天津中考数学压轴题全搞定汇编
天津市中考数学压轴题大集合精品资料

一、函数与几何综合的压轴题1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程.(3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.[解] (1)(本小题介绍二种方法,供参考)方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ''''==又∵DO ′+BO ′=DB ∴1EO EO AB DC''+= ∵AB =6,DC =3,∴EO ′=2又∵DO EO DB AB ''=,∴2316EO DO DB AB ''=⨯=⨯=∴DO ′=DO ,即O ′与O 重合,E 在y 轴上方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ②图①图②联立①②得02x y =⎧⎨=-⎩∴E 点坐标(0,-2),即E 点在y 轴上(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)E (0,-2)三点,得方程组42632a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2(3)(本小题给出三种方法,供参考)由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。
同(1)可得:1E F E FAB DC''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '⇒=,∴13DF DB = S △AE ′C = S △ADC - S △E ′DC =11122223DC DB DC DF DC DB ∙-∙=∙=13DC DB ∙=DB=3+k S=3+k 为所求函数解析式方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()1132322BD E F k k '=∙=+⨯=+ ∴S =3+k 为所求函数解析式.证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()2213992AE C ABCD S S AB CD BD k '∆==⨯+∙=+梯形 ∴S =3+k 为所求函数解析式.2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点.(1)求点A 的坐标;(2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明;(3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若421hS S =,抛物线 y =ax 2+bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式.[解](1)解:由已知AM =2,OM =1,在Rt △AOM 中,AO =122=-OM AM ,∴点A 的坐标为A (0,1)(2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y =x +1 令y =0则x =-1 ∴B (—1,0),AB =2112222=+=+AO BO 在△ABM 中,AB =2,AM =2,BM =2222224)2()2(BM AM AB ==+=+∴△ABM 是直角三角形,∠BAM =90° ∴直线AB 是⊙M 的切线(3)解法一:由⑵得∠BAC =90°,AB =2,AC =22, ∴BC =10)22()2(2222=+=+AC AB∵∠BAC =90° ∴△ABC 的外接圆的直径为BC ,∴πππ25)210()2(221=∙=∙=BC S而πππ2)222()2(222=∙=∙=AC S421h S S = ,5,4225=∴=h h 即 ππ 设经过点B (—1,0)、M (1,0y =a (+1)(x -1),(a≠0)即y =ax 2-a ,∴-a =±5,∴a =±5 ∴抛物线的解析式为y =5x 2-5或y =-5x 2+5 解法二:(接上) 求得∴h =5由已知所求抛物线经过点B (—1,0)、M (1、0),则抛物线的对称轴是y 轴,由题意得抛物线的顶点坐标为(0,±5)∴抛物线的解析式为y =a (x -0)2±5又B (-1,0)、M (1,0)在抛物线上,∴a±5=0, a =±5∴抛物线的解析式为 y =5x 2-5或y =-5x 2+5 解法三:(接上)求得∴h =5因为抛物线的方程为y =ax 2+bx +c (a≠0)由已知得⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧==⎪⎪⎪⎩⎪⎪⎪⎨⎧±=-=+-=++5055c 0b 5544002c b a a ab ac c b a c b a 或 =- 解得∴抛物线的解析式为 y =5x 2-5或y =-5x 2+5.3.(2004湖北荆门)如图,在直角坐标系中,以点P (1,-1)为圆心,2为半径作圆,交x 轴于A 、B 两点,抛物线)0(2>++=a c bx ax y 过点A 、B ,且顶点C 在⊙P 上. (1)求⊙P 上劣弧⌒AB 的长; (2)求抛物线的解析式;(3)在抛物线上是否存在一点D ,使线段OC 与PD若不存在,请说明理由.[解] (1)如图,连结PB ,过P 作PM ⊥x 轴,垂足为在Rt △PMB 中,PB=2,PM=1, ∴∠MPB=60°,∴∠APB =120° ⌒AB 的长=342180120ππ=⋅⋅︒︒ (2)在Rt △PMB 中,PB=2,PM=1,则MB =MA =3. 又OM=1,∴A (1-3,0),B (1+3,0), 由抛物线及圆的对称性得知点C 在直线PM 上, 则C(1,-3).点A 、B 、C 在抛物线上,则⎪⎪⎩⎪⎪⎨⎧++=-+-+-=++++=c b a c b a c b a 3)31()31(0)31()31(022 解之得⎪⎩⎪⎨⎧-=-==221c b a ∴抛物线解析式为222--=x x y(3)假设存在点D ,使OC 与PD 互相平分,则四边形OPCD 为平行四边形,且PC ∥OD.又PC ∥y 轴,∴点D 在y 轴上,∴OD =2,即D (0,-2).又点D (0,-2)在抛物线222--=x x y 上,故存在点D (0,-2), 使线段OC 与PD 互相平分.4.(2004湖北襄樊)如图,在平面直角坐标系内,Rt △ABC 的直角顶点C (0在y 轴的正半轴上,A 、B 是x 轴上是两点,且OA ∶OB =3∶1,以OA 、OB 为直径的圆分别交AC 于点E ,交BC 于点F .直线EF 交OC 于点Q . (1)求过A 、B 、C 三点的抛物线的解析式;(2)请猜想:直线EF 与两圆有怎样的位置关系?并证明你的猜想.(3)在△AOC 中,设点M 是AC 边上的一个动点,过M 作MN ∥AB 交OC 于点N .试问:在x 轴上是否存在点P ,使得△PMN 是一个以MN 为一直角边的等腰直角三角形?若存在,求出P[解] (1)在Rt △ABC 中,OC ⊥AB ,∴△AOC ≌△COB .∴OC 2=OA ·OB . ∵OA ∶OB =3∶1,C ∴23.OB OB = ∴OB =1.∴OA =3.∴A (-3,0),B (1,0).设抛物线的解析式为2.y ax bx c =++则930,0,a b c a b c c ⎧-+=⎪++=⎨⎪=⎩解之,得a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩∴经过A 、B 、C三点的抛物线的解析式为23y x =-- (2)EF 与⊙O 1、⊙O 2都相切.证明:连结O 1E 、OE 、OF .∵∠ECF =∠AEO =∠BFO =90°, ∴四边形EOFC 为矩形. ∴QE =QO . ∴∠1=∠2.∵∠3=∠4,∠2+∠4=90°, ∴EF 与⊙O 1相切. 同理:EF 理⊙O 2相切.(3)作MP ⊥OA 于P ,设MN =a ,由题意可得MP =MN =a . ∵MN ∥OA ,∴△CMN ∽△CAO .∴.MN CNAO CO =∴3a =解之,得a =此时,四边形OPMN 是正方形.∴3.2MN OP ==∴3(,0).2P -考虑到四边形PMNO 此时为正方形,∴点P 在原点时仍可满足△PNN 是以MN 为一直角边的等腰直角三角形.故x 轴上存在点P 使得△PMN 是一个以MN为一直角边的等腰直角三角形且3(,0)2P -或(0,0).P 5.(2004湖北宜昌)如图,已知点A(0,1)、C(4,3)、E(415,823),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的—个动点,点D 在y 轴,抛物线y =ax 2+b x +1以P 为顶点.(1)说明点A 、C 、E 在一条条直线上;(2)能否判断抛物线y =ax 2+b x +1的开口方向?请说明理由;(3)设抛物线y =ax 2+b x +1与x 轴有交点F 、G(F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点.这时能确定a 、b 的值吗?若能,请求出a 、b 的值;若不能,请确定a 、b 的取值范围. (本题图形仅供分析参考用)[解] (1)由题意,A(0,1)、C(4,3)确定的解析式为:y=21x 将点E 的坐标E(415,823)代入y=21x +1中,左边=823,右边=21×415+1=823, ∵左边=右边,∴点E 在直线y=21x +1上,即点A 、C 、E 在一条直线上.(2)解法一:由于动点P 在矩形ABCD 内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下解法二:∵抛物线y=ax 2+b x +c 的顶点P 的纵坐标为ab a 442—,且P 在矩形ABCD 内部,∴1<a b a 442—<3,由1<1—a b 42得—ab 42>0,∴a <0,∴抛物线的开口向下.(3)连接GA 、FA ,∵S △GAO —S △FAO =3 ∴21GO ·AO —21FO ·AO=3 ∵OA=1,∴GO —FO=6. 设F (x 1,0)、G (x 2,0),则x 1、x 2为方程ax 2+b x +c=0的两个根,且x 1<x 2,又∵a <0,∴x 1·x 2=a1<0,∴x 1<0<x 2, ∴GO= x 2,FO= —x 1,∴x 2—(—x 1)=6, 即x 2+x 1=6,∵x 2+x 1= —a b ∴—ab=6, ∴b= —6a ,∴抛物线解析式为:y=ax 2—6ax +1, 其顶点P 的坐标为由方程组 y=ax 2—6ax +1 y=21x +1 得:ax 2—(6a +21)x =0 (3,1—9a ), ∵顶点P 在矩形ABCD 内部, ∴1<1—9a <3, ∴—92<a <0.∴x =0或x =a a 216=6+a21. 当x =0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交 点,则有:0<6+a 21≤415,解得:—92≤a <—121 综合得:—92<a <—121 ∵b= —6a ,∴21<b <346.(2004湖南长沙)已知两点O(0,0)、B(0,2),⊙A 过点B 且与x 轴分别相交于点O 、C ,⊙A 被y 轴分成段两圆弧,其弧长之比为3∶1,直线l 与⊙A 切于点O ,抛物线的顶点在直线l 上运动. (1)求⊙A 的半径;(2)若抛物线经过O 、C 两点,求抛物线的解析式;(3)过l 上一点P 的直线与⊙A 交于C 、E 两点,且PC =CE ,求点E 的坐标; (4)若抛物线与x 轴分别相交于C 、F 两点,其顶点P 的横坐标为m ,求△PEC 的面积关于m 的函数解析式.[解] (1)由弧长之比为3∶1,可得∠BAO =90º再由AB =AO =r ,且OB =2,得r = 2 (2)⊙A 的切线l 过原点,可设l 为y =kx任取l 上一点(b ,kb ),由l 与y 轴夹角为45º可得: b =-kb 或b =kb ,得k =-1或k =1, ∴直线l 的解析式为y =-x 或y =x又由r ,易得C(2,0)或C(-2,0)由此可设抛物线解析式为y =ax (x -2)或y =ax (x +2) 再把顶点坐标代入l 的解析式中得a =1 ∴抛物线为y =x 2-2x 或y =x 2+2x……6分(3)当l 的解析式为y =-x 时,由P 在l 上,可设P(m ,-m)(m >0) 过P 作PP′⊥x 轴于P′,∴OP′=|m|,PP′=|-m|,∴OP =2m 2,又由切割线定理可得:OP 2=PC·PE,且PC =CE ,得PC =PE =m =PP′7分∴C 与P′为同一点,即PE ⊥x 轴于C ,∴m =-2,E(-2,2)…8分 同理,当l 的解析式为y =x 时,m =-2,E(-2,2)(4)若C(2,0),此时l 为y =-x ,∵P 与点O 、点C 不重合,∴m≠0且m≠2, 当m <0时,FC =2(2-m),高为|y p |即为-m , ∴S =22(2)()22m m m m --=-同理当0<m <2时,S =-m 2+2m ;当m >2时,S =m 2-2m ;∴S =222(02)2(02)m m m m m m m ⎧-<>⎨-+<<⎩或 又若C(-2,0), 此时l 为y =x ,同理可得;S =222(20)2(20)m m m m m m m ⎧+<->⎨---<<⎩或7.(2006江苏连云港)如图,直线4+=kx y 与函数)0,0(>>=m x xmy 的图像交于A 、B 两点,且与x 、y 轴分别交于C 、D 两点.(1)若COD ∆的面积是AOB ∆的面积的2倍,求k 与m 之间的函数关系式; (2)在(1)的条件下,是否存在k 和m ,使得以AB 为直径的圆经过点)0,2(P .若存在,求出k 和m 的值;若不存在,请说明理由.[解](1)设),(11y x A ,),(22y x B (其中2121,y y x x ><),由AOB COD S S ∆∆=2,得)(2BOD AOD COD S S S ∆∆∆-= ∴21·OC ·2=OD (21·OD ·-1y 21·OD ·2y ),(21y OC =又4=OC ,∴8)(221=-y y ,即84)(21221=-+y y y y , 由xmy =可得y m x =,代入4+=kx y 可得042=--km y y ①∴421=+y y ,km y y -=⋅21,∴8416=+km ,即mk 2-=. 又方程①的判别式08416>=+=∆km ,∴所求的函数关系式为mk 2-=)0(>m . (2)假设存在k ,m ,使得以AB 为直径的圆经过点)0,2(P则BP AP ⊥,过A 、B 分别作x 轴的垂线,垂足分别为M ∵MAP ∠与BPN ∠都与APM ∠互余,∴MAP ∠ BPN ∠=. ∴Rt MAP ∆∽Rt NPB ∆,∴NBMPPN AM =. ∴212122y x x y -=-,∴0)2)(2(2121=+--y y x x , ∴0)2)(2(2121=+--y y y m y m , 即0)(4)(222121212=+++-y y y y y y m m ②由(1)知421=+y y ,221=⋅y y ,代入②得01282=+-m m ,∴2=m 或6,又m k 2-=,∴⎩⎨⎧-==12k m 或⎪⎩⎪⎨⎧-==316k m , ∴存在k ,m ,使得以AB 为直径的圆经过点)0,2(P ,且⎩⎨⎧-==12k m 或⎪⎩⎪⎨⎧-==316k m . 8.(2004江苏镇江)已知抛物线2(5)5(0)y mx m x m =--->与x 轴交于两点1(,0)A x 、2(,0)B x 12()x x <,与y 轴交于点C ,且AB =6.(1)求抛物线和直线BC 的解析式.(2)在给定的直角坐标系中,画抛物线和直线BC .(3)若P 过A 、B 、C 三点,求P 的半径.(4)抛物线上是否存在点M ,过点M 作MN x ⊥轴于点N ,使MBN ∆被直线BC分成面积比为13:的两部分?若存在,请求出点M 的坐标;若不存在,请说明理由.[解](1)由题意得:12122155,, 6.m x x x x x x m m--+=⋅=-= 221212520()436,36,m x x x x m m -⎛⎫+-=+= ⎪⎝⎭解得1251,.7m m ==-经检验m =1,∴抛物线的解析式为:24y x =+或:由2(5)50m x m x ---=得,1x =或5x m-=0,m >516, 1.m m-∴-=∴= 抛物线的解析式为24 5.y x x =+-由2450x x +-=得125, 1.x x =-=∴A (-5,0),B (1,0),C (0,-5). 设直线BC 的解析式为,y kx b =+ 则5,5,0. 5.b b k b k =-=-⎧⎧∴⎨⎨+==⎩⎩ ∴直线BC 的解析式为5 5.y x =- (2)图象略.(3)法一:在Rt AOC D 中,5,45.OA OC OAC ==∴∠=︒90BPC ∴∠=︒.又BC == ∴P的半径PB == 法二:由题意,圆心P 在AB 的中垂线上,即在抛物线245y x x =+-的对称轴直线2x =-上,设P (-2,-h )(h >0),连结PB 、PC ,则222222(12),(5)2PB h PC h =++=-+,由22PB PC =,即2222(12)(5)2h h ++=-+,解得h =2.(2,2),P P ∴--∴的半径PB ==.法三:延长CP 交P 于点F .为P 的直径,90.CAF COB ∴∠=∠=︒ 又,.ABC AFC ACF OCB ∠=∠∴D ~D,.CF AC AC BCCF BC OC OC⋅∴=∴=又AC ==5,CO BC ===∞5CF ∴==(4)设MN 交直线BC 于点E ,点M 的坐标为2(,45),t t t +-则点E 的坐标为(,55).t t -若13,MEB ENB S S =D D ::则13.ME EN =::2434,45(55).3EN MN t t t ∴=∴+-=-::解得11t =(不合题意舍去),25,3t =540,.39M ⎛⎫∴ ⎪⎝⎭若31,MEB ENB S S =D D ::则31.ME EN =::214,454(55).EN MN t t t ∴=∴+-=-::解得31t =(不合题意舍去),415,t =()15,280.M ∴∴存在点M ,点M 的坐标为540,39⎛⎫⎪⎝⎭或(15,280).9. 如图,⊙M 与x 轴交于A 、B 两点,其坐标分别为)03(,-A 、)01(,B ,直径CD ⊥x 轴于N ,直线CE 切⊙M 于点C ,直线FG 切⊙M 于点F ,交CE 于G ,已知点G 的横坐标为3.(1) 若抛物线m x x y +--=22经过A 、B 、D 三点,求m 的值及点D 的坐标. (2) 求直线DF 的解析式.(3) 是否存在过点G 的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.[解] (1) ∵抛物线过A 、B 两点,∴11)3(-=⨯-m,m =3.∴抛物线为322+--=x x y .又抛物线过点D ,由圆的对称性知点D 为抛物线的顶点. ∴D 点坐标为)41(,-.(2) 由题意知:AB =4.∵CD ⊥x 轴,∴NA =NB =2. ∴ON =1. 由相交弦定理得:NA ·NB =ND ·NC , ∴NC ×4=2×2. ∴NC =1. ∴C 点坐标为)11(--,.设直线DF 交CE 于P ,连结CF ,则∠CFP =90°. ∴∠2+∠3=∠1+∠4=90°. ∵GC 、GF 是切线, ∴GC =GF . ∴∠3=∠4. ∴∠1=∠2. ∴GF =GP . ∴GC =GP . 可得CP =8.∴P 点坐标为)17(-,设直线DF 的解析式为b kx y +=则⎩⎨⎧-=+=+-174b k b k 解得⎪⎪⎩⎪⎪⎨⎧=-=82785b k∴直线DF 的解析式为:82785+-=x y(3) 假设存在过点G 的直线为11b x k y +=,(第9题图)则1311-=+b k ,∴1311--=k b .由方程组⎩⎨⎧+--=--=3213211x x y k x k y 得034)2(112=--++k x k x 由题意得421=--k ,∴61-=k . 当61-=k 时,040<-=∆, ∴方程无实数根,方程组无实数解. ∴满足条件的直线不存在.10.(2004山西)已知二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为P.(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象; (2)设D 为线段OC 上的一点,满足∠DPC =∠BAC ,求点D 的坐标; (3)在x 轴上是否存在一点M ,使以M 为圆心的圆与AC 、PC 所在的直线及y 轴都相切?如果存在,请求出点M 的坐标;若不存在,请说明理由.[解] (1)解:∵二次函数212y x bx c =++的图象过点A (-3,6),B (-1,0)得9362102b c b c ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解得132b c =-⎧⎪⎨=-⎪⎩∴这个二次函数的解析式为:21322y x x =-- 由解析式可求P (1,-2),C (3,0) 画出二次函数的图像(2)解法一:易证:∠ACB =∠PCD =45°又已知:∠DPC =∠BAC ∴△DPC ∽△BAC ∴DC PCBC AC=易求4AC PC BC === ∴43DC = ∴45333OD =-= ∴5,03D ⎛⎫⎪⎝⎭解法二:过A 作AE ⊥x 轴,垂足为E.设抛物线的对称轴交x 轴于F. 亦可证△AEB ∽△PFD 、 ∴PE EBPF FD=. 易求:AE =6,EB =2,PF =2∴23FD =∴25133OD =+= ∴5,03D ⎛⎫ ⎪⎝⎭(3)存在.(1°)过M 作MH ⊥AC ,MG ⊥PC 垂足分别为H 、G ,设AC 交y 轴于S ,CP 的延长线交y 轴于T∵△SCT 是等腰直角三角形,M 是△SCT 的内切圆圆心, ∴MG =MH =OM又∵MC =且OM +MC =OC3,3OM OM +==得∴()3,0M(2°)在x 轴的负半轴上,存在一点M ′ 同理OM′+OC =M′C,OM OC ''+=得3OM '= ∴M′()3,0- 即在x 轴上存在满足条件的两个点.11.(2004浙江绍兴)在平面直角坐标系中,A (-1,0),B (3,0).(1)若抛物线过A ,B 两点,且与y 轴交于点(0,-3),求此抛物线的顶点坐标;(2)如图,小敏发现所有过A ,B 两点的抛物线如果与y 轴负半轴交于点C ,M 为抛物线的顶点,那么△ACM 与△ACB 的面积比不变,请你求出这个比值; (3)若对称轴是AB 的中垂线l 的抛物线与x 轴交于点E ,F ,与y 轴交于点C ,过C 作CP ∥x 轴交l 于点P ,M 为此抛物线的顶点.若四边形PEMF 是有一个内角为60°的菱形,求次抛物线的解析式.[解] (1)322--=x x y ,顶点坐标为(1,-4).(2)由题意,设y =a (x +1)(x -3), 即y =ax 2-2ax -3a ,∴ A (-1,0),B (3,0),C (0,-3a ), M (1,-4a ),∴ S △ACB =21×4×a 3-=6a ,而a >0, ∴ S △ACB =6A 、 作MD ⊥x 轴于D ,又S △ACM =S △ACO +S OCMD -S △AMD =21·1·3a +21(3a +4a )-21·2·4a =a , ∴ S △ACM :S △ACB =1:6.(3)①当抛物线开口向上时,设y =a (x -1)2+k ,即y =ax 2-2ax +a +k , 有菱形可知k a +=k ,a +k >0,k <0, ∴ k =2a-, ∴ y =ax 2-2ax +2a, ∴ 2=EF . 记l 与x 轴交点为D ,若∠PEM =60°,则∠FEM =30°,MD =DE·tan30°=66, ∴ k =-66,a =36, ∴ 抛物线的解析式为666326312+-=x x y .若∠PEM =120°,则∠FEM =60°,MD =DE·tan60°=26, ∴ k =-26,a =6, ∴ 抛物线的解析式为266262+-=x x y . ②当抛物线开口向下时,同理可得666326312-+-=x x y ,266262-+-=x x y . 12.(2005北京)已知:在平面直角坐标系xOy 中,一次函数y k x k=-4的图象与x 轴交于点A ,抛物线y a xb x c =++2经过O 、A 两点。
解答压轴题2022年天津数学中考真题汇编

解答压轴题2022年天津数学中考真题汇编1.已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(1) 当a=1,m=−3时,求该抛物线的顶点坐标;(2) 若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是√222.已知抛物线y=x2−bx+c(b,c为常数,b>0)经过点A(−1,0),点M(m,0)是x轴正半轴上的动点.(1) 当b=2时,求抛物线的顶点坐标;(2) 点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(3) 点Q(b+12,y Q)在抛物线上,当√2AM+2QM的最小值为33√24时,求b的值.3.在平面直角坐标系中,O(0,0),A(1,0).已知抛物线y=x2+mx−2m(m是常数),顶点为P.(1) 当抛物线经过点A时,求顶点P的坐标;(2) 若点P在x轴下方,当∠AOP=45∘时,求抛物线的解析式;(3) 无论m取何值,该抛物线都经过定点H.当∠AHP=45∘时,求抛物线的解析式.4.已知抛物线y=x2+bx−3(b是常数)经过点A(−1,0).(1) 求该抛物线的解析式和顶点坐标;(2) P(m,t)为抛物线上的一个动点,P关于原点的对称点为Pʹ.①当点Pʹ落在该抛物线上时,求m的值;②当点Pʹ落在第二象限内,PʹA2取得最小值时,求m的值.5.已知抛物线C:y=x2−2x+1的顶点P,与y轴的交点为Q,点F(1,12).(1) 求点P,Q的坐标;(2) 将抛物线C向上平移得到抛物线Cʹ,点Q平移后的对应点为Qʹ,且FQʹ=OQʹ.①求抛物线Cʹ的解析式;②若点P关于直线QʹF的对称点为K,射线FK与抛物线Cʹ相交于点A,求点A的坐标.答案1. 【答案】(1) 当 a =1,m =−3 时,抛物线的解析式为 y =x 2+bx −3, ∵ 抛物线经过点 A (1,0), ∴0=1+b −3,解得 b =2, ∴ 抛物线的解析式为 y =x 2+2x −3, ∵y =x 2+2x −3=(x +1)2−4, ∴ 抛物线的顶点坐标为 (−1,−4).(2) ① ∵ 抛物线 y =ax 2+bx +m 经过点 A (1,0) 和 M (m,0),m <0, ∴0=a +b +m ,0=am 2+bm +m ,即 am +b +1=0, ∴a =1,b =−m −1,∴ 抛物线的解析式为 y =x 2−(m +1)x +m , 根据题意,得点 C (0,m ),点 E (m +1,m ), 过点 A 作 AH ⊥l 于点 H , 由点 A (1,0),得点 H (1,m ),在 Rt △EAH 中,EH =1−(m +1)=−m ,HA =0−m =−m , ∴AE =√EH 2+HA 2=−√2m , ∵AE =EF =2√2,∴−√2m =2√2,解得 m =−2,此时,点 E (−1,−2),点 C (0,−2),有 EC =1, ∵ 点 F 在 y 轴上,∴ 在 Rt △EFC 中,CF =√EF 2−EC 2=√7, ∴ 点 F 的坐标为 (0,−2−√7) 或 (0,−2+√7). ②由 N 是 EF 的中点,得 CN =12EF =√2,根据题意,点 N 在以点 C 为圆心、 √2 为半径的圆上, 由点 M (m,0),点 C (0,m ),得 MO =−m ,CO =−m , ∴ 在 Rt △MCO 中,MC =√MO 2+CO 2=−√2m ,当 MC ≥√2,即 m ≤−1 时,满足条件的点 N 落在线段 MC 上, MN 的最小值为 MC −NC =−√2m −√2=√22,解得 m =−32;当 MC <√2,即 −1<m <0 时,满足条件的点 N 落在线段 CM 的延长线上, MN 的最小值为 NC −MC =√2−(−√2m)=√22,解得 m =−12,∴ 当 m 的值为 −32或 −12时,MN 的最小值是 √22.2. 【答案】(1) ∵ 抛物线 y =x 2−bx +c 经过点 A (−1,0),∴ 1+b +c =0, 即 c =−b −1.当 b =2 时,y =x 2−2x −3=(x −1)2−4, ∴ 抛物线的顶点坐标为 (1,−4).(2) 由(1)知,抛物线的解析式为 y =x 2−bx −b −1. ∵ 点 D (b,y D ) 在抛物线 y =x 2−bx −b −1 上, ∴ y D =b 2−b ⋅b −b −1=−b −1. 由 b >0,得 b >b2>0,−b −1<0,∴ 点 D (b,−b −1) 在第四象限,且在抛物线对称轴 x =b2 的右侧. 如图,过点 D 作 DE ⊥x 轴,垂足为 E ,则点 E (b,0). ∴ AE =b +1,DE =b +1.得 AE =DE . ∴ 在 Rt △ADE 中,∠ADE =∠DAE =45∘. ∴ AD =√2AE .由已知 AM =AD ,m =5, ∴ 5−(−1)=√2(b +1). ∴ b =3√2−1.(3) ∵ 点 Q (b +12,y Q ) 在抛物线 y =x 2−bx −b −1 上,∴ y Q =(b +12)2−b (b +12)−b −1=−b 2−34.可知点 Q (b +12,−b2−34) 在第四象限,且在直线 x =b 的右侧,考虑到 √2AM +2QM =2(√22AM +QM),可取点 N (0,1),如图,过点 Q 作直线 AN 的垂线,垂足为 G ,QG 与 x 轴相交于点 M , 有 ∠GAM =45∘,得√22AM =GM ,则此时点 M 满足题意.过点 Q 作 QH ⊥x 轴于点 H ,则点 H (b +12,0), 在 Rt △MQH 中,可知 ∠QMH =∠MQH =45∘. ∴ QH =MH ,QM =√2MH .∵ 点 M (m,0),∴ 0−(−b2−34)=(b +12)−m ,解得 m =b2−14.∵ √2AM +2QM =33√24, ∴ √2[(b2−14)−(−1)]+2√2[(b +12)−(b2−14)]=33√24.∴ b =4.3. 【答案】(1) ∵ 抛物线 y =x 2+mx −2m 经过 A (1,0), ∴0=1+m −2m ,解得 m =1. ∴ 抛物线的解析式为 y =x 2+x −2. ∵y =x 2+x −2=(x +12)2−94,∴ 顶点 P 的坐标为 (−12,94). (2) 由题意可知,抛物线 y =x 2+mx −2m 的顶点 P 的坐标为 (−m 2,−m 2+8m4).由点 A (1,0) 在 x 轴正半轴上,点 P 在 x 轴下方,∠AOP =45∘,知点 P 在第四象限. 如图 1,过点 P 作 PQ ⊥x 轴于点 Q , 则 ∠POQ =∠OPQ =45∘. 可知 PQ =OQ ,即m 2+8m4=−m2,解得 m 1=0,m 2=−10.当 m =0 时,点 P 不在第四象限,舍去. ∴m =−10.∴ 抛物线解析式为 y =x 2−10x +20.(3) 由 y =x 2+mx −2m =(x −2)m +x 2 可知,当 x =2 时,无论 m 取何值,y 都等于 4,得点 H 的坐标为 (2,4).如图 2,过点 A 作 AD ⊥AH ,交射线 HP 于点 D ,分别过点 D ,H 作 x 轴的垂线,垂足分别为 E ,G ,则 ∠DEA =∠AGH =90∘. ∵∠DAH =90∘,∠AHD =45∘, ∴∠ADH =45∘. ∴AH =AD .∵∠DAE +∠HAG =∠AHG +∠HAG =90∘, ∴∠DAE =∠AHG . 在 △ADE 和 △HAG 中, {∠DEA =∠AGH =90∘,∠DAE =∠AHG,AD =HA,∴△ADE ≌△HAG .∴DE =AG =1,AE =HG =4.可得点 D 的坐标为 (−3,1) 或 (5,−1).①当点 D 的坐标为 (−3,1) 时,可得直线 DH 的解析式为 y =35x +145.∵P (−m2,−m 2+8m4) 在直线 y =35x +145上,∴−m 2+8m4=35×(−m 2)+145,解得 m 3=−4,m 4=−145. 当 m =−4 时,点 P 与点 H 重合,不符合题意, ∴m =−145.②当点 D 的坐标为 (5,−1) 时,可得直线 DH 的解析式为 y =−53x +223.∵P (−m 2,−m 2+8m4) 在直线 y =−53x +223上,∴−m 2+8m4=−53×(−m2)+223,解得 m 5=−4(舍),m 6=−223. ∴m =−223.综上,m =−145 或 m =−223. 故抛物线解析式为 y =x 2−145x +285或 y =x 2−223x +443.4. 【答案】(1) ∵ 抛物线 y =x 2+bx −3 经过点 A (−1,0), ∴ 0=1−b −3,解得 b =−2. ∴ 抛物线的解析式为 y =x 2−2x −3. ∵ y =x 2−2x −3=(x −1)2−4,∴ 顶点坐标为 (1,−4).(2) ①由点 P (m,t ) 在抛物线 y =x 2−2x −3 上,有 t =m 2−2m −3. 又点 Pʹ 和 P 关于原点对称,有 Pʹ(−m,−t ). ∵ 点 Pʹ 落在抛物线 y =x 2−2x −3 上,∴ −t =(−m )2−2(−m )−3,即 t =−m 2−2m +3. ∴ m 2−2m −3=−m 2−2m +3. 解得 m 1=√3,m 2=−√3.②由题意知,Pʹ(−m,−t ) 在第二象限, ∴ −m <0,−t >0,即 m >0,t <0.又抛物线 y =x 2−2x −3 的顶点坐标是 (1,−4),得 −4≤t <0. 过点 Pʹ 作 PʹH ⊥x 轴,H 为垂足,又 H (−m,0). 又 A (−1,0),t =m 2−2m −3,则 PʹH 2=t 2,AH 2=(−m +1)2=m 2−2m +1=t +4. 当点 A 和 H 不重合时,在 Rt △PʹAH 中,PʹA 2=PʹH 2+AH 2; 当点 A 和 H 重合时,AH =0,PʹA 2=PʹH 2,符合上式. ∴ PʹA 2=PʹH 2+AH 2,即 PʹA 2=t 2+t +4(−4≤t <0). 记 yʹ=t 2+t +4,则 yʹ=(t +12)2+154.∴ 当 t =−12 时,yʹ 取得最小值.把 t =−12代入 t =m 2−2m −3,得 −12=m 2−2m −3.解得 m 1=2−√142,m 2=2+√142.由 m >0,可知 m =2−√142不符合题意.∴ m =2+√142.5. 【答案】(1) ∵ y =x 2−2x +1=(x −1)2, ∴ 顶点 P 的坐标为(1,0). ∵ 当 x =0 时,y =1, ∴ 点 Q 的坐标为(0,1).(2) ①根据题意,设抛物线 Cʹ 的解析式为 y =x 2−2x +m , 则点 Qʹ 的坐标为 (0,m ),其中 m >1.得 OQʹ=m . ∵ 点 F (1,12),过点 F 作 FH ⊥OQʹ,垂足为 H , 则 FH =1,QʹH =m −12.在 Rt △FQʹH 中,根据勾股定理, 得 FQʹ2=QʹH 2+FH 2.∴ FQʹ2=(m −12)2+12=m 2−m +54.∵ FQʹ=OQʹ,∴ m 2−m +54=m 2,解得 m =54. ∴ 抛物线 Cʹ 的解析式为 y =x 2−2x +54.②由①有,Qʹ(0,54),F (1,12),P (1,0), ∴ 直线 FQʹ 的解析式为 y =−34x +54①,∵FQʹ⊥PK ,P (1,0),∴ 直线 PK 的解析式为 y =43x −43 ②联立①②得出,直线 FQʹ 与 PK 的交点 M 坐标为 (3125,825),∵ 点 P ,K 关于直线 FQʹ 对称, ∴K (3725,1625). ∵F (1,12),∴ 直线 FK 的解析式为 y =724x +524③,∵ 射线 FK 与抛物线 C ′:y =x 2−2x +54④相交于点 A , ∴ 联立③④得,{x =53,y =2536或 {x =58,y =2564(舍), ∴A (53,2536).。
2024届天津市和平区二十一中中考数学押题卷含解析

2024学年天津市和平区二十一中中考数学押题卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是正方体表面展开图的是()A.B.C. D.2.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是4.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15°方向,那么海岛B 离此航线的最近距离是( )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)A .4.64海里B .5.49海里C .6.12海里D .6.21海里 5.函数y=ax 2+1与ay x=(a≠0)在同一平面直角坐标系中的图象可能是( ) A . B . C . D .6.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。
天津中考数学压轴题全搞定

九年级数学冲刺讲义二次函数12题1. 已知关于x的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当x<2时,对应的函数值y<0;③当x<2时,函数值y随x的增大而增大.你认为符合要求的函数的解析式可以是:(写出一个即可,答案不唯一).2.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个3.已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.4.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或35.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.36.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.37.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列结论:①b 2﹣4ac >0;②abc >0;③8a+c >0;④9a+3b+c <0其中,正确结论的个数是( )A .1B .2C .3D .48.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m (am+b )(m≠1的实数).其中正确的结论有( )A .2个B .3个C .4个D .5个9. 已知抛物线y=x 2-(2m-1)x+2m 不经过第三象限,且当x>2时,函数值y 随x 的增大而增大,则实数m 的取值范围是( )A.0≤m≤1.5B.m≥1.5C.0≤m≤1D.0<m≤1.5网格题18题1. 如图,在下列网格中,每个小正方形的边长都是1,点A 、B 、Q 、P 均为格点。
天津市武清区重点名校2024届中考数学最后冲刺浓缩精华卷含解析

天津市武清区重点名校2024届中考数学最后冲刺浓缩精华卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.12.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨3.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正yx比例函数y=kx图象上,则k的值是()A .25-B .121-C .15-D .124-4.估计3﹣2的值应该在( ) A .﹣1﹣0之间B .0﹣1之间C .1﹣2之间D .2﹣3之间5.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( ) 用水量x (吨) 3 4 5 6 7 频数1254﹣xxA .平均数、中位数B .众数、中位数C .平均数、方差D .众数、方差6.二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y =ax +c 的图象不经第四象限C .m (am +b )+b <a (m 是任意实数)D .3b +2c >07.如图,在平面直角坐标系中,直线y=k 1x+2(k 1≠0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=2k x在第二象限内的图象交于点C ,连接OC ,若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .3B .﹣12C .﹣3D .﹣68.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .10D .129.下列图形是中心对称图形的是( )A .B .C .D .10.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩()m 1.50 1.60 1.65 1.70 1.75 1.80 人数124 332这些运动员跳高成绩的中位数是( ) A .1.65mB .1.675mC .1.70mD .1.75m二、填空题(共7小题,每小题3分,满分21分) 11.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.12.有一组数据:3,a ,4,6,7,它们的平均数是5,则a =_____,这组数据的方差是_____. 13.一个正四边形的内切圆半径与外接圆半径之比为:_________________14.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙P 的半径为13,则点P 的坐标为_______.15.分解因式:22a 4a 2-+=_____.16.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.17.不等式组13210x x -≤⎧⎨-<⎩的解集为_____.三、解答题(共7小题,满分69分)18.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)19.(5分)如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次函数值的x的取值范围;若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积;20.(8分)如图,在平面直角坐标系中,等边三角形ABC 的顶点B 与原点O 重合,点C 在x 轴上,点C 坐标为(6,0),等边三角形ABC 的三边上有三个动点D 、E 、F (不考虑与A 、B 、C 重合),点D 从A 向B 运动,点E 从B 向C 运动,点F 从C 向A 运动,三点同时运动,到终点结束,且速度均为1cm/s ,设运动的时间为ts ,解答下列问题: (1)求证:如图①,不论t 如何变化,△DEF 始终为等边三角形.(2)如图②过点E 作EQ ∥AB ,交AC 于点Q ,设△AEQ 的面积为S ,求S 与t 的函数关系式及t 为何值时△AEQ 的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ 的面积最大时,平面内是否存在一点P ,使A 、D 、Q 、P 构成的四边形是菱形,若存在请直接写出P 坐标,若不存在请说明理由?21.(10分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.,,,,五类校本课22.(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对A B C D E程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为;(2)补全条形统计图(3)扇形统计图中,C类所在扇形的圆心角的度数为;,两类校本课程的学生约共有多少名.(4)若该中学有2000名学生,请估计该校最喜爱C D23.(12分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.24.(14分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据基本作图的方法即可得到结论.【题目详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【题目点拨】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.2、C【解题分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【题目详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【题目点拨】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.3、B【解题分析】根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【题目详解】解:∵矩形OABC,∴CB∥x轴,AB∥y轴.∵点B坐标为(6,1),∴D的横坐标为6,E的纵坐标为1.∵D,E在反比例函数6yx=的图象上,∴D(6,1),E(32,1),∴BE=6﹣32=92,BD=1﹣1=3,∴ED22BE BD+3132.连接BB′,交ED于F,过B′作B′G⊥BC于G.∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF •ED =BE •BD BF =3×92, ∴BF, ∴BB设EG =x ,则BG =92﹣x . ∵BB ′2﹣BG 2=B ′G 2=EB ′2﹣GE 2, ∴222299()()22x x --=-,∴x =4526, ∴EG =4526,∴CG =4213,∴B ′G =5413,∴B ′(4213,﹣213),∴k =121-.故选B . 【题目点拨】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键. 4、A 【解题分析】【题目详解】解:∵12,∴1-2﹣2<2-2,∴-1﹣2<0即3-2在-1和0之间. 故选A . 【题目点拨】此题主要考查了估算无理数大小,正确得出3的取值范围是解题关键. 5、B 【解题分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案. 【题目详解】∵6吨和7吨的频数之和为4-x+x=4, ∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x ,中位数不会发生改变, ∵后两组频数和等于4,小于5,∴对于不同的正整数x ,众数不会发生改变,众数依然是5吨. 故选B . 【题目点拨】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键. 6、D 【解题分析】解:A .由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,由x =﹣1,得出2ba=﹣1,故b >0,b =2a ,则b >a >c ,故此选项错误;B .∵a >0,c <0,∴一次函数y =ax +c 的图象经一、三、四象限,故此选项错误;C .当x =﹣1时,y 最小,即a ﹣b ﹣c 最小,故a ﹣b ﹣c <am 2+bm +c ,即m (am +b )+b >a ,故此选项错误;D .由图象可知x =1,a +b +c >0①,∵对称轴x =﹣1,当x =1,y >0,∴当x =﹣3时,y >0,即9a ﹣3b +c >0② ①+②得10a ﹣2b +2c >0,∵b =2a ,∴得出3b +2c >0,故选项正确; 故选D .点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y =a +b +c ,然后根据图象判断其值. 7、C【解题分析】如图,作CH ⊥y 轴于H .通过解直角三角形求出点C 坐标即可解决问题. 【题目详解】解:如图,作CH ⊥y 轴于H .由题意B (0,2), ∵112OB CH ⋅⋅=, ∴CH=1, ∵tan ∠BOC=1,3CH OH = ∴OH=3, ∴C (﹣1,3),把点C (﹣1,3)代入2k y x=,得到k 2=﹣3, 故选C . 【题目点拨】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 8、C 【解题分析】连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM+MD 的最小值,由此即可得出结论. 【题目详解】 连接AD ,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=1.故选C.【题目点拨】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.9、B【解题分析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.考点:中心对称图形.【题目详解】请在此输入详解!10、C【解题分析】根据中位数的定义解答即可.【题目详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.所以这些运动员跳高成绩的中位数是1.1.故选:C.【题目点拨】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题(共7小题,每小题3分,满分21分)11、(﹣1,﹣1)【解题分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【题目详解】 x=-422⨯=-1, 把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【题目点拨】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.12、5 1. 【解题分析】∵一组数据:3,a ,4,6,7,它们的平均数是5,∴346755a ++++=⨯,解得,5a =,∴2222221[(35)(55)(45)(65)(75)]5s =-+-+-+-+-=1. 故答案为5,1.13、【解题分析】如图,正方形ABCD 为⊙O 的内接四边形,作OH ⊥AB 于H ,利用正方形的性质得到OH 为正方形ABCD 的内切圆的半径,∠OAB =45°,然后利用等腰直角三角形的性质得OA =OH 即可解答.【题目详解】解:如图,正方形ABCD 为⊙O 的内接四边形,作OH ⊥AB 于H ,则OH 为正方形ABCD 的内切圆的半径,∵∠OAB =45°,∴OA =OH , ∴ 即一个正四边形的内切圆半径与外接圆半径之比为, 故答案为:.【题目点拨】本题考查了正多边形与圆的关系:把一个圆分成n (n 是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.14、(3,2).【解题分析】过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.【题目详解】过点P 作PD ⊥x 轴于点D ,连接OP ,∵A (6,0),PD ⊥OA ,∴OD=12OA=3, 在Rt △OPD 中 ∵13 OD=3,∴PD=2∴P(3,2) .故答案为(3,2).【题目点拨】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15、()22a 1-【解题分析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 16、45. 【解题分析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为45. 【题目点拨】本题考查概率公式,掌握图形特点是解题关键,难度不大.17、﹣2≤x <12【解题分析】根据解不等式的步骤从而得到答案.【题目详解】1-x 32x-10≤⎧⎨⎩①<②, 解不等式①可得:x ≥-2,解不等式②可得:x <12, 故答案为-2≤x <12. 【题目点拨】本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.三、解答题(共7小题,满分69分)18、(1)13;(2)19;(3)第一题. 【解题分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案; (3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【题目详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13;故答案为13; (2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19; (3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18, 因为18>19, 所以建议小明在第一题使用“求助”.【题目点拨】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.19、(1)()()31y x x =-+-;(2)2x <-或1x >;(3)1.【解题分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【题目详解】(1)∵二次函数与x 轴的交点为()30A -,和()10B , ∴设二次函数的解析式为:()()31y a x x =+-∵()0,3C 在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x =-+-;(2)()()31y x x =-+-=−x 2−2x +3,∴二次函数的对称轴为直线1x =-;∵点C 、D 是二次函数图象上的一对对称点;()0,3C∴()2,3D -;∴使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=, 解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1,把x =0代入()()31y x x =-+-得,y=3,所以E (0,1),∴OE =1,又∵AB =1,∴S △ADE =12×1×3−12×1×1=1. 【题目点拨】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.20、(1)证明见解析;(2)当t=3时,△AEQ 93cm 2;(3)(3,0)或(6,30,3 【解题分析】(1)由三角形ABC 为等边三角形,以及AD=BE=CF ,进而得出三角形ADF 与三角形CFE 与三角形BED 全等,利用全等三角形对应边相等得到BF=DF=DE ,即可得证;(2)先表示出三角形AEC 面积,根据EQ 与AB 平行,得到三角形CEQ 与三角形ABC 相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ 面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q 的坐标即可;(3)当△AEQ 的面积最大时,D 、E 、F 都是中点,分两种情形讨论即 可解决问题;【题目详解】(1)如图①中,∵C (6,0),∴BC=6在等边三角形ABC 中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t <6时,AD=BE=CF=t ,∴BD=CE=AF=6﹣t ,∴△ADF ≌△CFE ≌△BED (SAS ),∴EF=DF=DE ,∴△DEF 是等边三角形,∴不论t 如何变化,△DEF 始终为等边三角形;(2)如图②中,作AH ⊥BC 于H ,则AH=AB•sin60°=33,∴S △AEC =12×3(6﹣t )=33(6)2t -, ∵EQ ∥AB ,∴△CEQ ∽△ABC ,∴CEQ ABC S S =(CE CB )2=2(6)36t -,即S △CEQ =2(6)36t -S △ABC =2(6)36t -×323(6)t -,∴S△AEQ=S△AEC﹣S△CEQ=33(6)2t-﹣23(6)4t-=﹣34(t﹣3)2+934,∵a=﹣34<0,∴抛物线开口向下,有最大值,∴当t=3时,△AEQ的面积最大为934cm2,(3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,当AD为菱形的边时,可得P1(3,0),P3(6,3,当AD为对角线时,P2(0,3),综上所述,满足条件的点P坐标为(3,0)或(6,30,3.【题目点拨】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)见解析;(2)25【解题分析】分析:(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得AD ABCD BD=,在Rt△ABD中由AD=6,AB=9易得BD=35,由此即可解得CD的长了.详解:(1)如下图,连接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切线.(2)如下图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=9,AD=6,∴BD=2296-=45=35,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴AD AB CD BD=,∴6935 CD=,∴CD=185=259.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.22、(1)300;(2)见解析;(3)108°;(4)约有840名.【解题分析】(1)根据A种类人数及其占总人数百分比可得答案;(2)用总人数乘以B的百分比得出其人数,即可补全条形图;(3)用360°乘以C类人数占总人数的比例可得;(4)总人数乘以C、D两类人数占样本的比例可得答案.【题目详解】解:(1)本次被调查的学生的人数为69÷23%=300(人),故答案为:300;(2)喜欢B类校本课程的人数为300×20%=60(人),补全条形图如下:(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×90300=108°,故答案为:108°;(4)∵2000×90+36300=840,∴估计该校喜爱C,D两类校本课程的学生共有840名.【题目点拨】本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.23、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【解题分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【题目点拨】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.24、证明见解析.【解题分析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D ∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质。
【中考压轴】天津市和平区 2019年中考数学压轴题 专题复习 15题(含答案)

2019年中考数学压轴题专题复习1.如图,抛物线y=ax2+bx+3交x轴于A(-1,0)和B(5,0),交y轴于点C,点D是线段OB上一动点,连接CD,将CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF,CE交于点G.(1)求抛物线解析式;(2)求线段DF的长;(3)当DG=时.①求tan∠CGD的值;②试探究在x轴上方的抛物线上,是否存在点P,使∠EDP=45°?若存在,请写出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=x2+bx+c与直线y=-x+3相交于坐标轴上的A,B两点,顶点为C.(1)填空:b= ,c= ;(2) 将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c没有交点?(3) 直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.3.已知二次函数y=x2-2mx+4m-8.(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围;(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正△AMN(M,N两点在抛物线上).请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的值.4.如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.5.已知O点为坐标原点,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,且O,C两点间的距离为3.1(1)求点C的坐标;(2)抛物线y1=ax2+bx+c(a≠0)与x轴交于点A(x1,0),B(x2,0),x1∙x2<0,|x1|+|x2|=4.点A,C在直线y2=-3x+t上.①求该抛物线的顶点坐标;②将抛物线y1=ax2+bx+c(a≠0)向左平移n(n>0)个单位,记平移后y随x的增大而增大的部分为P,直线y2=-3x+t向下平移n个单位,当平移后的直线与P有公共点,求2n2-5n的最小值.6.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.7.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM 是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.8.如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出MN:NC的值,并求出此时点M的坐标.9.如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A ,k ;(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=-0.25x2的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.10.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?11.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P 是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.12.在等腰△ABC中,AB=AC=10,BC=12,D为底边BC的中点,以D为顶点的角∠PDQ=∠B.(1)如图1,若射线DQ经过点A,DP交AC边于点E,直接写出与△CDE相似的三角形;(2)如图2,若射线DQ交AB于点F,DP交AC边于点E,设AF=x,AE为y,试写出y与x的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,连接EF,则△DEF与△CDE相似吗?试说明理由.13.如图,在平面直角坐标系中,直线交x轴于点P,交y轴于点A,抛物线的图象过点E(-1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标,若不存在,请说明理由.14.如图,已知在平面直角坐标系中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.15.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM 为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.答案1.2.3.解:4.解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+2),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=0.5•(OC+HD)•OH=7.5,S△HBD=0.5•HD•HB=4,∴S四边形OCDB=7.5.∴S△OCE=S四边形OCDB=7.5=,∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得 x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=kx+b,∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣1.5)2+2.25,(1<x P≤3),∴当x P=1.5时,线段PF长度最大为2.25.5.解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,-3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=-3x+t,则0+t=3,即t=3,∴y2=-3x+3,把A(x1,0)代入y2=-3x+3,则-3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1-x2=4,解得:x2=-3,则B(-3,0),代入y1=aa-b-3=09a+3b-3=0,解得:a=1b=-2,∴y1=x2-2x-3=(x-1)2-4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤-1;若c=-3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,y1向左平移n个单位后,则解析式为:y3=-(x+1+n)2+4,则当x≤-1-n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=-3x+3-n,要使平移后直线与P有公共点,则当x=-1-n,y3≥y4,即-(-1-n+1+n)2+4ax2+bx+3得,a+b+3=09a-3b+3=0,解得:a=-1b=-2,∴y1=-x2-2x+3=-(x+1)2+4,则当x≤-1时,y随x增大而增大.②若C(0,-3),即c=-3,把C(0,-3)代入y2=-3x+t,则0+t=-3,即t=-3,∴y2=-3x-3,把A(x1,0),代入y2=-3x-3,则-3x1-3=0,即x1=-1,∴A(-1,0),∵x1,x2异号,x1=-1<0,∴x2>0 ∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,-1-n)+3-n,得:n≤-1,∵n>0,∴n≤-1不符合条件,应舍去;②若c=-3,则y1=x2-2x-3=(x-1)2-4,y2=-3x-3,y1向左平移n个单位后,则解析式为:y3=(x-1+n)2-4,则当x≥1-n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=-3x-3-n,要使平移后直线与P有公共点,则当x=1-n,y3≤y4,即(1-n-1+n)2-4≤-3(1-n)-3-n,解得:n≥1,综上所述:n≥1,2n2-5n=2(n-54)2-25/8,∴当n=54时,2n2-5n的最小值为:-25/8.6.7.解:8.【解答】解:(1)∵A (1,3),B (4,0)在抛物线y=mx 2+nx 的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△B C N=2S△P M N,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).9.10.11.12.【解答】解:(1)与△CDE相似的三角形为△ABD,△ACD,△ADE;理由如下:∵AB=AC,D为底边BC的中点,∴∠B=∠C,AD⊥BC,∴∠ADB=∠ADC=90°,∴△ABD∽△ACD,∵∠PDQ=∠B,∴∠PDQ=∠C,又∵∠DAE=∠CAD,∴△ADE∽△ACD;∵∠CDE+∠PDQ=90°,∴∠C+∠PDQ=90°,∴∠CED=90°=∠ADC,又∵∠C=∠C,∴△CDE∽△CAD,∴△△ABD∽△ACD∽△ADE∽△CDE;(2)∵∠FDC=∠B+∠BDF,∠FDC=∠FDE+∠EDC,∴∠EDC=∠BDF,∴△BDF∽△CDE,∴,∵D为BC的中点,∴BD=CD=6,∴∴y=;(3)△DEF与△CDE相似.理由如下:如图所示:由(2)可知:△BDF∽△CDE,则,∵BD=CD,∴,又∵∠EDF=∠C,∴△DEF∽△CED.13.14.15.解:第21 页共21 页。
2023天津中考数学压轴题

2023天津中考数学压轴题
一辆汽车以每小时60公里的速度行驶,行驶了4小时后,剩余的路程还有多少公里?
一个长方形花坛的长是8米,宽是5米,如果每平方米能种3株花,那么这个花坛最多能种多少株花?
一桶水有30升,小明用每分钟2升的速度倒水,需要多少分钟才能倒完?
一个正方形的边长是6厘米,求其面积和周长。
一条绳子长12米,小明每天用1.5米的速度剪断,需要多少天才能剪断整条绳子?
一个三角形的底边长是10厘米,高是8厘米,求其面积。
一辆自行车以每小时15公里的速度行驶,行驶了3小时后,剩余的路程还有多少公里?一个长方形的长是18米,宽是5米,求其面积和周长。
一桶油有40升,小明用每分钟3升的速度倒油,需要多少分钟才能倒完?
一个正方形的边长是9厘米,求其面积和周长。
最新整理天津市和平区中考数学压轴题综合训练及答案详解

心位置,正方形 EFGH绕点 E 顺时针方向旋转,设它们重叠部分的面积为
S,旋转的角度为 θ , S 与
θ 的函数关系的大致图象是(
)
6. 如图,D 是△ ABC的 AC边上一点, AB=AC,BD=BC,将△ BCD沿 BD折叠, 顶点 C恰好 落在 AB边的 C′
处,则∠ A′的大小是(
)
A. 40°
( 1)分别求出 y 与 x,w 与 x 的函数关系式;
( 2)在今年内该单位哪个月获得利润达到 5800 元?
15. 如图,矩形 ABCD中, AB=6cm,BC=8cm动, 点 P 从点 A 出发 , 在 AC上以每秒 5cm 的速度向点 C匀速 运动,同时动点 Q 从点 D 出发,在 DA 边上以每秒 4cm 的速度向点 A 匀速运动,运动时间为 t 秒
天津市和平区 20XX 年九年级中考数学压轴题综合训练
1. 若实数 a,b 满足 a﹣ ab+b2+2=0,则 a 的取值范围是(
)
A . a≤﹣ 2 B . a≥ 4 C. a≤﹣ 2 或 a≥ 4 D.﹣ 2≤ a≤ 4
2. 如图, A、 B是双曲线上的点, A、 B 两点的横坐标分别是 a、 2a,线段 AB 的延长线交 x 轴于点 C,
再生资源重新利用.今年 1 月份,再生资源处理量为 40 吨,从今年 1 月 1 日起,该单位每月再生资
源处理量每一个月将提高 10 吨.月处理成本(元)与月份之间的关系可近似地表示为:
2
p=50x +100x+450 ,每处理一吨再生资源得到的新产品的售价定为
100 元.若该单位每月再生资源处
理量为 y(吨),每月的利润为 w(元).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学冲刺讲义二次函数12题1. 已知关于x的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当x<2时,对应的函数值y<0;③当x<2时,函数值y随x的增大而增大.你认为符合要求的函数的解析式可以是:(写出一个即可,答案不唯一).2.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个3.已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.4.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或35.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.36.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.37.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列结论:①b 2﹣4ac >0;②abc >0;③8a+c >0;④9a+3b+c <0其中,正确结论的个数是( )A .1B .2C .3D .48.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m (am+b )(m≠1的实数).其中正确的结论有( )A .2个B .3个C .4个D .5个9. 已知抛物线y=x 2-(2m-1)x+2m 不经过第三象限,且当x>2时,函数值y 随x 的增大而增大,则实数m 的取值范围是( )A.0≤m≤1.5B.m≥1.5C.0≤m≤1D.0<m≤1.5网格题18题1. 如图,在下列网格中,每个小正方形的边长都是1,点A 、B 、Q 、P 均为格点。
(1)线段AB 的长度等于___________(2)点M 、N 是线段AB 上的两个动点,且始终满足BN+AM=10267,若点M 、N 运动到恰好使得QN+PM 的值最小时,请借助网格用无刻度直尺画出点N 的位置,并简要说明你的作图方法___________________________________________________________________2. (2015•天津)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).3. 如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)边AC的长等于.(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A′B′C,使点B的对应点B′恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明画图方法(不要求证明).4. 如图,将△ABP放在每个小正方形的边长为1的网格中,点A、B、P均落在格点上.(1)△ABP的面积等于;(2)若线段AB水平移动到A′B′,且使PA′+PB′最短,请你在如图所示的网格中,用直尺画出A′B′,并简要说明画图的方法(不要求证明)24题(平移1-4、翻折问题5-8)1.(天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠OBA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).2. 两个直角边为6的全等的等腰Rt△AOB和Rt△CED中,按图1所示的位置放置,A与C 重合,O与E重合.(1)求图1中A,B,D三个点的坐标.(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长度的速度向右运动,当点D 运动到与B点重合时停止,设运动x秒后Rt△AOB和Rt△CED的重叠部分面积为y,求y 与x之间的函数关系式.(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时,Rt△CED运动到如图2所示的位置,求点G的坐标.(4)何时Rt△AOB和Rt△CED的重叠部分面积等于1,直接写出此时x的值3.如图,在平面直角坐标系中,∠OCA=90°,点A在x轴上,OC=AC=4,D、E分别是OC、AC的中点,将四边形OAED沿x轴向右平移,得四边形PQRS.设OP=m(0<m<4).(Ⅰ)在平移过程中,四边形OPSD能否成为菱形?若能,求出此时m的值;若不能,说明理由.(Ⅱ)设平移过程中△OAC与四边形SPQR重叠部分的面积为S,试用含m的式子表示S.(Ⅲ)当S=3时,求点P的坐标(直接写出结果即可)4,两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上.其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.5.如图,在平面直角坐标系中,直角三角形OAB的顶点O在坐标原点,A(2,0),B(0,32),将△OAB沿y轴翻折,得△OCB.(1)求OCB的度数;(2)动点P在线段CA上从点C向点A运动,PD⊥BC于点D,把△PCD沿y轴翻折,得△QAE,设△ABC被△PCD和△QAE盖住部分的面积为S1,未被盖住的部分的面积为S2.①设CP=a(a>0),用含a的代数式分别表示S1,S2;②直接写出当S1=S2时点P的坐标.6. 如图,将一个矩形纸片ABCD,放置在平面直角坐标系中,A(0,0),B(4,0),D(0,3),M是边CD上一点,将△ADM沿直线AM折叠,得到△ANM.(Ⅰ)当AN平分∠MAB时,求∠DAM的度数和点M的坐标;(Ⅱ)连接BN,当DM=1时,求△ABN的面积;(Ⅲ)当射线BN交线段CD于点F时,求DF的最大值.(直接写出答案)7.(天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN 折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).8. (天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B (0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).2. 如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由。
3.如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交与O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(1)直接写出点B坐标;判断△OBP的形状;(2)将抛物线向下平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP:①当S△PCD=S△POC时,求平移后的抛物线的顶点坐标;②在向下平移的过程中,试用含m的式子表示S△PCD和S△POD4.已知O点为坐标原点,抛物线y1=ax2+bx+c(a≠0)与y轴交于点C,且O,C两点间的距离为3.(1)求点C的坐标;(2)抛物线y1=ax2+bx+c(a≠0)与x轴交于点A(x1,0),B(x2,0),x1∙x2<0,|x1|+|x2|=4.点A,C在直线y2=-3x+t上.①求该抛物线的顶点坐标;②将抛物线y1=ax2+bx+c(a≠0)向左平移n(n>0)个单位,记平移后y随x的增大而增大的部分为P,直线y2=-3x+t向下平移n个单位,当平移后的直线与P有公共点,求2n2-5n的最小值.5.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.6.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.。