2016年北京市东城区高三二模理科数学试卷含答案
2016年北京市东城区高考数学二模试卷(理科)(解析版)

2016年北京市东城区高考数学二模试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)集合A={1,2,3,4},B={x∈R|x≤3},则A∩B=()A.{1,2,3,4}B.{1,2,3}C.{2,3}D.{1,4} 2.(5分)若命题p:∃x∈R,sin x≥1,则¬p为()A.∀x∈R,sin x≤1B.∀x∈R,sin x<1C.∃x∈R,sin x<1D.∃x∈R,sin x≤13.(5分)如图,△ABC为正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,则多面体ABC﹣A1B1C1在平面A1ABB1上的投影的面积为()A.B.C.9D.4.(5分)若向量=(1,0),=(2,1),=(x,1)满足条件3﹣与共线,则x的值()A.1B.﹣3C.﹣2D.﹣15.(5分)成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{b n}中的b3、b4、b5,则数列{b n}的通项公式为()A.b n=2n﹣1B.b n=3n﹣1C.b n=2n﹣2D.b n=3n﹣2 6.(5分)一名顾客计划到商场购物,他有三张优惠券,每张优惠券只能购买一件商品.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券1:若标价超过50元,则付款时减免标价的10%;优惠券2:若标价超过100元,则付款时减免20元;优惠券3:若标价超过100元,则超过100元的部分减免18%.若顾客购买某商品后,使用优惠券1比优惠券2、优惠券3减免的都多,则他购买的商品的标价可能为()A.179元B.199元C.219元D.239元7.(5分)已知函数f(x)=,则f(2+log23)的值为()A.24B.16C.12D.88.(5分)集合A={(x,y)|x,y∈R},若x,y∈A,已知x=(x1,y1),y=(x2,y2),定义集合A中元素间的运算x*y,称为“*”运算,此运算满足以下运算规律:①任意x,y∈A有x*y=y*x②任意x,y,z∈A有(x+y)*z=x*z+y*z(其中x+y=(x1+x2,y1+y2))③任意x,y∈A,a∈R有(ax)*y=a(x*y)④任意x∈A有x*x≥0,且x*x=0成立的充分必要条件是x=(0,0)为向量,如果x=(x1,y1),y=(x2,y2),那么下列运算属于“*”正确运算的是()A.x*y=x1y1+2x2y2B.x*y=x1y1﹣x2y2C.x*y=x1y1+x2y2+1D.x*y=2x1x2+y1y2二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)设i是虚数单位,复数所对应的点在第一象限,则实数a的取值范围为.10.(5分)设变量x,y满足约束条件,则目标函数z=2x+y的最大值为.11.(5分)(坐标系与参数方程选做题)已知直线(t为参数)与直线l2:2x﹣4y=5相交于点B,又点A(1,2),则|AB|=.12.(5分)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为;这20名工人中一天生产该产品数量在[55,75)的人数是.13.(5分)若点O和点F2(﹣,0)分别为双曲线=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为.14.(5分)已知函数f n(x)=(n∈N*),关于此函数的说法正确的序号是①f n(x)(n∈N*)为周期函数;②f n(x)(n∈N*)有对称轴;③(,0)为f n(x)(n∈N*)的对称中心:④|f n(x)|≤n(n∈N*).三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(13分)已知函数f(x)=2sin(ωx)•cos(ωx)+2cos2(ωx)(ω>0),且函数f(x)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)在区间上的最大值和最小值.16.(14分)如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F 分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′﹣ABFE(Ⅰ)求证:AB⊥平面AEC′;(Ⅱ)当四棱锥C′﹣ABFE体积取最大值时,(i)若G为BC′中点,求异面直线GF与AC′所成角;(ii)在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.17.(13分)在2015﹣2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.根据统计表的信息:(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.18.(14分)已知f(x)=2ln(x+2)﹣(x+1)2,g(x)=k(x+1).(Ⅰ)求f(x)的单调区间;(Ⅱ)当k=2时,求证:对于∀x>﹣1,f(x)<g(x)恒成立;(Ⅲ)若存在x0>﹣1,使得当x∈(﹣1,x0)时,恒有f(x)>g(x)成立,试求k的取值范围.19.(13分)已知椭圆C:=1(a>b>0)过点(,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设M(x,y)是椭圆C上的动点,P(p,0)是x轴上的定点,求|MP|的最小值及取最小值时点M的坐标.20.(13分)数列{a n}中,定义:d n=a n+2+a n﹣2a n+1(n≥1),a1=1.(Ⅰ)若d n=a n,a2=2,求a n;(Ⅱ)若a2=﹣2,d n≥1,求证此数列满足a n≥﹣5(n∈N*);(Ⅲ)若|d n|=1,a2=1且数列{a n}的周期为4,即a n+4=a n(n≥1),写出所有符合条件的{d n}.2016年北京市东城区高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)集合A={1,2,3,4},B={x∈R|x≤3},则A∩B=()A.{1,2,3,4}B.{1,2,3}C.{2,3}D.{1,4}【考点】1E:交集及其运算.【解答】解:∵A={1,2,3,4},B={x∈R|x≤3},∴A∩B={1,2,3},故选:B.2.(5分)若命题p:∃x∈R,sin x≥1,则¬p为()A.∀x∈R,sin x≤1B.∀x∈R,sin x<1C.∃x∈R,sin x<1D.∃x∈R,sin x≤1【考点】2J:命题的否定.【解答】解:∵命题p:∃x∈R,sin x≥1,则﹣p为:∀x∈R,sin x<1,故选:B.3.(5分)如图,△ABC为正三角形,AA1∥BB1∥CC1,CC1⊥底面△ABC,若BB1=2AA1=2,AB=CC1=3AA1,则多面体ABC﹣A1B1C1在平面A1ABB1上的投影的面积为()A.B.C.9D.【考点】LA:平行投影及平行投影作图法.【解答】解:根据题意,多面体ABC﹣A1B1C1在平面A1ABB1上的投影是几何体的正视图,如图所示;所以该投影面的面积为3×3﹣×2×1.5﹣×1×1.5=.故选:A.4.(5分)若向量=(1,0),=(2,1),=(x,1)满足条件3﹣与共线,则x的值()A.1B.﹣3C.﹣2D.﹣1【考点】96:平行向量(共线).【解答】解:∵向量=(1,0),=(2,1),=(x,1),∴3﹣=(1,﹣1),又3﹣与共线,∴x•(﹣1)﹣1×1=0,解得x=﹣1.故选:D.5.(5分)成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{b n}中的b3、b4、b5,则数列{b n}的通项公式为()A.b n=2n﹣1B.b n=3n﹣1C.b n=2n﹣2D.b n=3n﹣2【考点】8M:等差数列与等比数列的综合.【解答】解:设成等差数列的三个正数为a﹣d,a,a+d,即有3a=6,解得a=2,由题意可得2﹣d+3,2+6,2+d+13成等比数列,即为5﹣d,8,15+d成等比数列,即有(5﹣d)(15+d)=64,解得d=1(﹣11舍去),即有4,8,16成等比数列,可得公比为2,则数列{b n}的通项公式为b n=b3•2n﹣3=4•2n﹣3=2n﹣1.故选:A.6.(5分)一名顾客计划到商场购物,他有三张优惠券,每张优惠券只能购买一件商品.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券1:若标价超过50元,则付款时减免标价的10%;优惠券2:若标价超过100元,则付款时减免20元;优惠券3:若标价超过100元,则超过100元的部分减免18%.若顾客购买某商品后,使用优惠券1比优惠券2、优惠券3减免的都多,则他购买的商品的标价可能为()A.179元B.199元C.219元D.239元【考点】5C:根据实际问题选择函数类型.【解答】解:由题意,优惠劵1比优惠劵2减免的多,所以他购买的商品的标价超过200元.他购买的商品的标价为219元,优惠劵1减免21.9元;优惠劵2减免20元;优惠劵3减免21.42元;标价为239元,优惠劵1减免23.9元;优惠劵2减免20元;优惠劵3减免25.02元;故选:C.7.(5分)已知函数f(x)=,则f(2+log23)的值为()A.24B.16C.12D.8【考点】3P:抽象函数及其应用.【解答】解:由f(x)=,由2+log23<4,可得f(2+log23)=f(3+log23),由3+log23>4,可得f(3+log23)==23•2log23=8•3=24.故选:A.8.(5分)集合A={(x,y)|x,y∈R},若x,y∈A,已知x=(x1,y1),y=(x2,y2),定义集合A中元素间的运算x*y,称为“*”运算,此运算满足以下运算规律:①任意x,y∈A有x*y=y*x②任意x,y,z∈A有(x+y)*z=x*z+y*z(其中x+y=(x1+x2,y1+y2))③任意x,y∈A,a∈R有(ax)*y=a(x*y)④任意x∈A有x*x≥0,且x*x=0成立的充分必要条件是x=(0,0)为向量,如果x=(x1,y1),y=(x2,y2),那么下列运算属于“*”正确运算的是()A.x*y=x1y1+2x2y2B.x*y=x1y1﹣x2y2C.x*y=x1y1+x2y2+1D.x*y=2x1x2+y1y2【考点】2K:命题的真假判断与应用.【解答】解:由题意,若x=(2,﹣2),y=(1,1),A,x*y=﹣2,y*x=﹣7,不满足①;B,x*y=﹣5,y*x=5,不满足①;C,x*x=﹣7,不满足④;D中运算均适合.故选:D.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)设i是虚数单位,复数所对应的点在第一象限,则实数a的取值范围为..【考点】A4:复数的代数表示法及其几何意义.【解答】解:∵复数==+i又∵z在复平面内所对应的点位于第一象限,∴>0且>0解得.故答案为:.10.(5分)设变量x,y满足约束条件,则目标函数z=2x+y的最大值为5.【考点】7C:简单线性规划.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(3,﹣1),由z=2x+y得:y=﹣2x+z,平移直线y=﹣2x,结合图象直线过A(3,﹣1)时,z最大,z的最大值是5,故答案为:5.11.(5分)(坐标系与参数方程选做题)已知直线(t为参数)与直线l2:2x﹣4y=5相交于点B,又点A(1,2),则|AB|=.【考点】IR:两点间的距离公式;QH:参数方程化成普通方程.【解答】解:由,得4x+3y﹣10=0,由解得,即B(,0),所以|AB|==,故答案为:.12.(5分)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为0.4;这20名工人中一天生产该产品数量在[55,75)的人数是13.【考点】B8:频率分布直方图.【解答】解:由直方图可知:生产该产品数量在[55,65)的频率=1﹣(0.005+0.0100+0.020+0.025)×10=0.4∴生产该产品数量在[55,75)的人数=20×(0.04+0.025)×10=13,故答案为:0.4 1313.(5分)若点O和点F2(﹣,0)分别为双曲线=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为(1,+].【考点】KC:双曲线的性质.【解答】解:∵点O和点F2(﹣,0)分别为双曲线=1(a>0)的中心和左焦点,∴c=,则c2=a2+1=2,则a2=1,即双曲线方程为x2﹣y2=1,设P(x,y),则x≥1,则====1++•()2,则x≥1,∴1++•()2>1,又1++•()2=•(+)2,∵x≥1,∴0<≤1,即当=1时,1++•()2=•(+)2取得最大值为•(1+)2=+,故的取值范围为(1,+],故答案为:(1,+],14.(5分)已知函数f n(x)=(n∈N*),关于此函数的说法正确的序号是①②④①f n(x)(n∈N*)为周期函数;②f n(x)(n∈N*)有对称轴;③(,0)为f n(x)(n∈N*)的对称中心:④|f n(x)|≤n(n∈N*).【考点】2K:命题的真假判断与应用.【解答】解:∵函数f n(x)=(n∈N*),∴①f n(x+2π)=f n(x)(n∈N*),f n(x)为周期函数,正确;②f n(﹣x)==,f n(x)=(n∈N*)是偶函数,∴f n(x)=(n∈N*)有对称轴,正确;③n为偶数时,f n()==0,∴(,0)为f n(x)(n∈N*)的对称中心,不正确;④∵|sin nx|≤|n sin x|,∴|f n(x)|≤n(n∈N*),正确.故答案为:①②④.三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(13分)已知函数f(x)=2sin(ωx)•cos(ωx)+2cos2(ωx)(ω>0),且函数f(x)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)在区间上的最大值和最小值.【考点】GL:三角函数中的恒等变换应用;HW:三角函数的最值.【解答】解:(Ⅰ)因为函数f(x)=2sin(ωx)•cos(ωx)+2cos2(ωx),所以,又f(x)的最小正周期为,所以=,即=2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣6分(Ⅱ)由(Ⅰ)可知,因为,所以.由正弦函数的性质可知,当,即时,函数f(x)取得最大值,最大值为f()=3;当时,即时,函数f(x)取得最小值,最小值为f()=0.﹣﹣﹣﹣﹣﹣13分16.(14分)如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F 分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′﹣ABFE(Ⅰ)求证:AB⊥平面AEC′;(Ⅱ)当四棱锥C′﹣ABFE体积取最大值时,(i)若G为BC′中点,求异面直线GF与AC′所成角;(ii)在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【解答】证明:(Ⅰ)因为△ABC是等腰直角三角形,∠CAB=90°,E,F分别为AC,BC的中点,所以EF⊥AE,EF⊥C'E.又因为AE∩C'E=E,所以EF⊥平面AEC'.由于EF∥AB,所以有AB⊥平面AEC'.4分解:(Ⅱ)(i)取AC'中点D,连接DE,EF,FG,GD,由于GD为△ABC'中位线,以及EF为△ABC中位线,所以四边形DEFG为平行四边形.直线GF与AC'所成角就是DE与AC'所成角.所以四棱锥C'﹣ABFE体积取最大值时,C'E垂直于底面ABFE.此时△AEC'为等腰直角三角形,ED为中线,所以直线ED⊥AC'.又因为ED∥GF,所以直线GF与AC'所成角为.10分(ii)因为四棱锥C'﹣ABFE体积取最大值,分别以EA、EF、EC'所在直线为x轴、y轴、z轴,建立空间直角坐标系如图,则C'(0,0,a),B(a,2a,0),F(0,a,0),C'B(a,2a,﹣a),C'F(0,a,﹣a).设平面C'BF的一个法向量为=(x,y,z),由得,取y=1,得=(﹣1,1,1).平面C'AE的一个法向量=(0,1,0).所以cos <>==,故平面C'AE与平面C'BF 的平面角的夹角的余弦值为.14分17.(13分)在2015﹣2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.根据统计表的信息:(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【解答】解:(Ⅰ)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场,分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是.在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10,所以在随机选择的一场比赛中,乙球员的投篮命中率超过0.5的概率是.3分(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件B1,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件B2.则P(A)=P(B1)+P(B2)==.7分(Ⅲ)X的可能取值为0,1,2,3.P(X=0)==,P(X=1)=,P(X=2)==,P(X=3)==,X的分布列如下表:∵X~B(3,),∴EX=3×=.18.(14分)已知f(x)=2ln(x+2)﹣(x+1)2,g(x)=k(x+1).(Ⅰ)求f(x)的单调区间;(Ⅱ)当k=2时,求证:对于∀x>﹣1,f(x)<g(x)恒成立;(Ⅲ)若存在x0>﹣1,使得当x∈(﹣1,x0)时,恒有f(x)>g(x)成立,试求k的取值范围.【考点】3R:函数恒成立问题;6B:利用导数研究函数的单调性.【解答】解:(Ⅰ),当f′(x)>0 时,所以x2+3x+1<0,解得﹣2<x,当f′(x)<0时,解得,所以f(x)单调增区间为,递减区间是(,+∞);(Ⅱ)当k=2时,g(x)=2(x+1).令H(x)=f(x)﹣g(x)=2ln(x+2)﹣(x+1)2﹣2(x+1).H′(x)=,令H′(x)=0,即﹣2x2﹣8x﹣6=0,解得x=﹣1或x=﹣3(舍).∴当x>﹣1时,H′(x)<0,H(x)在(﹣1,+∞)上单调递减.∴H max(x)=H(﹣1)=0,∴对于∀x>﹣1,H(x)<0,即f(x)<g(x).(Ⅲ)由(II)知,当k=2时,f(x)<g(x)恒成立,即对于“x>﹣1,2 ln(x+2)﹣(x+1)2<2 (x+1),不存在满足条件的x0;当k>2时,对于“x>﹣1,x+1>0,此时2 (x+1)<k(x+1).∴2 ln(x+2)﹣(x+1)2<2 (x+1)<k(x+1),即f(x)<g(x)恒成立,不存在满足条件的x0;令h(x)=f(x)﹣g(x)=2ln(x+2)﹣(x+1)2﹣k(x+1),h′(x)=,当k<2时,令t(x)=﹣2x2﹣(k+6)x﹣(2k+2),可知t(x)与h′(x)符号相同,当x∈(x0,+∞)时,t(x)<0,h′(x)<0,h(x)单调递减,当x∈(﹣1,x0)时,h(x)>h(﹣1)=0,即f(x)﹣g(x)>0恒成立,综上,k的取值范围为(﹣∞,2).19.(13分)已知椭圆C:=1(a>b>0)过点(,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设M(x,y)是椭圆C上的动点,P(p,0)是x轴上的定点,求|MP|的最小值及取最小值时点M的坐标.【考点】K3:椭圆的标准方程;KL:直线与椭圆的综合.【解答】解:(Ⅰ)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以b=c,a2=2b2,则椭圆C的方程为.又因为椭圆C:过点A(,1),所以,故a=2,b=.所以椭圆的标准方程为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣4分(Ⅱ)|MP|2=(x﹣p)2+y2.因为M(x,y)是椭圆C上的动点,所以,故.所以.因为M(x,y)是椭圆C上的动点,所以|x|≤2.(1)若|2p|≤2,即|p|≤1,则当x=2p时,|MP|取最小值,此时M.(2)若p>1,则当x=2 时,|MP|取最小值|p﹣2|,此时M(2,0).(3)若p<﹣1,则当x=﹣2 时,|MP|取最小值|p+2|,此时M(﹣2,0).﹣﹣﹣﹣﹣﹣﹣13分20.(13分)数列{a n}中,定义:d n=a n+2+a n﹣2a n+1(n≥1),a1=1.(Ⅰ)若d n=a n,a2=2,求a n;(Ⅱ)若a2=﹣2,d n≥1,求证此数列满足a n≥﹣5(n∈N*);(Ⅲ)若|d n|=1,a2=1且数列{a n}的周期为4,即a n+4=a n(n≥1),写出所有符合条件的{d n}.【考点】8H:数列递推式.【解答】解:(Ⅰ)∵a n=d n=a n+2+a n﹣2a n+1(n≥1),∴a n+2﹣2a n+1=0(n≥1);又∵a1=1,a2=2,∴数列是以1为首项,2为公比的等比数列,故数列{a n}的通项公式为;(Ⅱ)证明:∵d n≥1,∴a n+2+a n﹣2a n+1≥1,令c n=a n+1﹣a n,则c n+1﹣c n≥1,叠加得,c n≥n﹣4;即a n+1﹣a n≥n﹣4,叠加可得,≥﹣5.(Ⅲ)由于|d n|=1,a1=1,a2=1,若d1=1,则可得a3=2,若d1=﹣1可得a3=0;同理,若d2=1可得a4=4或a4=2,若d2=﹣1可得a4=0或a4=﹣2;具体如下表所示,1,1,;所以{a n}可以为1,1,2,2;1,1,2,2;1,1,2,2;…或1,1,0,0;1,1,0,0;1,1,0,0;…此时相应的{d n}为1,﹣1,﹣1,1,1,﹣1,﹣1,1,…或﹣1,1,1,﹣1,﹣1,1,1,﹣1,….。
北京市东城区2016届高三第二学期综合练习一数学理试题WORD版,含解析

东城区2021-2016 学年度第二学期高三综合练习(一)数学(理科)本试卷共5 页,共150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷 上作答无效.考试终止后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40 分)一、选择题(本大题共8 小题,每题5 分,共40 分.在每题列出的四个选项中,选出 符合题目要求的一项)1.已知复数(1)i ai +为纯虚数,那么实数a 的值为A .-1B .0C .1D .22.集合{}|A x x a =≤,{}2|50B x x x =-<,若AB B =,那么a 的取值范围是 A .a ≥5 B .a ≥4C .a < 5D .a <43.某单位共有职工150 名,某中高级职称45 人,中级职称90 人,低级职称15 人,现采纳 分层抽样方式从中抽取容量为30 的样本,那么各职称人数别离为A .9,18,3B .10,15,5C .10,17,3D .9,16,54.执行如下图的程序框图,输出的S 值为A .12B .1C .2D .45.在极坐标系中,直线sin cos 1ρθρθ-=被曲线ρ=1截得的线段长为A .12B .22C .1D .26.一个几何体的三视图如下图,那么该几何体的最长棱长为A .2B .22C .3D.10 7.已知三点P (5,2),F 1(-6,0),F 2 (6,0 ),那么以F 1,F 2 为核心且过点P 的椭圆的短轴长为A .3B .6C .9D .128.已知e 1,e 2为平面上的单位向量, e 1与e 2的起点均为坐标原点O ,e 1与e 2的夹角为3π, 平面区域D 由所有知足12OP e e λμ=+的点P 组成,其中100λμλμ+≤⎧⎪≥⎨⎪≥⎩,那么平面区域D 的面积为A .12B .3C .32D .34 第II 卷(非选择题共110 分)二、填空题(本大题共6 小题,每题5 分,共30 分)9.在51(2)4x x+的展开式中,x 3项的系数为 (用数字作答) 10.已知等比数列{}n a 中,2342,32a a a ==,那么a 8的值为 .11.如图,圆O 的半径为1, A , B ,C 是圆周上的三点,过点A 作圆O 的切线与OC 的 延长线交于点P .假设CP =AC ,那么∠COA = ; AP = .12.假设sin ()4πα-=35,且(0,)4πα∈,那么sin 2α的值为 . 13.某货运员拟输送甲、乙两种货物,每件货物的体积、重量、可获利润和运输限制如 下表:在最合理的安排下,取得的最大利润的值为 .14.已知函数 f (x ) =|ln x |,关于x 的不等式f (x ) -f (x 0 )≥c (x -x 0)的解集为(0,+∞),c 为 常数.当x 0=1时,c 的取值范围是 ;当x 0=12时, c 的值是 . 三、解答题(本大题共6 小题,共80 分.解许诺写出文字说明,演算步骤或证明进程)15.(本小题共13 分)在△ABC 中,BC =22,AC =2,且cos( A+B) =-22。
最新北京市东城区届高三5月综合练习理科数学试题(二)含答案.doc

北京市东城区2015-2016学年度第二学期高三综合练习(二)数学参考答案及评分标准 (理科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.B2.C3.A4.D5.A6.C7.A8.D第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9. 122a -<< 10. 5 11. 52 12. 0.4;13. 13. 31,22⎛⎤+ ⎥⎝⎦14. ①②④ 三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)因为()3sin cos 12sin()+16f x x x x πωωω=++=+, 又()f x 的最小正周期为π,所以π2πω=,即ω=2. --------------------------------------------------------------------6分 (Ⅱ)由(Ⅰ)可知()2sin(2)+16f x x π=+, 因为02x π≤≤, 所以72666x πππ≤+≤. 由正弦函数的性质可知,当262x ππ+=,即6x π=时,函数()f x 取得最大值,最大值为f (6π)=3; 当7266x ππ+=时,即2=x π时,函数()f x 取得最小值,最小值为f (2π)=0. ------13分16.(本小题共14分)证明:(Ⅰ)因为ABC ∆是等腰直角三角形90CAB ∠=o ,E F ,分别为AC BC ,的中点, GD F EC 'CB A所以EF AE ⊥,EF C E '⊥.又因为AE C E E '⋂=,所以EF AEC '⊥平面.由于EF AB P ,所以有AB AEC '⊥平面. -------------------------4分 解:(Ⅱ)(i)取AC '中点D ,连接,,,DE EF FG GD ,由于GD 为ABC '∆中位线,以及EF 为ABC ∆中位线,所以四边形DEFG 为平行四边形.直线GF 与AC '所成角就是DE 与AC '所成角.所以四棱锥C ABFE '-体积取最大值时,C E '垂直于底面ABFE .此时AEC '∆为等腰直角三角形,ED 为中线,所以直线ED AC '⊥.又因为ED GF P ,所以直线GF 与AC '所成角为π2. -------------------------------------------------------10分 (ii) 因为四棱锥C ABFE '-体积取最大值,分别以EA EF EC '、、所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图,则(0,0,)C a ',(,2,0)B a a ,(0,,0)F a ,(,2,)C B a a a '-,(0,,)C F a a '-.设平面C B F '的一个法向量为n =(x,y,z),由0,0C B C F ⎧⎪⎨⎪⎩'⋅='⋅=n n uuu r uuu r 得⎩⎨⎧=-=-+002az ay az ay ax , 取y =1,得x =-1,z =1.由此得到n =(-1,1,1). zy x F E C 'CB A同理,可求得平面C AE '的一个法向量m =(0,1,0). 所以 13cos 33⋅==n m .故平面C'AE 与平面C'BF 的平面角的夹角的余弦值为33.--------------------------------------14分17.(本小题共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场, 分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是12. 在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10, 所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是25. ---------------------------------------3分(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A ,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件1B ,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件2B .则1213121()()()25252P A P B P B =+=⨯+⨯=.------------------------------------------------7分 (Ⅲ)X 的可能取值为0,1,2,3.00332327(0)()()55125P X C ===; 11232354(1)()()55125P X C ===; 22132336(2)()()55125P X C ===; 33328(3)()5125P X C ===; X 的分布列如下表: X0 1 2 3 P27125 54125 36125 812526355EX np ==⨯=. --------------------------------------------------------13分 18.(本小题共14分)解:(Ⅰ)222(31)()2(1)(2)22x x f x x x x x -++'=-+=>-++ , 当()0f x '>时,所以 2310x x ++<.解得 3522x -+-<<. 当()0f x '>时, 解得 352x -+>. 所以 ()f x 单调增区间为35(2,)2-+-,单调减区间为35(,)2-++∞.------------4分 (Ⅱ) 设2()()()2ln(2)(1)(1)(1)h x f x g x x x k x x =-=+-+-+>-, 当2k =时,由题意,当(1,)x ∈-+∞时,()0h x <恒成立.22(31)2(3)(1)()222x x x x h x x x -++-++'=-=++, ∴ 当1x >-时,()0h x '<恒成立,()h x 单调递减. 又(1)0h -=,∴ 当(1,)x ∈-+∞时,()(1)0h x h <-=恒成立,即()()0f x g x -<. ∴ 对于1x ∀>-,()()f x g x <恒成立. ---------------------------------8分(Ⅲ) 因为 222(31)2(6)22()22x x x k x k h x k x x -++++++'=-=-++.由(II)知,当k = 2时,f (x) < g (x)恒成立, 即对于∀x > –1,2 ln (x + 2) – (x + 1)2 < 2 (x + 1),不存在满足条件的x 0;当k > 2时,对于∀x > –1,x + 1 > 0,此时2 (x + 1) < k (x + 1).∴ 2 ln (x + 2) – (x + 1)2 < 2 (x + 1) < k (x + 1),即f (x) < g (x)恒成立, 不存在满足条件的x 0;当k < 2时,令t (x) = –2x 2 – (k + 6)x – (2k + 2),可知t (x)与h ' (x)符号相同,当x ∈ (x 0 , +∞)时,t (x) < 0,h ' (x) < 0,h (x)单调递减.∴ 当x ∈ (–1 , x 0)时,h (x) > h (–1) = 0,即f (x) – g (x) > 0恒成立.综上,k 的取值范围为(–∞ , 2). -------------------------------------------------------14分19.(本小题共13分)解:(Ⅰ)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以 b c =, 222b a =, 则椭圆C 的方程为122222=+b y b x . 又因为椭圆C:过点A(2,1),所以112222=+bb ,故a=2,b=.2 所以 椭圆的的标准方程为12422=+y x . --------------------------------------------------------4分 (Ⅱ)222)(y p x MP +-=.因为 M(x,y)是椭圆C 上的动点,所以12422=+y x , 故 22)41(2222x x y -=-=. 所以 222222211()222(2) 2.222x MP x p x px p x p p =-+-=-++=--+ 因为M(x,y)是椭圆C 上的动点,所以 2≤x .(1) 若22≤p 即1≤p ,则当2x p =时MP 取最小值22p -,此时M 2(2,22)p p ±-.(2)若1p >,则当2x =时,MP 取最小值2-p ,此时M )0,2(.(3)若1p <-,则当2x =-时,MP 取最小值2+p ,此时M )0,2(-. -------13分20.(本小题共13分)(Ⅰ)由212(1)n n n n d a a a n ++=+-≥以及n n d a =可得:2120(1)n n a a n ++-=≥所以从第二项起为等比数列. 经过验证{}n a 为等比数列12n n a -=. -------------------2分(Ⅱ)由于1n d ≥所以有2121n n n a a a +++-≥.令1n n n c a a +=-则有11n n c c +-≥叠加得:4n c n ≥-所以有14n n a a n +-≥-,叠加可得:29102n n n a -+≥, 所以最小值为-5. --------------------------------------------------------6分(Ⅲ)由于1n d =,11a =, 21a =若11d =可得32a =,若11d =-可得30a =同理,若21d =可得44a =或42a =,若21d =-可得40a =或42a =-具体如下表所示7452321111010325⎧⎧⎧⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎪⎩⎨⎧⎧⎪⎨⎪⎪-⎪⎩⎪⎨⎪-⎧⎪-⎪⎨⎪-⎩⎪⎩⎩所以{}n a 可以为112211221122L L或110011001100L L此时相应的{}n d 为 11111111----L L或11111111----L L------------------------------------------------------13分。
北京市东城区20162017学年度第二学期高三综合练习

北京市东城区学年度第二学期高三综合练习(二)数学(理科)第一部分(选择题 共分)一、选择题共小题,每小题分,共分。
在每小题列出的四个选项中,选出符合题目要求的一项。
()已知集合2{|40}A x x =-<,则A =R ð(){|2x x ?或2}x ³ (){|2x x <-或2}x >(){|22}x x -<< (){|22}x x -#()下列函数中为奇函数的是()cos y x x =+ ()sin y x x =+ ()y x =()||e x y -=()若,x y 满足10,00,x y x y y ì-+?ïï+?íï³ïî,则2x y +的最大值为()1- ()0 ()12()2 ()设,a b 是非零向量,则“,a b 共线”是“||||||+=+a b a b ”的()充分而不必要条件 ()必要而不充分条件()充分必要条件 ()既不充分也不必要条件()已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6=S ()2716 ()278 ()634 () 632APAPPAxyl2O否 是1v v x =?1ii =- 结束输出v1i n =-0i ³开始输入 ,,n v x AP()我国南宋时期的数学家秦九韶(约12021261-)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5n =,1v =,2x =,则程序框图计算的是()5432222221+++++ ()5432222225+++++ ()654322222221++++++ ()43222221++++()动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是() () () ()CAB D()据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a L 和123,,,,n b b b b L ,令{|,1,2,,}m m M m a b m n =<=L ,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B p ,现有三种蔬菜,,A B C ,下列说法正确的是()若A B p ,B C p ,则A C p()若A B p ,B C p 同时不成立,则A C p 不成立()A B p ,B A p 可同时不成立()A B p,B A p 可同时成立第二部分(非选择题 共分)二、填空题共小题,每小题分,共分。
2016年北京高三二模解析大题理科

2016年北京高三二模解析大题(理科)1 .(2016年北京市海淀区高三二模理)已知点1122(,),(,)(A x y D x y 其中12)x x <是曲线24(0)y x y =≥上的两点,,A D 两点在x 轴上的射影分别为点,B C ,且||2BC =.(Ⅰ)当点B 的坐标为(1,0)时,求直线AD 的斜率;(Ⅱ)记OAD ∆的面积为1S ,梯形ABCD 的面积为2S ,求证:1214S S <.2 .(2016年北京市西城区高三二模理)已知椭圆C :)0(12222>>=+b a by a x 的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为24. (Ⅰ)求椭圆C 的方程;(Ⅱ)设过点)0)(,0(>m m B 的直线l 与椭圆C 相交于,E F 两点,点B 关于原点的对称点为D ,若点D 总在以线段EF 为直径的圆内,求m 的取值范围.3 .(2016年北京市东城区高三二模理)已知椭圆C :)0(12222>>=+b a by a x 过点(2,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设M ,)x y (是椭圆C 上的动点,P ,0)p (是X 轴上的定点,求MP 的最小值及取最小值时点M 的坐标. 4 .(2016年北京市朝阳区高三二模理)在平面直角坐标系O x y 中,点000(,)(0)P x y y ≠在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x xy y +=.(Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于,A B 两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F三点共线.5 .(2016年北京市丰台区高三二模理)已知椭圆C :22143x y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若椭圆C 与直线y x m =+交于N M ,两点,且=||MN ,求m 的值; (Ⅲ)若点A 11(,)x y 与点22(,)P x y 在椭圆C 上,且点A 在第一象限,点P 在第二象限,点B 与点A 关于原点对称,求证:当22124x x +=时,三角形PAB ∆的面积为定值.6 .(2016年北京市房山区高三二模理)已知椭圆2222:1(0)x y C a b a b+=>>过点(0,1),且长轴长. 过椭圆左焦点F 的直线交椭圆C 于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线AB 垂直于x 轴,判断点O 与以线段AB 为直径的圆的位置关系,并说明理由; (Ⅲ)若点O 在以线段AB 为直径的圆内,求直线AB 的斜率k 的取值范围.7 .(2016年北京市昌平区高三二模理)已知椭圆M :()222210x y a b a b+=>>的焦距为2,点(0,D在椭圆M上,过原点O作直线交椭圆M于A、B两点,且点A不是椭圆M的顶点,过点A作x 轴的垂线,垂足为H,点C是线段AH的中点,直线BC交椭圆M于点P,连接AP.(Ⅰ)求椭圆M的方程及离心率;(Ⅱ)求证:AB AP.答案1. 略2. 1222=+y x(Ⅱ)解:(方法一)当直线l 的斜率不存在时,由题意知l 的方程为0=x , 此时E ,F 为椭圆的上下顶点,且2=EF , 因为点(0,)D m -总在以线段EF 为直径的圆内,且0m >,所以10<<m . 故点B 在椭圆内 当直线l 的斜率存在时,设l 的方程为m kx y +=.由方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(21)4220k x kmx m +++-=, 因为点B 在椭圆内, 所以直线l 与椭圆C 有两个公共点,即0)22)(12(4)4(222>-+-=∆m k km .设),(),,(2211y x F y x E ,则122421km x x k -+=+,21222221m x x k -=+设EF 的中点),(00y x G ,则12222210+-=+=k kmx x x ,12200+=+=k m m kx y , 所以)12,122(22++-k m k km G所以2222)12()122(m k m k km DG ++++-=124124224+++=k k k m , 2122124)(1x x x x k EF -++=12121222222+-++=k m k k因为点D 总在以线段EF 为直径的圆内, 所以2EF DG <对于k ∈R 恒成立. 所以 1212121241242222224+-++<+++k m k k k k k m . 化简,得1323722422242++<++k k m k m k m , 整理,得31222++<k k m , 而2221221()113333k g k k k +==--=++≥(当且仅当0=k 时等号成立).所以312<m , 由0>m ,得330<<m . 综上,m 的取值范围是330<<m (方法二)则122421kmx x k -+=+,21222221m x x k -=+ 因为点D 总在以线段EF 为直径的圆内, 所以0DE DF ⋅<因为11(,)DE x y m =+ ,22(,)DF x y m =+ , 所以2121212()DE DF x x y y m y y m ⋅=++++2121212()()()x x kx m kx m m kx m kx m m =++++++++ 221212(1)2()4k x x km x x m =++++22222224(1)2402121m km k km m k k --=+++<++,整理,得31222++<k k m (以下与方法一相同,略)3. 解:(Ⅰ)椭圆的的标准方程为12422=+y x(Ⅱ)222)(y p x MP +-=.因为 M(x,y)是椭圆C 上的动点,所以12422=+y x , 故 22)41(2222x x y -=-=.所以 222222211()222(2) 2.222x MP x p x px p x p p =-+-=-++=--+ 因为M(x,y)是椭圆C 上的动点, 所以 2≤x .(1) 若22≤p 即1≤p ,则当2x p =时MP 取最小值22p -, 此时M (2,p .(2)若1p >,则当2x =时,MP 取最小值2-p ,此时M )0,2(. (3)若1p <-,则当2x =-时,MP 取最小值2+p ,此时M )0,2(- 4. 解:(Ⅰ)e == (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠.令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x x y y +=得01y y =,则01(0,)B y .所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为点00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=.所以220012x y =+≥.即002x y ≤,则001x y ≥所以00112OAB S OA OB x y ∆==≥当且仅当22002x y =,即001,x y =±=时,OAB ∆(Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-. 因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线. ②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m n y n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++. 又因为200(1,)F P x y =- ,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++ , 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++ 2200000220048(448)4x y x x y y x --+-=⋅+222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P 2F Q.所以点2,,Q P F 三点共线.5. 解:(Ⅰ)因为2,a b ==所以1c =,离心率12e =(Ⅱ)22,3412y x m x y =+⎧⎨+=⎩,消去y 的并化简得22784120x mx m ++-= 2226428(412)16(213)0m m m ∆=--=->,设1122(,),(,)M x y N x y ,则||7MN ==,解得2m =±,且满足0∆>(Ⅲ)直线AB 的方程为11y y x x =,即110y x x y -=. 点22(,)P x y 到直线AB的距离d =,||AB =21211||||2PAB S AB d y x x y ∆===-,因为12120,0,0,0x x y y ><>>,2222112233(4),(4)44y x y x =-=-,12y y ==所以21212112||||||y x x y y x y x -=+21||)x x =2221)x x =+,=所以当22124x x +=时,三角形△PAB的面积为定值(Ⅲ)方法二:设直线AB 的方程为y kx =,即0kx y -=. 220,3412kx y x y -=⎧⎨+=⎩,解得2121234x k =+. 1||2|AB x ==点22(,)P x y )到直线AB的距离d =11221|||||||2PAB S AB d x x kx y ∆===-,因为12120,0,0,0x x y y ><>>,则0k >.所以1x =,2x ==21y x ===22kx y k -=⨯-=122||||PAB S x kx y ∆=-==. 所以三角形△PAB 的面积为定值6. 解:(Ⅰ)椭圆的标准方程为:2212x y +=(Ⅱ)由(Ⅰ)得(1,0)F -, 当直线AB 垂直于x 轴时,直线AB 的方程是1x =- 由22112x x y =-⎧⎪⎨+=⎪⎩得y =所以2AB y ==,又1OF c == 因为2AB OF < 所以点O 在以线段AB 为直径的圆外方法二:点,A B的坐标为((1,22---11cos ((1,1022OA OB OA OB AOB ⋅=∠=-⋅-=-=>所以 cos 0AOB ∠>,即AOB ∠为锐角.所以点O 在以线段AB 为直径的圆外 (Ⅲ)设直线AB 的方程为(1)y k x =+,11(,)A x y ,22(,)B x y ,由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩得2222(21)4220k x k x k +++-= 所以22121222422,2121k k x x x x k k -+=-=++ 方法一:因为点O 在以线段AB 为直径的圆内, 所以AOB ∠为钝角,所以0OA OB⋅<121212122221212224222(1)(1)(1)()2(1)(1)402121OA OB x x y y x x k x k x k x x k x x k k k k k k k⋅=+=+++=++++-+-=++<++ 整理得 22k <所以k <<方法二:线段AB 的中点00(,)M x y ,则212022221x x k x k +==-+,20222(1)2121k k y k k k =-+=++AB ==22121k k +==+OM == 因为点O 在以线段AB 为直径的圆内,所以2AB OM >所以224AB OM>所以22228(1)(21)k k ++42224(4)(21)k k k +>+ 422320k k --< 202k ≤<所以k <<7. 解:(I)所以椭圆M 的方程为22143x y +=,椭圆M 的离心率为12(II)设0011(,),(,)A x y P x y ,则0000(,),(,).2yB x yC x --由点,A P 在椭圆上,所以2200143x y +=① 2211143x y += ②点A 不是椭圆M 的顶点,②-①得 2210221034y y x x -=-- . 法一:又01001000332,,24PB BC y y y y k k x x x x +===+且点,,B C P 三点共线,所以10010034y y y x x x +=+, 即 0100104().3()y y y x x x +=+所以,22010101010220101010104()4()43()1,3()3()34AB PA y y y y y y y y y k k x x x x x x x x x -+--====⨯-=--+--即 AB AP ⊥法二: 由已知AB 与AP 的斜率都存在,2210101022101010PA PB y y y y y y k k x x x x x x -+-==-+- 221022103()344x x x x --==--又003,4PB BC yk k x ==得00,PA x k y =-则0000()1AB PA y xk k x y -==- , 即 AB AP ⊥。
2016年东城一模数学(理)带问题详解

市东城区2015-2016学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_____________________________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数(1+)i a i ⋅为纯虚数,那么实数a 的值为(A )1- (B )0 (C ) 1 (D )2(2)集合2{},{50}A x x a B x x x =≤=-< | | ,若AB B =,则a 的取值围是(A )5a ≥ (B ) 4a ≥ (C ) 5a < (D )4a < (3)某单位共有职工150名,其中高级职称45人, 中级职称90人,初级职称15人.现采用分层 抽样方法从中抽取容量为30的样本,则各职称 人数分别为(A )9,18,3 (B ) 10,15,5 (C )10,17,3 (D )9,16,5 (4)执行如图所示的程序框图,输出的S 值为 (A )21(B )1 (C ) 2 (D )4(5)在极坐标系中,直线1cos sin =-θρθρ被曲线1=ρ截得的线段长为 (A )21 (B )1 (C )22 (D何体的最长棱长为 (A )2 (B)(C )3 (D(7)已知三点P (5,2)、1F (-6,0)、2F (6,0)那么以1F 、2F 为焦点且过点 P 的椭圆的短轴长为 (A )3(B )6(C )9(D )12(8)已知12e ,e 为平面上的单位向量,1e 与2e 的起点均为坐标原点O ,1e 与2e 夹角为3π. 平面区域D 由所有满足OP λμ=+12e e 的点P 组成,其中1,0,0λμλμ+≤⎧⎪≤⎨⎪≤⎩,那么平面区域D 的面积为(A )12(B(C)2 (D)4第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
北京市东城区2015-2016学年度第二学期高三综合练习题(二)数学理科

北京市东城区2015-2016学年度第二学期高三综合练习题(二)数学理科北京市东城区2015-2016学年度第二学期高三综合练习(二)2016.5数学(理科)本试卷共6页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1. 集合{}1,2,3,4A =,{}3B x R x =∈≤,则A B = ( )A .{}1,2,3,4B.{}1,2,3C.{}2,3D.{}1,42.已知命题:p x R ∃∈有sin 1x ≥,则p ⌝为( )A.,sin 1x R x ∀∈≤B.,sin 1x R x ∃∈<C.,sin 1x R x ∀∈<D.,sin 1x R x ∃∈≤北京市东城区2015-2016学年度第二学期高三综合练习题(二)数学理科1C1B1AABC113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影面积为( )A.274B.92C.9D.2724.若向量()1,0a = ,()2,1b =,(),1C x =满足条件3a b -与c 共线,则x 的值为( )A.1B.3-C.2-D.1-5.成等差数列的三个正数和等于6,并且这三个数分别加上3、6、13后成为等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( )A.12n n b -=B.13n n b -=C.22n n b -=D.23n n b -=6.一名顾客计划到商场购物,他有三张优惠券,每张优惠券只能购买一件商品,根据购买商品的标价,三张优惠券的优惠方式不同,具体如下: 优惠券1:若标价超过50元,则付款是减免标价的10%; 优惠券2:若标价超过100元,则付款时减免20元; 优惠券3:若标价超过100元,则超过100的部分减免18%。
高考专题北京市东城区-16第二学期高三综合练习(二).docx

北京市东城区2015-2016学年度第二学期高三综合练习(二)数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合{1234}A =,,,,{|3}B x R x =∈≤,则=A B I A.{1234},,, B. {123},, C. {23}, D.{14}, 2.已知命题p :∃x ∈R 有sinx ≥1,则﹁p 为A. sin 1x R x ∀∈≤,B.sin 1x R x ∃∈<,C. sin 1x R x ∀∈<,D.,sin 1x R x ∃∈≤3.如图,ABC V 为正三角形,111////AA BB CC ,1CC ⊥底面ABC V ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 2724.若向量=(1,0)a ,=(2,1)b ,=(,1)x c 满足条件3a -b 与c 共线,则x 的值A. 1B. -3C. -2D. -15.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成 为等比数列{}n b 中的b 、b 、b ,则数列{}n b 的通项公式为A. 12n n b -= B. 13n n b -= C. 22n n b -=D. 23n n b -=6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区2015-2016学年度第二学期高三综合练习(二)数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合{1234}A =,,,,{|3}B x R x =∈≤,则=A B A.{1234},,, B. {123},, C. {23}, D.{14}, 2.已知命题p :∃x ∈R 有sinx ≥1,则﹁p 为A. sin 1x R x ∀∈≤,B.sin 1x R x ∃∈<,C. sin 1x R x ∀∈<,D.,sin 1x R x ∃∈≤3.如图,ABC 为正三角形,111////AA BB CC ,1CC ⊥底面ABC ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 2724.若向量=(1,0)a ,=(2,1)b ,=(,1)x c 满足条件3a -b 与c 共线,则x 的值A. 1B. -3C. -2D. -15.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成 为等比数列中的、、,则数列的通项公式为A. 12n n b -=B. 13n n b -=C. 22n n b -=D. 23n n b -=6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。
根据购买商品的标价,三张优惠券的优惠方式不同,具体如下: 优惠劵1:若标价超过50元,则付款时减免标价的10%; 优惠劵2:若标价超过100元,则付款时减免20元;优惠劵3:若标价超过100元,则超过100元的部分减免18%。
若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为A. 179元B. 199元C. 219元D. 239元{}n b b b b {}n b7. 已知函数24()(1)4x x f x f x x ⎧≥=⎨+<⎩,则2(2log 3)f +的值为A. 24B. 16C. 12D. 88.集合{(,)|}A x y x y R =∈,,若A ∈x,y ,已知1122()()x y x y ==,,,x y ,定义集合A 中元素间的运算*x y ,称为*“”运算,此运算满足以下运算规律: ①任意A ∈x,y 有**x y =y x②任意A ∈x,y,z 有()=**+*x +y z x z y z (其中1212()x x y y ++,x +y =)③任意A ∈x,y ,a R ∈有(()ax y a x y *=*)④任意A ∈x 有0*≥x x ,且=0*x x 成立的充分必要条件是=(0 0),x 为向量. 如果1122()()x y x y ==,,,x y ,那么下列运算属于*“”正确运算的是 A. 11222x y x y *=+x y B. 1122x y x y *=-x y C. 11221x y x y *=++x yD. 12122x x y y *=+x y第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9.设 i 是虚数单位,复数aii1+2-所对应的点在第一象限,则实数a 的取值范围为___. 10.设变量x ,y 满足约束条件201x y x y y +≤⎧⎪-≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为 .11.已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB = .12.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图. 则产品数量位于[)55,65范围内的频率为_____;这20名工人中一天生产该产品数量在[)55,75的人数是 .13.若点O 和点2(2,0)F -分别为双曲线2221x y a-=(>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则222+1PF OP 的取值范围为___.14.已知函数*sin ()()sin n nxf x n N x=∈,关于此函数的说法正确的序号是__. ①()()n f x n N *∈为周期函数; ②()()n f x n N *∈有对称轴; ③π(0)2,为()()n f x n N *∈的对称中心 ;④*()()n f x n n N ≤∈.三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题共13分)已知函数2111()23sin()cos()2cos ()222f x x x x ωωω=⋅+(0>ω),且函数()f x 的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求()f x 在区间π[0,]2上的最大值和最小值.16.(本小题共14分)如图,ABC ∆是等腰直角三角形90CAB ∠=,2AC a =,E F ,分别为AC BC ,的中点,沿EF 将CEF ∆折起,得到如图所示的四棱锥-C ABFE '(Ⅰ)求证: AB AEC '⊥平面;(Ⅱ)当四棱锥-C ABFE '体积取最大值时,(i)若G 为BC '中点,求异面直线GF 与AC '所成角;(ii)在-C ABFE '中AE 交BF 于C ,求二面角A CC B '--的余弦值.17.(本小题共13分)在2015-2016赛季CBA 联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数nN,N 表示投篮次数,n 表示命中次数),假设各场比赛相互独立. 场次 球员1 2345 6 7 8 9 10甲513 412 1430 59 1419 1016 1223 48 613 1019 乙1326918914816615101472191610221220(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率; (Ⅲ)在接下来的3场比赛中,用X 表示这3场比赛中乙球员命中率超过0.5的场次,试写出X 的分布列,并求X 的数学期望.18.(本小题共14分)已知2()2ln(2)(1)f x x x =+-+,()(1)g x k x =+.(Ⅰ)求()f x 的单调区间;(Ⅱ)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;(Ⅲ)若存在01x >-,使得当0(1,)x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.19.(本小题共13分)已知椭圆C :)0(12222>>=+b a by a x 过点(2,1),且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设M ,)x y (是椭圆C 上的动点,P ,0)p (是X 轴上的定点,求MP 的最小值及取最小值时点M 的坐标.20.(本小题共13分)数列{}n a 中,定义:212(1)n n n n d a a a n ++=+-≥,11a =.(Ⅰ)若n n d a =,22a =,求n a ;(Ⅱ) 若22a =-,1n d ≥,求证此数列满足*5()n a n N ≥-∈; (Ⅲ)若1n d =,21a =且数列{}n a 的周期为4,即4(1)n n a a n +=≥,写出所有符合条件的{}n d .北京市东城区2015-2016学年度第二学期高三综合练习(二)数学参考答案及评分标准 (理科) 第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分) 1.B 2.C 3.A 4.D 5.A 6.C 7.A 8.D第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9. 122a -<< 10. 5 11. 5212. 0.4;13.13. 31,22⎛+ ⎝ 14. ①②④ 三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)因为()3cos 12sin()+16f x x x x πωωω=++=+,又()f x 的最小正周期为π, 所以π2πω=,即ω=2. --------------------------------------------------------------------6分(Ⅱ)由(Ⅰ)可知()2sin(2)+16f x x π=+,因为02x π≤≤,所以72666x πππ≤+≤. 由正弦函数的性质可知,当262x ππ+=,即6x π=时,函数()f x 取得最大值,最大值为f (6π)=3; 当7266x ππ+=时,即2=x π时,函数()f x 取得最小值,最小值为f (2π)=0. ------13分16.(本小题共14分)证明:(Ⅰ)因为ABC ∆是等腰直角三角形90CAB ∠=,E F ,分别为AC BC ,的中点, 所以EF AE ⊥,EF C E '⊥. 又因为AE C E E '⋂=,所以EF AEC '⊥平面. 由于EFAB ,所以有AB AEC '⊥平面. -------------------------4分 解:(Ⅱ)(i)取AC '中点D ,连接,,,DE EF FG GD ,由于GD 为ABC '∆中位线,以及EF 为ABC ∆中位线, 所以四边形DEFG 为平行四边形.直线GF 与AC '所成角就是DE 与AC '所成角.所以四棱锥C ABFE '-体积取最大值时,C E '垂直于底面ABFE . 此时AEC '∆为等腰直角三角形,ED 为中线, 所以直线ED AC '⊥. 又因为ED GF ,所以直线GF 与AC '所成角为π2. -------------------------------------------------------10分 (ii) 因为四棱锥C ABFE '-体积取最大值,zyFEC 'CA GDFEC C BA分别以EA EF EC '、、所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图, 则(0,0,)C a ',(,2,0)B a a ,(0,,0)F a ,(,2,)C B a a a '-,(0,,)C F a a '-.设平面C BF '的一个法向量为n =(x,y,z),由0,0C B C F ⎧⎪⎨⎪⎩'⋅='⋅=n n 得⎩⎨⎧=-=-+002az ay az ay ax ,取y =1,得x =-1,z =1. 由此得到n =(-1,1,1).同理,可求得平面C AE '的一个法向量m =(0,1,0). 所以 13cos 33⋅==n m .故平面C'AE 与平面C'BF 的平面角的夹角的余弦值为33分17.(本小题共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场, 分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是12. 在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10, 所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是25. ---------------------------------------3分(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A ,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件1B ,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件2B . 则1213121()()()25252P A P B P B =+=⨯+⨯=.------------------------------------------------7分 (Ⅲ)X 的可能取值为0,1,2,3.00332327(0)()()55125P X C ===; 11232354(1)()()55125P X C ===;22132336(2)()()55125P X C ===; 33328(3)()5125P X C ===; X 的分布列如下表:X123P27125 54125 36125 812526355EX np ==⨯=. --------------------------------------------------------13分 18.(本小题共14分)解:(Ⅰ)222(31)()2(1)(2)22x x f x x x x x -++'=-+=>-++ , 当()0f x '>时, 所以 2310x x ++<. 解得 3522x --<<. 当()0f x '>时, 解得 35x -+>所以 ()f x 单调增区间为35(-+-,单调减区间为35)-++∞.------------4分 (Ⅱ) 设2()()()2ln(2)(1)(1)(1)h x f x g x x x k x x =-=+-+-+>-,当2k =时,由题意,当(1,)x ∈-+∞时,()0h x <恒成立.22(31)2(3)(1)()222x x x x h x x x -++-++'=-=++,∴ 当1x >-时,()0h x '<恒成立,()h x 单调递减. 又(1)0h -=,∴ 当(1,)x ∈-+∞时,()(1)0h x h <-=恒成立,即()()0f x g x -<.∴ 对于1x ∀>-,()()f x g x <恒成立. ---------------------------------8分(Ⅲ) 因为 222(31)2(6)22()22x x x k x k h x k x x -++++++'=-=-++.由(II)知,当k = 2时,f (x) < g (x)恒成立,即对于∀x > –1,2 ln (x + 2) – (x + 1)2 < 2 (x + 1),不存在满足条件的x 0;当k > 2时,对于∀x > –1,x + 1 > 0,此时2 (x + 1) < k (x + 1). ∴ 2 ln (x + 2) – (x + 1)2 < 2 (x + 1) < k (x + 1),即f (x) < g (x)恒成立, 不存在满足条件的x 0;当k < 2时,令t (x) = –2x 2 – (k + 6)x – (2k + 2),可知t (x)与h ' (x)符号相同, 当x ∈ (x 0 , +∞)时,t (x) < 0,h ' (x) < 0,h (x)单调递减. ∴ 当x ∈ (–1 , x 0)时,h (x) > h (–1) = 0,即f (x) – g (x) > 0恒成立. 综上,k 的取值范围为(–∞ , 2). -------------------------------------------------------14分19.(本小题共13分)解:(Ⅰ)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以 b c =, 222b a =, 则椭圆C 的方程为122222=+by b x .又因为椭圆C:过点A(2,1),所以112222=+bb ,故a=2,b=.2 所以 椭圆的的标准方程为12422=+y x . --------------------------------------------------------4分 (Ⅱ)222)(y p x MP +-=.因为 M(x,y)是椭圆C 上的动点,所以12422=+y x , 故 22)41(2222x x y -=-=. 所以 222222211()222(2) 2.222x MP x p x px p x p p =-+-=-++=--+ 因为M(x,y)是椭圆C 上的动点, 所以 2≤x .(1) 若22≤p 即1≤p ,则当2x p =时MP 取最小值22p -, 此时M 2(2,22)p p ±-.(2)若1p >,则当2x =时,MP 取最小值2-p ,此时M )0,2(.(3)若1p <-,则当2x =-时,MP 取最小值2+p ,此时M )0,2(-. -------13分 20.(本小题共13分)(Ⅰ)由212(1)n n n n d a a a n ++=+-≥以及n n d a =可得:2120(1)n n a a n ++-=≥所以从第二项起为等比数列. 经过验证{}n a 为等比数列12n n a -=. -------------------2分(Ⅱ)由于1n d ≥所以有2121n n n a a a +++-≥. 令1n n n c a a +=-则有11n n c c +-≥叠加得:4n c n ≥-所以有14n n a a n +-≥-,叠加可得:29102n n n a -+≥, 所以最小值为-5. --------------------------------------------------------6分(Ⅲ)由于1n d =,11a =, 21a =若11d =可得32a =,若11d =-可得30a =同理,若21d =可得44a =或42a =,若21d =-可得40a =或42a =- 具体如下表所示7452321*********⎧⎧⎧⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎪⎩⎨⎧⎧⎪⎨⎪⎪-⎪⎩⎪⎨⎪-⎧⎪-⎪⎨⎪-⎩⎪⎩⎩所以{}n a 可以为112211221122或11001100110此时相应的{}n d 为 11111111----或11111111----。