北师大版八年级数学上册教案《定义与命题》教学设计
北师大版数学八年级上册《认识定义与命题》教案2

北师大版数学八年级上册《认识定义与命题》教案2一. 教材分析《认识定义与命题》是北师大版数学八年级上册的一章内容。
这一章节的主要目的是让学生理解命题的概念,掌握如何判断一个命题是真命题还是假命题,以及如何根据已知命题得出新的命题。
本章内容是学生学习几何初步知识的基础,也是进一步学习几何证明的关键。
二. 学情分析学生在七年级时已经学习了命题的概念,对命题有基本的了解。
但是,他们可能还没有完全理解命题与定义、定理之间的区别和联系。
此外,学生在逻辑思维方面可能还存在一些困难,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生理解命题的定义,能够判断一个命题是真命题还是假命题。
2.让学生掌握如何根据已知命题得出新的命题。
3.培养学生的逻辑思维能力,提高他们解决几何问题的能力。
四. 教学重难点1.教学重点:让学生理解命题的定义,掌握判断命题真假的方法,以及如何得出新的命题。
2.教学难点:让学生理解命题与定义、定理之间的区别和联系,以及如何运用这些知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生理解命题的定义和性质。
2.使用实例和练习,让学生通过实际操作和思考,掌握判断命题真假的方法,以及如何得出新的命题。
3.鼓励学生进行合作学习,通过讨论和交流,提高他们的逻辑思维能力。
六. 教学准备1.准备相关的教学材料,如教材、PPT、黑板等。
2.准备一些实例和练习题,用于引导学生进行思考和练习。
七. 教学过程1.导入(5分钟)通过提出一个问题,引发学生的思考,例如:“什么是命题?”让学生回顾命题的概念,为后续的学习打下基础。
2.呈现(10分钟)通过PPT或黑板,呈现本节课的主要内容,包括命题的定义、如何判断命题的真假,以及如何得出新的命题。
同时,给出一些实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生通过实际操作和思考,掌握判断命题真假的方法,以及如何得出新的命题。
北师大版八年级数学上册7.2定义与命题优秀教学案例

3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。
7.2定义与命题(教案)2023-2024学年北师大版八年级数学上册

三、教学难点与重点
1.教学重点
-理解命题的定义及其基本结构。核心内容是命题的题设和结论,以及如何从具体实例中抽象出命题。
-举例:从“如果一个数是偶数,那么它能被2整除”这个实例中,强调“如果一个数是偶数”是题设,“那么它能被2整除”是结论。
-掌握命题的分类,包括真命题、假命题、逆命题、逆否命题和对偶命题。
-举例:真命题如“两直线平行,内错角相等”;假命题如“所有奇数都是质数”;逆命题是将原命题的题设和结论对调等。
-学会运用已知条件和基本事实进行命题证明。
-举例:使用欧几里得几何的基本公理证明“等腰三角形的底角相等”。
-理解并掌握命题的否定方法。
7.2上册
一、教学内容
本节选自2023-2024学年北师大版八年级数学上册第7章第2节“定义与命题”。教学内容主要包括以下几部分:
1.命题的定义:让学生了解什么是命题,以及命题的基本结构,如题设和结论。
2.命题的分类:介绍真命题、假命题、逆命题、逆否命题、对偶命题等概念,并通过实例进行解释。
3.命题的证明:引导学生学会运用已知条件和基本事实,通过推理得出命题的结论。
4.命题的否定:讲解如何对命题进行否定,以及否定的方法和规律。
本节课将结合实际例子,让学生在实际操作中掌握命题的相关概念和性质,培养他们的逻辑思维能力和推理能力。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力:通过分析、判断命题的真假,提高学生运用逻辑推理解决问题的能力。
首先,导入新课环节,通过提问学生们日常生活中的真假陈述,成功引起了他们对命题的兴趣。这个环节的设计让学生们意识到数学与生活息息相关,从而激发了他们的学习热情。
北师大版数学八年级上册2《定义与命题》教案1

北师大版数学八年级上册2《定义与命题》教案1一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的内容。
本节课主要让学生了解数学中的定义与命题的概念,学会如何正确理解和运用定义与命题。
教材通过生活中的实例,引导学生理解定义与命题的含义,培养学生的逻辑思维能力。
二. 学情分析学生在七年级时已经接触过一些简单的定义与命题,对这部分内容有初步的了解。
但大部分学生对这些概念的理解不够深入,容易混淆。
此外,学生对于如何运用定义与命题来解决问题还比较陌生。
因此,在教学过程中,需要注重引导学生深入理解概念,并学会运用。
三. 教学目标1.理解定义与命题的概念,掌握它们的书写格式。
2.学会如何正确理解和运用定义与命题。
3.培养学生的逻辑思维能力。
四. 教学重难点1.重点:理解定义与命题的概念,学会正确书写格式。
2.难点:如何运用定义与命题解决问题,培养学生逻辑思维能力。
五. 教学方法1.情境教学法:通过生活实例引入定义与命题,让学生在实际情境中理解概念。
2.互动教学法:引导学生通过小组讨论、交流,共同探讨定义与命题的含义和运用。
3.案例教学法:分析典型例题,让学生学会如何运用定义与命题解决问题。
六. 教学准备1.准备相关的生活实例和典型例题。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个生活实例,如“等腰三角形”的定义,引导学生思考:如何用数学语言来描述这个概念?从而引出定义与命题的概念。
2.呈现(10分钟)呈现教材中的相关定义与命题,如“平行线”、“全等三角形”等,让学生初步了解这些概念。
同时,引导学生注意定义与命题的书写格式。
3.操练(10分钟)让学生分组讨论,每组选择一个定义与命题,试着用自己的语言来表达,并互相交流。
教师在这个过程中给予适当的引导和反馈。
4.巩固(10分钟)通过一些练习题,让学生运用所学的定义与命题来解决问题。
教师在这个过程中注意引导学生运用定义与命题的正确方法。
北师大版八年级上册《7.2 定义与命题》教学设计

北师大版八年级上册《7.2 定义与命题》教学设计一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解它们在数学论证中的重要性。
北师大版八年级上册的教材通过生动的例子和丰富的练习,帮助学生理解和掌握定义与命题的基本知识。
二. 学情分析学生在七年级时已经初步接触过定义与命题的概念,但对其本质和应用可能还不是很清楚。
因此,在教学过程中,教师需要从学生的实际出发,通过生动的例子和实际操作,让学生理解和掌握定义与命题。
三. 教学目标1.知识与技能:使学生理解定义与命题的概念,能够正确判断一个命题是真命题还是假命题。
2.过程与方法:通过观察、分析和推理,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 教学重难点1.重点:定义与命题的概念及其应用。
2.难点:如何判断一个命题是真命题还是假命题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考;通过分析案例,让学生理解定义与命题;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的数学问题引入定义与命题的概念。
例如:“什么是一个角?”让学生思考并回答,然后给出正确的定义。
2.呈现(15分钟)呈现教材中的案例,让学生观察和分析。
例如:等腰三角形的性质。
引导学生发现这是一个命题,并尝试给出证明。
3.操练(15分钟)让学生分组,每组选一个命题进行分析和证明。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验他们对定义与命题的理解。
教师选取部分学生的作业进行点评。
5.拓展(10分钟)让学生尝试自己编写一个命题,并给出证明。
教师选取部分学生的命题进行点评。
6.小结(5分钟)总结本节课的主要内容,强调定义与命题在数学论证中的重要性。
北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。
本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。
教材通过具体的例子,让学生初步认识定义与命题,并学会如何区分它们。
同时,教材还引导学生思考定义与命题在数学中的应用,培养学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和定理有一定的认识。
但学生在理解和运用定义与命题方面可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握定义与命题的概念和运用。
三. 教学目标1.理解定义与命题的概念,掌握它们的区别与联系。
2.学会如何正确理解和运用定义与命题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.重点:定义与命题的概念及其区别与联系。
2.难点:如何正确理解和运用定义与命题。
五. 教学方法1.情境教学法:通过具体的例子,引导学生理解和掌握定义与命题。
2.启发式教学法:引导学生主动思考,发现定义与命题的规律。
3.小组合作学习:鼓励学生互相讨论,共同解决问题。
六. 教学准备1.教学PPT:制作涵盖定义与命题的例子、练习题等内容的PPT。
2.学习素材:准备一些与定义与命题相关的阅读材料,以便学生在课后进行拓展学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“直线的定义”,引导学生思考定义与命题的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现定义与命题的相关概念,让学生初步认识它们。
同时,教师可以通过讲解、举例等方式,让学生了解定义与命题的区别与联系。
3.操练(10分钟)教师布置一些练习题,让学生区分给出的数学语句是定义还是命题。
学生独立完成后,教师选取部分答案进行讲解和分析。
4.巩固(10分钟)教师继续呈现一些定义与命题的例子,让学生判断并解释它们的含义。
在此过程中,教师要注意引导学生运用已学的知识,加深对定义与命题的理解。
北师大版数学八年级上册2《定义与命题》教学设计1

北师大版数学八年级上册2《定义与命题》教学设计1一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。
本节课主要让学生理解命题的概念,学会用数学语言表述命题,并了解命题的逆命题、反命题等基本知识。
教材通过引入现实生活中的例子,激发学生的学习兴趣,让学生体会数学与生活的紧密联系。
二. 学情分析学生在七年级时已经接触过简单的命题与定理,对命题的概念有初步的了解。
但部分学生对命题的理解仍停留在表面,不能准确运用数学语言表述命题。
此外,学生在之前的数学学习过程中,接触到的大部分是具体的运算问题,对于抽象的数学概念和逻辑推理较为陌生。
三. 教学目标1.理解命题的概念,学会用数学语言表述命题。
2.了解命题的逆命题、反命题等基本知识。
3.培养学生逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.重点:理解命题的概念,学会用数学语言表述命题。
2.难点:命题的逆命题、反命题的理解与应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究命题的内涵与外延。
2.利用现实生活中的例子,让学生感受数学与生活的联系,提高学习兴趣。
3.通过小组讨论、师生互动等方式,培养学生的合作交流能力。
4.运用逻辑推理方法,引导学生理解命题的逆命题、反命题。
六. 教学准备1.准备相关的生活例子,用于引导学生理解命题。
2.准备课件,展示命题的定义、逆命题、反命题等内容。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活例子,如“如果一个人是学生,那么他每天要上学。
”引导学生思考:这是一个什么概念?让学生初步感知命题的概念。
2.呈现(10分钟)通过课件展示命题的定义,让学生明确命题的概念。
同时,呈现命题的逆命题、反命题的定义,让学生初步了解这些基本知识。
3.操练(10分钟)让学生分组讨论,举例说明命题、逆命题、反命题的关系。
教师选取部分学生的例子,进行讲解和分析。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对命题、逆命题、反命题的理解。
北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。
本节课的主要内容是让学生理解并掌握命题与定理的概念,学会如何用数学语言表述命题,以及如何通过推理和证明来判断命题的真假。
本节课的内容是学生学习更高级数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
二. 学情分析学生在七年级时已经接触过简单的命题和定理,对命题和定理的概念有初步的了解。
但是,对于如何准确地表述命题,如何通过推理和证明来判断命题的真假,以及如何运用命题和定理解决实际问题等方面,还需要进一步的学习和掌握。
因此,在教学过程中,教师需要根据学生的实际情况,从简单的例子入手,逐步引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。
三. 教学目标1.理解命题与定理的概念,掌握如何用数学语言表述命题。
2.学会通过推理和证明来判断命题的真假。
3.能够运用命题和定理解决实际问题。
4.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.重点:理解命题与定理的概念,掌握如何用数学语言表述命题,学会通过推理和证明来判断命题的真假。
2.难点:如何引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。
五. 教学方法1.讲授法:教师通过讲解和举例,引导学生理解和掌握命题与定理的概念。
2.实践法:学生通过动手操作和思考,培养学生的逻辑思维能力和数学素养。
3.讨论法:学生分组讨论,交流自己的理解和思路,培养学生的合作意识和沟通能力。
六. 教学准备1.教师准备PPT,内容包括教材中的重点和难点,以及一些相关的例子和练习题。
2.准备一些与本节课内容相关的实物或图片,用于导入和呈现。
七. 教学过程1.导入(5分钟)教师通过展示一些与本节课内容相关的实物或图片,引导学生观察和思考,激发学生的兴趣。
然后,教师简要介绍本节课的主要内容,让学生对课程有一个初步的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《定义与命题》第1课时 定义与命题 学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识。
【知识与能力目标】1、了解定义与命题的含义,会区分某些语句是不是命题 。
2、会判断命题的真假,及命题的条件和结论 。
【过程与方法目标】用比较数学化的观点来审视生活中或数学学习中遇到的语句特征。
【情感态度价值观目标】1、通过对某些语句特征的判断学会严谨的思考习惯。
2、 通过从具体例子中提炼数学概念,使学生体会数学与实践的联系。
【教学重点】命题的概念。
◆教材分析◆教学目标◆教学重难点◆【教学难点】命题的概念的理解。
几名学生表演引入部分。
老师准备多媒体课件。
一、情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》。
小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……” 小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了。
”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼。
”……一人说:“那因特网肯定是一张很大的网。
”另一人说:“估计可能是英国造的特殊的网。
”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义。
)1、关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能◆课前准备◆◆教学过程进行;2、对定义含义的解释;3、举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);二、探究新知1、根据情境得出定义的概念,并让学生举例已经学过的定义。
2、议一议。
下面的语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流。
(1)任何一个三角形一定有一个角是直角。
(2)对顶角相等.(3)无论n为怎样的自然数,式子n2-n+11的值都是质数。
(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
(5)你喜欢数学吗?(6)线段AB=CD。
判断一件事情的句子,叫做命题。
例如(1)(2)(3)(4)对事情进行了判断,都是命题。
如果一个句子没有对一件事情作出任何判断,那么它就不是命题.例如(5)(6)都不是命题。
3、想一想(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3) 如果两个三角形有两边和一个角相等,那么这两个三角形全等;这些命题有什么共同的结构特征?-----“如果……那么……”如果两个三角形有两边和一个角分别相等,那么这两个三角形全等;已知事项由已知事项推断出来的事项归纳:一般,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项。
命题都可以写成“如果……那么……”的形式;其中“如果”引出的部分是条件,“那么”引出的部分是结论。
4、做一做指出下列各命题的条件和结论,其中哪些命题是错误的?(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)三角形三个内角的和等于1800 。
正确的命题称为真命题,不正确的命题称为假命题。
要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具备命题的结论,这种例子称为反例。
5、练一练指出下列各命题的条件和结论,并判断真假.真的用“√”,假的用“×表示,并通过反例说明其中的假命题。
(1)同旁内角互补(2)一个角的补角大于这个角(3)相等的两个角是对顶角(4)两点可以确定一条直线(5)两点之间线段最短(6)同角的余角相等(7)互为邻补角的两个角的平分线互相垂直三、当堂练习1.下列描述不属于定义的是( )A.两组对边分别平行的四边形叫做平行四边形B.正三角形是特殊的等腰三角形C.在同一平面内三条线段首尾顺次连接得到的图形叫做三角形D.含有未知数的等式叫做方程2.下列语句不是命题的为( )A.同角的余角相等B.作直线AB的垂线C.若a-c=b-c则a=bD.两条直线相交,只有一个交点3.下列命题是真命题的是( )A.如果两个角不相等,那么这两个角不是对顶角B.两互补的角一定是邻补角C.如果a2=b2,那么a=bD.如果两角是同位角,那么这两角一定相等4. 判断下列命题的真假,若是假命题,举出反例。
(1)若两个角不是对顶角,则这两个角不相等;(2)若a+b=0,则ab=0;(3)若ab=0,则a+b=0。
解:(1)假命题.如:两条直线平行,内错角相等(2)假命题。
如:a=3,b=-3。
(3)假命题。
如:a=5和b=0。
四、课堂小结活动内容:1、定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;2、命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
结构:如果……那么…分类:真命题、假命题。
◆教学反思略。
《定义与命题》第2课时定理与证明◆教材分析学生在以前的学习中接触了不少的几何知识,对很多定理、证明过程有了很深刻的认识,本节课将对定理及定理的证明严格规范。
◆教学目标【知识与能力目标】1.通过实例感受证明的过程与格式。
2.初步感受公理化思想。
3.感受公理化方法对数学发展和促进人类文明进步的价值。
【过程与方法目标】初步感受公理化思想。
感受公理化方法对数学发展和促进人类文明进步的价值。
【情感态度价值观目标】初步感受公理化思想。
感受公理化方法对数学发展和促进人类文明进步的价值。
【教学重点】 命题的概念。
【教学难点】命题的概念的理解。
几名学生表演引入部分。
老师准备多媒体课件。
一、回顾引入活动内容:① 什么叫做定义?举例说明;② 什么叫命题?举例说明。
学生举手发言,提问个别学生。
我们知道,举一个反例就可以证明一个命题是假命题,那么如何证实一个命题是真命题呢?用以前学过的观察、实验、验证特例等方法来证明可靠吗?能不能根据已经知道的真命题证实呢?那已经知道的真命题又是如何证实的?二、探究新知—读一读◆教学重难点◆ ◆课前准备◆◆教学过程① 介绍《几何原本》、公理、定理等知识。
在数学发展史上,数学家们也遇到过类似的问题.公元前3世纪,人们已经积累了大量知识,在此基础上,古希腊数学家欧几里得(公元前300前后)编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真命题作为证实其它命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明,经过证明的真命题称为定理,而证明所需要的定义、公理和其他定理都编写在要证明的这个定理的前面。
《原本》问世之前,世界上还没有一本数学书籍象《原本》这样编排,因此,《原本》是一部具有划时代意义的著作。
② 公理、定理、概念和证明的关系。
③ 介绍本教材的公理。
1.两点确定一条直线。
2.两点之间线段最短。
3.同一平面内,过一点有且只有一条直线与已知直线垂直。
4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
5.过直线外一点有且只有一条直线与这条直线平行。
6.两边及其夹角对应相等的两个三角形全等。
7.两角及其夹边对应相等的两个三角形全等。
8.三边对应相等的两个三角形全等。
此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命题的正确性,另外一条我们将在以后认识它。
此外等式和不等式的有关性质也可看作公理.比如:如果a =b ,b =c ,那么a =c 。
④ 读一读《原本与几何原本》 有关概念、公理条件1 定理1 有关概念、公理 条件2 定理2 定理3 ◆教◆教三、举例讲解例已知:如图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角。
求证:∠AOC=∠BOD。
证明:∵直线AB与直线CD相交于点O,∴∠AOB和∠COD都是平角(平角的定义)。
∴∠AOC和∠BOD都是∠AOD的补角(外角的定义)。
∴∠AOC=∠BOD(同角的补角相等)。
四、当堂练习1.“两点之间,线段最短”这个语句是()A.定理B.公理C.定义D.只是命题2.“同一平面内,不相交的两条直线叫做平行线”这个语句是()A.定理B.公理C.定义D.只是命题3.下列命题中,属于定义的是()A.两点确定一条直线;B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度4.下列句子中,是定理的是(),是公理的是()。
A.若a=b,b=c,则a=c;B.对顶角相等C.全等三角形的对应边相等,对应角相等◆教学反思略。