组合数学一PPT课件

合集下载

数学:1.2.2《组合》(一)课件(人教A版选修)

数学:1.2.2《组合》(一)课件(人教A版选修)

组合
abc abd acd abc acb abd adb acd adc bdc
排列
bac bca bad bda cad cda cbd cdb cab cba dab dba dac dca dbc dcb
bcd
你发现了 什么bcd ?
不写出所有组合,怎样才能知道组合的种数?
求 A4可分两步考虑: 3
C
4 7

C
7 10
(3) 已知
C
3 n

A
2 n
,求 n .
(4)求 C 38-n +C 3n 的值. 3n 21+n
例2.甲、乙、丙、丁4支足球队举行单循环赛,
(1)列出所有各场比赛的双方;
(2)列出所有冠亚军的可能情况. 解:(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 (2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
3
3
求 P 4 可分两步考虑:
3
第一步, C 4 ( 4)个;
第二步, A3 ( 6)个;
根据分步计数原理, A4
3
A 从而 C C A
3 4
3
CA
3 4
3 3
.
P 3 如何计算: P 3 3
3 4 4 3
3 4
C
m n
概念讲解
组合数公式
排列与组合是有区别的,但它们又有联系. 一般地,求从 n 个不同元素中取出m 个元素的排 列数,可以分为以下2步: 第1步,先求出从这 n 个不同元素中取出m 个元素 m 的组合数 Cn .
概念理解
1.从 a , b , c三个不同的元素中取出两个元素的所有组 合分别是: ab , ac , bc (3个) 2.已知4个元素a , b , c , d ,写出每次取出两个元素的 所有组合.

组合与组合数公式PPT课件

组合与组合数公式PPT课件

3 3.
A 从而 3 C A 4
3
C434 3
P3 4
P3 3
3
从 n 个不同元中取出m个元素的排列数
A C A m m m
n
n
m
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n
m)!
C 例1计算:⑴
4 7
⑵ C170
C A (3) 已知 3 2 ,求 n .
问题一:从甲、乙、丙3名同学中选出2名去参
加某天的一项活动,其中1名同学参加上午的
活动,1名同学参加下午的活动,有多少种不
同的选法?
A32 6
有顺序
问题二:从甲、乙、丙3名同学中选出2名去参 加一项活动,有多少种不同的选法?
甲、乙;甲、丙;乙、丙
无顺序
组合定义: 一般地,从n个不同元素中取出m(m≤n)
排列与元素的顺序有关,而组合则与元素的顺序无关
想一想:ab与ba是相同的排列还是相同的组合?为什么?
两个相同的排列有什么特点?两个相同的组合呢?
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
请赛,通过单循环决出冠亚军.
(1)列出所有各场比赛的双方;
(2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴
中国—古巴 美国—俄罗斯
中国—俄罗斯 古巴—俄罗斯
(2) 冠 军

《组合数学第一讲》课件

《组合数学第一讲》课件

概率的乘法公式
如果事件A和B是独立的,那么P(A∩B) = P(A) × P(B)。
贝叶斯公式
用于计算在已知其他相关概率的情况下,某一事件发生的概率。
概率的应用实例
赌博游戏
概率可以用于计算赌博游戏中各种结果的可能性 。
保险业
保险公司使用概率来计算各种风险的赔付概率和 保费。
天气预报
气象学家使用概率来预测天气的发生可能性,例 如降雨的概率。
在排列中,各个元素的位置是独立的,互不影响。
排列的传递性
如果a>b且b>c,则a>c。
排列的公式与定理
排列数的定义
从n个不同元素中取出m(m≤n)个元素的所有排列的个数,记 为P(n,m),计算公式为P(n,m)=n*(n-1)*(n-2)*...*(n-m+1)。
排列数的性质
P(n,m)=P(n,n-m),P(n,m)=m!/[(n-m)!*m!]。
03
CATALOGUE
组合数学中的计数问题
计数原理
01 02
计数原理
在数学中,计数原理是一种基本原理,用于计算在特定条件下可能发生 的事件的数量。它通常用于组合数学中的计数问题,以确定不同排列和 组合的数量。
分类计数原理
分类计数原理是计数原理的一种,它涉及到将问题分解为几个独立的部 分,然后分别计算每个部分的可能性,最后将各部分的计数相加。
THANKS
感谢观看
《组合数学第一 讲》ppt课件
目录
• 组合数学简介 • 组合数学的基本概念 • 组合数学中的计数问题 • 组合数学中的排列问题 • 组合数学中的组合问题 • 组合数学中的概率问题
01
CATALOGUE

高中数学 1.2.2 组合1课件 新人教A版必修1

高中数学 1.2.2 组合1课件 新人教A版必修1

Anm
Cnm Am m
C
m n
Anm Amm
形成结论
公式
C n m
A n m A m m
n (n1 )(n2 ) (nm1 ) m !
( m,n∈N*,m≤n) 叫做组合数公式,
这个公式如何用阶乘形式表示?
Cnm
n! m!(n m)!
典例讲评
例1 一位教练的足球队共有17名初级学 员,他们中以前没有一人参加过比赛,按 照足球比赛规则,比赛时一个足球队的上 场队员是11人,问: (1)这位教练从这17名学员中可以形成多
m
时n ,计算
2
C比nn计m算 较方C 便nm .
课堂小结
2.利用组合数性质
Cn m1 Cn m,可C 以n m对1组合数进行合成
与分解,对于组合数的求和问题,要结 合数列的思想方法求解.
作业: P25练习:6. P27习题1.2A组:9,10,11,12.
C
2 10
45
A120 90
典例讲评
例3 在100件产品中有98件合格品, 2 件次品,从这100件产品中任意抽取3件. (1)有多少种不同的抽法? (2)抽出的3件中恰有1件是次品的抽法 有多少种? (3)抽出的3件至少有1件是次品的抽法 有多少种?
(1)C1300 161700(2)C2 1 C9 28 9506
C 2 2 0
(2 ) C n 32
2 C n 22
C n 1 2 . C
3 n
典例讲评
例5 证明:
C n 1 2 C n 2 3 C n 3 C n 0 C n 1 C n 2
n C n n C n n1Leabharlann C n 21课堂小结

组合数学课件-第一章:排列与组合

组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。

组合数学课件--第一章第三节组合意义的解释(共27张PPT)

组合数学课件--第一章第三节组合意义的解释(共27张PPT)
21
:应用举例
码b与码a之间的汉明距离要大于或等于2r+1.
如果存在a与a的距离小于r,那么a与b的距离大于r。 解:先将1到999的整数都看作3位数,例如2就看作是002,这样从000到999。
试求从1到1000的整数中,0出现的次数。 求方程的非负整数的解的个数. 因此不合法的0的个数为 码b与码a之间的汉明距离要大于或等于2r+1. 9 *Stirling公式 35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m
6
1.6.3 线性方程的整数解的个数问题:
x1+x2+…+xn=b,n和b都是非负整数;
求方程的非负整数的解的个数. 允许重复的组合模型是r个无标志的球放进n个有 区别的盒子的情况:
方程的非负整数的个数与b个无标志的球放进n个 有区别的盒子的情况一一对应.
C(n+b-1,b)
7
1.7 组合的解释
m[C(n,0)+C(n,1)+…+C(n,r)]≤2n
m
2n
C(n,0)C(n,1)...C(n,r)
***
23
1.9 司特林(Stirling公式)
n!~ 2n(n)n
e
2n (n)n
lim n
e 1 n!
***
24
1.9 例题
例:求小于10000的正整数中含有数字1的数的个数。
解:小于10000的正整数是1到9999,如果我们 把不到4位的数前面补零,
{1,2},{1,3}, {2,3},
如果允许重复,多了
{1,1}, {2,2}, {3,3}。
组合模型:

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合
11
一、序数法
怎样建立a(3)a(2)a(1)p(1)p(2)p(3)p(4)
a(3) 确定4的位置,a(2)确定3的位置
a(1)确定2的位置,剩余的位置就是1的位置 例3:021, 3 2 1 4 例3: 201, 2 4 1 3
12
一、序数法
求n个不同的数的全排列,主要有以下两步:
1、求出0到n!-1之间各数对应的序列{an-1, an-2,…, a1} m=an-1(n-1)!+an-2(n-2)!+…a2 * 2!+a1*1! 2、由{an-1, an-2,…, a1}确定排列序列p1p2…pn an-1,确定n的位置, an-2确定n-1的位置, ……………………… a1确定2的位置, 剩下的是1的位置。
9
一、序数法
推论 从0到n!-1的n!个整数与序列{an-1, an-2,…, a1} 一一对应。这里 0a1 1,0 a2 2, …, 0 an-1 n-1 算法: int a[]={0}; int m,n;// 0=<m<=n!-1 int b=m; int index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
14
一、序数法
2、对于0,1,2,…,n!-1共n!个数求序列a[i]
for( i = 0; i < fact; i++ ) { int b=i, index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);

排列组合—组合(初等数学课件)

排列组合—组合(初等数学课件)
(2) Cnm1 是从 n 1 个元素中取出 m 个元素的组合数,另一方面,设a 是
n 1个相异元素中的某一特定元素,对 a 而言,这些组合可以分为两类:一类
组合 含有 a
,其组合数为 Cnm-1
,另一类不含a
,其组合数为
Cnm

故有∴
C
m n 1

C
m n
+
C
m 1 n

例题讲解
例 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4 张,从中任取3张,要求这3张卡片不能是同一颜色,且红色卡片至多 1张,则不同取法共有多少种?
解 从 16 张卡片中任取 3 张共有C136 种取法,其中 3 张颜色相同的取法有
4C43 种,3 张中有 2 张是红色的有 C42C112 种取法,故共有 C136 - 4C43 C42C112 472 种 取法。
初等数学研究
相异元素的无重复组合
相异元素的无重复组合
定义 从 n 个不同元素中,不重复地任取 m m n 个元素并成一组,叫做
从 n 个不同元素中做从 n 个不同元素中取出 m 个元素的组.合.数.。
用符号 Cnm 表示。
定理 1
C
m n
Anm m!
n! m!(n m)!
通常 规定Cn0 1
相异元素的无重复组合
定理2 组合数的性质: (1) Cnm Cnnm ;
(2) Cnm Cnm1 Cnm1
相异元素的无重复组合
上述性质可以这样解释:
(1)从 n 个相应元素中取出一个 m 个元素组合的同时,必留下一个n m
个元素的组合,二者一一对应,故有Cnm Cnnm ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* 13
1.3:排列与组合
1、排列的定义:设A={a1,a2,…,an}是n个不 同的元素的集合,任取A中r个元素按顺序排成一 列,称为从A中取r个的一个排列,r满足0≤r≤n。
(1) (2) (3) (…) (r)
从n个不同的球中取一个球放在第一个盒子中,
从余下的n-1个球中取一个球放在第二个盒子中,
组合数学的应用范畴
第一章:排列与组合 第二章:递推关系与母函数 第三章:容斥原理与鸽巢原理 第四章:Burnside引理与Polya定理 第五章:区组设计 第六章:线性规划 第七章:编码简介 第八章:组合算法简介
1
第一章:排列与组合
1.1 基本计数法则 1.2 一一对应: 1.3 排列与组合 1.4 圆周排列 1.5 排列的生成算法 1.6 允许重复的组合与不相邻的组 合 1.7 组合意义的解释 1.8 应用举例
公式:从n中取r的组合数记作C(n,r) 从n中取r的排列数是
二P(者n,之r)间。的关系:
C(n,r)=P(n,r)/r!
=nn个不同的元素放进r个 不同的盒子的放法. 组合可以看作n个不同的元素放进r个 相同的盒子的放法. 公式1:C(n,r)=C(n,n-r)
5
1.1基本计数法则 例1.2:用乘法法则解释8卦及64卦。
解:1、太极生两仪
2、两仪生四象 00,01,10,11; 3、四象生八卦 000,001,010, 011
100,101,110, 111
6
1.1基本计数法则 例1.3:长度为n的0,1符号串的数目? 例1.4 人类DNA链的长度为2.1×1010,链上 每一位由T,C,A,G四种化合物组成,求人类DNA链 的可组成数目。
20种不同的花取3种排列的排列数为: P(20,3)=20!/17!=20*19*18=6840
根据乘法法则,共有图案数为:
6840*20=136800
18
1.3:排列与组合
1.8 随机地选择n个人,求n个人至少有两人生 日相同的概率(不考虑润年)
解: n个人生日不同的方案数是: 365*364*…*(365-n+1)=P(365,n) n个人生日的总方案数是: 365n 至少有两人生日相同的概率: 1-P(365,n)/365n
(1,2),(4,3),(3,2)
这棵树对应序列(2,3,2)
一个棵对应序列B=b1b2b3…bn-2而且是唯一的
12
1.2 一一对应
1
2
3
树的顶点集合为12345 这棵树对应序列(2,3,2)
4
5
任给一个序列B{b1,b2,b3,…,bn-2} 1、从A找到最小的不属于B的元素,设为a1,与b1连 接,从A中去掉a1,从B中去掉b1. 2、重复以上过程只到B为空,A中剩余两个 3、连接剩余的两个顶点。
…………
对应着长度为22的字符串,每一位都可以取0或1; 乘法:2^22 自变量数为n个时:2^2n
* 8
1.2 一一对应
1、从n个数中找出最大值问题 2、n个人参加单淘汰赛,最后产生冠军的 过程。
9
1.2 一一对应
例1.6:求n2个人站成一排和站成n排(方阵) 的方案数,并比较两种方案数的大小?
解:9个人站成一排的方案数是9!,
设a1a2a3a4a5a6a7a8a9是9个人的一排, 可构成一个方阵 给定一个方阵
a1a2a3
b1b2b3
a4a5a6
b4b5b6
a7a8a9
b7b8b9
也唯一确定一排b1b2b3b4b5b6b7b8b9
因此这两种站位方式的方案数一样多,都是9!
10
1.2 一一对应 例1.6:求n2个人站成一排和站成n排(方阵) 的方案数,并比较两种方案数的大小? 9个人站成方阵的方案数为: C(9,3)3!C(6,3)3!C(3,3)3!
16
1.3:排列与组合
从5个元素中取3个进行排列的算法: int a[5]={1,2,3,4,5},b[3]; for(i=0;i<5;i++)
{b[0]=a[i]; for(j=0;j<5;j++) {if (j==i) j++; else b[1]=a[j]; for(k=0;k<5;k++) {if(k==i||k==j) k++; else b[2]=a[k]; 打印b[]}}}
…………………………………
从余下的n-(r-1)个球中取一个放在第r个盒子中。
根据乘法法则:
P(n,r)=n(n-1)…(n-r+1)=n!/(n-r)!
14
1.3:排列与组合
全排列:P(n,n)=n(n-1)…2×1=n! 2、组合的定义:当从n个不同元素中取出r个 而不考虑它的顺序时,称为从n中取r个的组合, 其数目记为C(n,r)。
17
1.3:排列与组合
例1.7:由5种颜色的星状物,20种不同的花共25 个元素中任取5个排成如下图案:两边是星状物,中 间是3朵花,问共有多少种这样的图案?
★ ★
解1:5×20×19×18×4=136800
解2:5种颜色的星状物取两个排列的排列数为 P(5,2)=5!/3!=5*4=20
2
1.1基本计数法则
1、加法法则: 如果具有性质A的事件有m个,性质B的事件有n 个,则具有性质A或B的事件有m+n个。 A和B是性质无关的两个事件。
3
1.1基本计数法则
2、乘法法则: 若具有性质A的事件有m个,具有性质B的事件 有n个,则具有性质A及B的事件有mn个
4
1.1基本计数法则
例1.1 若从合肥到南京有2条路可走,从南京 到上海有3条路可走,从上海到杭州有2条路可 走,问从合肥经南京、上海到杭州有多少路可 走?
7
1.1基本计数法则
例1.5:求布尔函数f(x1,x2,…,xn)的数目 以n=2为例: f(x1,x2)有四种方式: f(0,0),f(0,1),f(1,0),f(1,1)。 1、f(0,0)=0,f(0,1)=0,f(1,0)=0,f(1,1)=0。 2、f(0,0)=0,f(0,1)=0,f(1,0)=0,f(1,1)=1。
9! 3! 6! 3!3! 9! 6!3! 3!3!
11
1.2 一一对应
定理1.1 n个有标号1,2,…,n的顶点的树 的数目等于nn-2。(n>=2)
设一棵树的顶点集为A
1
2
3
5
1、从中找到编号最小的 叶子结点,去掉该叶子结点a1 4 及其邻接边(a1,b1)。
2、重复以上过程。只到 剩一条边为止。
相关文档
最新文档