解析:∵x ,y ∈N *, ∴20=x +y ≥2xy , ∴xy ≤100. 三、合作探究类型1:利用均值不等式求最值例1:(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12x (1-2x )的最大值.思路点拨:(1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y =12x (1-2x )的最值,需要出现和为定值.解:(1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1, 当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x <12,∴1-2x >0,∴y =14×2x (1-2x )≤14×⎝⎛⎭⎪⎫2x +1-2x 22=14×14=116. ∴当且仅当2x =1-2x ⎝ ⎛⎭⎪⎫0<x <12,即x =14时,y max =116. 规律方法利用均值不等式求最值的关键是获得满足均值不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用均值不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定,应凑出定和或定积;若不等,一般用后面第三章函数的基本性质的知识解决.跟踪训练1.(1)已知x >0,求函数y =x 2+5x +4x的最小值;(2)已知0<x <13,求函数y =x (1-3x )的最大值.解:(1)∵y =x 2+5x +4x =x +4x +5≥24+5=9,当且仅当x =4x ,即x =2时等号成立.故y =x 2+5x +4x(x >0)的最小值为9.(2)法一:∵0<x <13,∴1-3x >0.∴y =x (1-3x )=13·3x (1-3x )≤13⎣⎢⎡⎦⎥⎤3x +1-3x 22=112. 当且仅当3x =1-3x ,即x =16时,等号成立.∴当x =16时,函数取得最大值112.法二:∵0<x <13,∴13-x >0.∴y =x (1-3x )=3·x ⎝ ⎛⎭⎪⎫13-x ≤3·⎝⎛⎭⎪⎪⎫x +13-x 22 =112,当且仅当x =13-x ,即x =16时,等号成立.∴当x =16时,函数取得最大值112. 类型2:利用均值不等式求条件最值例2:已知x >0,y >0,且满足8x +1y =1.求x +2y 的最小值. 解:∵x >0,y >0,8x +1y =1,∴x +2y =⎝ ⎛⎭⎪⎫8x +1y (x +2y )=10+x y +16y x≥10+2x y ·16yx =18,当且仅当⎩⎪⎨⎪⎧8x +1y =1,x y =16y x,即⎩⎨⎧x =12,y =3时,等号成立,故当x =12,y =3时,(x +2y )min =18.母题探究 若把“8x +1y =1”改为“x +2y =1”,其他条件不变,求8x +1y 的最小值. 解:∵x ,y ∈R +, ∴8x +1y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y=8+16y x +x y +2=10+16y x +xy ≥10+216=18.当且仅当16y x =xy 时取等号,结合x +2y =1,得x =23,y =16,∴当x =23,y =16时,8x +1y 取到最小值18. 规律方法1.本题给出的方法,用到了均值不等式,并且对式子进行了变形,配凑出满足均值不等式的条件,这是经常使用的方法,要学会观察、学会变形.2.常见的变形技巧有:(1)配凑系数;(2)变符号;(3)拆补项.常见形式有y =ax +bx 型和y =ax (b -ax )型.跟踪训练2.已知a >0,b >0,a +2b =1,求1a +1b 的最小值. 解:法一:1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·1=⎝ ⎛⎭⎪⎫1a +1b ·(a +2b ) =1+2b a +a b +2=3+2b a +ab ≥3+22b a ·a b=3+22,当且仅当⎩⎪⎨⎪⎧2b a =a b,a +2b =1,即⎩⎨⎧ a =2-1,b =1-22时等号成立. ∴1a +1b 的最小值为3+22. 法二:1a +1b =a +2b a +a +2b b =1+2b a +a b +2=3+2b a +a b ≥3+22,当且仅当⎩⎪⎨⎪⎧ 2b a =a b,a +2b =1,即⎩⎨⎧ a =2-1,b =1-22时等号成立, ∴1a +1b 的最小值为3+22.类型3:利用均值不等式解决实际问题例3:如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?解:设每间虎笼长x m ,宽y m ,则由条件知,4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy , 所以26xy ≤18,得xy ≤272,即S max =272,当且仅当2x =3y 时,等号成立.由⎩⎨⎧ 2x +3y =18,2x =3y ,解得⎩⎨⎧x =4.5,y =3. 故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =y ⎝ ⎛⎭⎪⎫9-32y =32y (6-y ). ∵0<y <6,∴6-y >0.∴S ≤32⎣⎢⎡⎦⎥⎤6-y +y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.规律方法在应用均值不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.跟踪训练3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积解:设将楼房建为x 层,则每平方米的平均购地费用为2 160×1042 000x =10 800x .∴每平方米的平均综合费用y =560+48x +10 800x =560+48⎝ ⎛⎭⎪⎫x +225x . 当x +225x 取最小值时,y 有最小值.∵x >0,∴x +225x ≥2x ·225x =30.当且仅当x =225x ,即x =15时,上式等号成立.∴当x =15时,y 有最小值2000元.因此该楼房建为15层时,每平方米的平均综合费用最少.四、课堂小结1.利用均值不等式求最值,要注意使用的条件“一正、二定、三相等”,三个条件缺一不可,解题时,有时为了达到使用均值不等式的三个条件,需要通过配凑、裂项、转化、分离常数等变形手段,创设一个适合应用均值不等式的情境.2.不等式的应用题大都与函数相关联,在求最值时,均值不等式是经常使用的工具,但若对自变量有限制,一定要注意等号能否取到.五、当堂达标1.思考辨析(1)两个正数的积为定值,一定存在两数相等时,它们的和有最小值.( )(2)若a >0,b >0且a +b =4,则ab ≤4.( )(3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2x x -1.( ) 提示:(1)由a +b ≥2ab 可知正确.(2)由ab ≤⎝ ⎛⎭⎪⎫a +b 22=4可知正确.(3)xx -1不是常数,故错误.答案:(1)√(2)√(3)×2.若实数a ,b 满足a +b =2,则ab 的最大值为() A .1B .22C .2D .4答案:A解析:由均值不等式得,ab ≤⎝ ⎛⎭⎪⎫a +b 22=1. 3.已知0<x <1,则x (3-3x )取最大值时x 的值为() A .12 B .34C .23D .25答案:A解析:∵0<x <1,∴1-x >0,则x (3-3x )=3[x (1-x )]≤3×⎝ ⎛⎭⎪⎫x +1-x 22=34,当且仅当x =1-x ,即x =12时取等号. 4.已知x >0,求y =2xx 2+1的最大值.解:y =2x x 2+1=2x +1x.∵x >0,∴x +1x ≥2x ·1x =2,∴y ≤22=1,当且仅当x =1x ,即x =1时等号成立.。
均值不等式说课稿1(五篇模版)

均值不等式说课稿1(五篇模版)第一篇:均值不等式说课稿1一教材分析1、教材地位和作用均值不等式又叫做基本不等式,选自人教B版(必修5)的3章的2节的内容,是在上节不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。
本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节课可以培养学生应用数学知识灵活解决实际问题的能力。
“均值不等式”在不等式的证明和求最值过程中有着广泛的应用。
求最值是高考的热点。
它在科学研究、经济管理、工程设计上都有广泛的作用。
2、教学目标A.知识目标:学会推导并掌握均值不等式,理解这个均值不等式的几何意义,并掌握定理中取等号的条件.B.能力目标:通过对均值不等式的推导过程,提高学生探究问题,分析与解决问题的能力。
参透类比思想,数形结合的思想,优化了学生的思维品质。
C.情感目标:(1)通过探索均值不等式的证明过程,培养探索、研究精神。
(2)通过对均值不等式成立的条件的分析,养成严谨的科学态,并形成勇于提出问题、分析问题的习惯。
3、教学重点、难点:重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点二教法学法分析1.教法本节课主要采用探究归纳,启发诱导,讲练结合的教学方法。
以学生为主体,以均值不等式为主线,从实际问题出发,放手让学生探究思索。
2、教学手段为了使抽象变为具体,我使用了多媒体。
为了突出重点我使用了彩色粉笔。
3,学法从实际生活出发,通过创设问题情境,让学生经历由实际问题出发,探求均值不等式,发现均值不等式的实质,利用均值不等式解决实际问题的过程。
使学生从代数证明和几何证明两方面理解并掌握基本不等式。
均值不等式教案2(共5篇)

均值不等式教案2(共5篇)第一篇:均值不等式教案2课题:第02课时三个正数的算术-几何平均不等式(第二课时)教学目标:1.能利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题; 2.了解基本不等式的推广形式。
教学重点:三个正数的算术-几何平均不等式教学难点:利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题教学过程:一、知识学习:定理3:如果a,b,c∈R+,那么推广:a+b+c3≥abc。
当且仅当a=b=c时,等号成立。
3a1+a2+Λ+ann≥a1a2Λan。
当且仅当a1=a2=Λ=an时,等号成立。
n语言表述:n个正数的算术平均数不小于它们的几何平均数。
思考:类比基本不等式,是否存在:如果a,b,c∈R+,那么a+b+c≥3abc(当且仅当a=b=c时,等号成立)呢?试证明。
二、例题分析:例1:求函数y=2x+223333(x>0)的最小值。
x解一:y=2x+31112=2x2++≥332x2⋅⋅=334∴ymin=334 xxxxx33312223解二:y=2x+≥22x⋅=26x当2x=即x=时x2xx23 ∴ymin=26⋅12=23312=26324 21的最小值。
(a-b)b上述两种做法哪种是错的?错误的原因是什么?变式训练1 若a,b∈R+且a>b,求a+由此题,你觉得在利用不等式解决这类题目时关键是要_____________________ 例2 :如下图,把一块边长是a的正方形铁片的各角切去大小相同的小正方形,再把它的边沿名着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?变式训练2 已知:长方体的全面积为定值S,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.由例题,我们应该更牢记一 ____ 二 _____ 三 ________,三者缺一不可。
另外,由不等号的方向也可以知道:积定____________,和定______________.三、巩固练习 1.函数y=3x+12(x>0)的最小值是()2xA.6B.66C.9D.12 2.函数y=x4(2-x2)(0<x<2)的最大值是()D.2727A.0B.1C.四、课堂小结:通过本节学习,要求大家掌握三个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式及求函数的最值,但是在应用时,应注意定理的适用条件。
均值不等式课程设计

04 均值不等式的实际案例
投资组合优化问题
总结词
投资组合优化问题是均值不等式在实际中的一个重要应用,通过合理配置资产,实现风险和收益的平 衡。
均值不等式的证明
均值不等式的证明方法一
通过数学归纳法证明。首先证明基础步骤,然后假设 步骤成立,推出结论。
均值不等式的证明方法二
利用柯西不等式证明。柯西不等式是$(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2) geq (a_1b_1 + a_2b_2 + ... + a_nb_n)^2$,当且仅当 $frac{a_1}{b_1} = frac{a_2}{b_2} = ... = frac{a_n}{b_n}$时等号成立。将柯西不等式中的$a_i$ 和$b_i$分别替换为$sqrt{a_i}$和$frac{1}{sqrt{b_i}}$, 即可证明均值不等式。
均值不等式课程设计
目录
• 均值不等式的基本概念 • 均值不等式的应用 • 均值不等式的扩展 • 均值不等式的实际案例 • 均值不等式的挑战与展望
01 均值不等式的基本概念
均值不等式的定义
均值不等式的定义
对于任意正数$a_1, a_2, ..., a_n$,有$frac{a_1 + a_2 + ... + a_n}{n} geq sqrt[n]{a_1a_2...a_n}$,当且仅当$a_1 = a_2 = ... = a_n$时等号成立。
均值不等式教学设计教程文件

均值不等式教学设计教程文件教学设计:均值不等式一、教学目标:1.理解均值不等式的概念。
2.掌握均值不等式的证明方法。
3.运用均值不等式解决实际问题。
二、教学内容:1.均值不等式的概念介绍。
2.均值不等式的证明方法。
3.均值不等式在实际问题中的应用。
三、教学过程:1.导入新知识(5分钟)教师通过一个简单的例子引出均值不等式的概念,如:对于两个正数a和b,它们的算术平均数大于等于几何平均数。
2.理解均值不等式的概念(15分钟)教师通过具体的数值例子,让学生利用计算器计算两个数的算术平均数和几何平均数,并进行对比分析,引出均值不等式的定义。
-算术平均数:(a+b)/2-几何平均数:√(a×b)-例子:a=2,b=3,算术平均数=(2+3)/2=2.5,几何平均数=√(2×3)≈2.453.掌握均值不等式的证明方法(30分钟)3.1教师给出均值不等式的证明方法,并通过具体的例子进行步骤讲解。
3.2学生独立思考和解决一道简单的均值不等式证明题,教师进行答疑和指导。
3.3学生分组进行均值不等式证明题的小组合作学习,学生之间相互讨论和互相提问,共同探讨证明方法。
4.运用均值不等式解决实际问题(35分钟)4.1教师给出一些实际问题,如:已知a和b是正数,求证(a+b)/2≥√(a×b),并由学生尝试解答。
4.2学生分组进行实际问题的小组合作学习,学生之间相互讨论和互相提问,共同探讨解决方法。
4.3学生展示自己的解题方法和思路,讨论不同解决方法的优劣。
5.拓展与巩固(15分钟)5.1教师布置一些思考题和拓展题,要求学生运用均值不等式解决,提高学生的综合运用能力。
5.2学生进行思考和解答,并与同伴进行交流和讨论。
四、教学评价:1.学生能够简单地描述均值不等式的概念。
2.学生能够掌握均值不等式的证明方法,并能够运用到实际问题中。
3.学生能够灵活应用均值不等式解决实际问题,并能够思考和解决拓展问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
2ab
a b
+
可以变形为
2
11
a b
+
,叫做两个正数的调
和平均数)
2.一部分同学利用投
影仪展示证明过程,
其他同学补充完善
3.了解完善不等式链
应用,理解均
值不等式的
内涵,将均值
不等式内化
提高。
2.通过部分同
学展示,锻炼
语言表达能
力,培养推理
论证能力。
体
会学习成功
带来的喜悦。
3.通过不等式
链的完善,了
解均值不等
式的外延,螺
旋上升构建
知识体系。
归纳
小结
引导学生回顾本节课所学的知识及数学思想方
法
1.均值定理的符号语言、文字语言、图形语言
的相互统一;
2.均值定理的使用条件,等号成立条件;
3.了解调和平均数,几何平均数,算术平均数
的大小关系;
4.类比、数形结合的数学思想方法
1.认真思考,从知识、
思想方法等层面概括
总结本节课知识
2.部分同学口述表
达,其他同学补充完
善
1.培养抽象概
括能力、语言
表达能力。
2.循序渐进,
构建知识系
统,促使知识
形成正向迁
移
布置
作业
1.课本P72练习B组1,2习题3-2A组1
2.已知
,,,
a b c R a b c ab ac bc
+
∈++≥++
求证:
3.想一想:
(1)
22
2
a b
+
叫做两个正数的平方平均数,你
能明确它和本节课所学的几个平均数的大小关
系吗?
1.积极思考,完成作
业
1.作业1的设
置主要是巩
固完善本节
课所学,是均
值不等式的
直接应用,进
一步提高推
理论证能力。
2.作业2的设
置是体会均。