2019-2020学年北京人大附中八年级(上)期中数学试卷 -(含答案解析)
2019北京人大附中初二(下)期中物理含答案

2019北京人大附中初二(下)期中物理2019.4一、单项选择题1.(3分)在国际单位制中,压强的单位是()A.千克(kg)B.牛顿(N)C.帕斯卡(Pa)D .牛顿/千克(N/kg )2.(3分)如图所示的实例中,目的是为了增大摩擦的是()A.磁悬浮列车行驶时不接触轨道B.气垫船行驶时船体离开水面C.自行车轴承内部装有滚珠D.汽车轮胎表面刻有花纹3.(3分)如图所示的四个实例中,为了减小压强的是()A.压路机的碾子质量很大B.滑雪板底板面积较大C.安全锤头部做成锥形D.盲道上凸起的圆点4.(3分)图中给出的各种现象中,物体运动状态没有发生改变的是()A.罚点球时被踢出的足球B.沿滑梯匀速滑下的小孩C.绕地球运转的卫星D.发射升空的火箭5.(3分)力的作用都是相互的,下列现象中没有利用这一原理的是()A.向前划船时,要用桨向后拨水B.人向前跑步时,要向后下方蹬地C.火箭起飞时,要向下方喷气D.头球攻门时,要向球门方向用力顶球6.(3分)图中关于重力的示意图正确的是()A.正在上升的小球B.斜面上静止的木块C.斜抛向空中的铅球D.挂在墙上的小球7.(3分)如图所示,某次冰球比赛中,运动员用冰球杆沿不同方向击打冰球上的不同部位,冰球的运动状态随之发生改变。
这个事例说明()A.力可以改变物体的运动状态B.力的作用效果与力的方向无关C.力的作用效果与力的作用点无关D.物体的运动需要力来维持8.(3分)短跑运动员跑到终点后,不能立即停下来,这是由于()A.运动员受到了惯性作用B.运动员具有惯性C.运动员速度太大,惯性太大D.运动员的惯性大于其所受阻力9.(3分)“春分”是二十四节气之一,在每年农历二月十五日前后(公历大约为3月20﹣21日期间),《春秋繁露•阴阳出入上下篇》说:“春分者,阴阳相半也,故昼夜均而寒暑平。
”春分是玩竖蛋游戏的最佳时光,故有“春分到,蛋儿俏”的说法。
如图所示当鸡蛋在水平桌面上竖起静止时,下列说法中正确的是()A.鸡蛋的重力和鸡蛋对桌面的压力是一对平衡力B.鸡蛋的重力和桌面对鸡蛋的支持力是一对平衡力C.鸡蛋对桌面的压力和桌面对鸡蛋的支持力是一对平衡力D.桌子受到的压力和桌子受到的支持力是一对平衡力10.(3分)下列关于力和运动的说法中正确的是()A.人用力推车,车未动,是因为车受到的推力小于摩擦力B.受到平衡力作用的弹簧,一定不会发生形变C.头顶足球时头会感到疼,说明力的作用是相互的D.滑雪运动员腾空运动到最高点时,受到的合力为零11.(3分)两人站在海边的沙滩上,在沙滩上留下了深浅不同的脚印,如图所示,则下列说法正确的是()A.两人对沙滩的压强一定相同B.脚印小的人对沙滩的压强一定大C.脚印深的人对沙滩的压力一定大D.脚印深的人对沙滩的压强一定大12.(3分)如图所示现象中,不能说明大气压强存在的是()A.吸盘挂钩可以吸附在光滑的墙面上B.堵在充满热空气的烧瓶口的去皮熟鸡蛋被吞入瓶中C.硬纸片可以托住玻璃杯中的水不流出D.管中的水使管底部橡皮膜向下凸出13.(3分)一个悬浮在水中的圆柱体上表面受到水的压力为5N,下表面受到水的压力为13N,如图所示。
北京人大附中西山学校2018-2019学年八年级(上)期中数学试卷 (解析版)(1)

2018 北京人大附中西山学校初二(上)期中数学1. 在图中,是轴.对.称.图.形.的是()2. 下列五个算式:①x3 ×(- x)2 = x5; ②(-a2 )3 = - a6 ; ③(-2x3 )2 = - 4x6 ;④(-a)5 ¸(-a)2 = a3 ; ⑤2a3 i3a2 = 6a5 中,正确的有()A.0 个B.1 个C.2 个D.3 个3. 点P(-3,2)关于x轴对称的点是( ) .A.(3, 2) B.(-3,2) C. (3,-2) D.(-3,-2)4. 将a2+24a+144 因式分解,结果为()A.(a+18)(a+8)B.(a+12)(a-12)C.(a+12)2 D.(a-12)25. 等腰三角形的一个角等于40o,则它的顶角是 ( ) .A.40o B.140o C.70o D. 70o 或40o6. 如图,在△ABC中,∠C = 40︒,将△ABC沿着直线l 折叠,点C落在点D的位置,则∠1-∠2的度数是( )A. 40︒B.80︒C. 90︒D.140︒7. 下列计算正确的是()A.(5-m)(5+m)=m2-25 B.(1-3m)(1+3m)=1-3m2C.(-4-3n)(-4+3n)=-9n2+16 D.(2ab-n)(2ab+n)=2a2b2-n28. 如图,把△ABC 沿 EF 对折,叠合后的图形如图所示.若∠A = 60°,∠1 = 95°,则∠2 的度数为()A.24° B.25°C.30°D.35°二.填空题9.计算:(-ab )2= ;10. 已知x m =a, x n =b,则x3m+2n 可以表示为;11. 若x2 +mx -12 = (x + 3)(x +n),则m的值;12. 点A(2,3)关于y轴成轴对称的点的坐标是;13. 如果等腰三角形的两个边长分别为4 和8,则它的周长是.14. 多项式x2-8x+k是一个完全平方式,则k=.15. 如图,在△A BC 中,边AB 的垂直平分线分别交AB、BC 于点D、E,边AC 的垂直平分线分别交AC、BC 于点F、G、若BC=4,则△AEG 的周长为16. 数学课上,老师提出如下问题:尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB 和AB 上一点C.求作:AB 的垂线,使它经过点C.小艾的作法如下:如图,(1)在直线AB 上取一点D,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D,E 两点;(2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F;(3)作直线CF.所以直线CF 就是所求作的垂线.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是.三.解答题:19.因式分解:(1)4a2-9b2 (2)25a2b - 10ab + b20.乘法计算:(1)(- 3x2 y)2 ×13xy (2)(12x + 2)(4x -12)21. 如图,△ABC中,∠A=90°,AB=AC,BD 是∠ABC的角平分线.证明:AB+AD=BC.22. 先化简,再求值:(a2b- 2ab2 -b3 )÷b -(a +b)(a -b),其中a=1,b=-1.23. 若2x+y=0,求6x2 + xy - y2 的值24. 求多项式x2 +y2 - 4x +6y+15的最小值为?25.在l上求作一点M,使得AM+BM最小,并简要说明理由。
2019-2020学年北京市人大附中高三(上)统练数学试卷(八)

2019-2020学年北京市人大附中高三(上)统练数学试卷(八)试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=03.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为105.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√36.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 137.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.49.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .11.(填空题,4分)直线l:y=kx-1被圆C:(x-2)2+y2=4截得的弦长为4,则k的值为___ .12.(填空题,4分)已知m,4,n是等差数列,那么(√2)m•(√2)n =___ ;mn的最大值为___ .13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .15.(问答题,12分)已知函数f(x)= √2 sin(2x- π)+2 √2 cos2x.6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.16.(问答题,12分)设函数f(x)=x2+ax-lnx(a∈R).(Ⅰ)若a=1,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,求实数a的取值范围;(Ⅲ)过坐标原点O作曲线y=f(x)的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.2019-2020学年北京市人大附中高三(上)统练数学试卷(八)参考答案与试题解析试题数:17,总分:1001.(单选题,5分)设全集为R,集合A={x|x2-1>0},集合B={y|y=3x,x∈R},则A∩B=()A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞)【正确答案】:C【解析】:运用二次不等式的解法和指数函数的值域,化简集合A,B,再由交集的定义,即可得到所求集合.【解答】:解:全集为R,集合A={x|x2-1>0}={x|x>1或x<-1},集合B={y|y=3x,x∈R}={y|y>0},A∩B=[(-∞,-1)∪(1,+∞)]∩(0,+∞)=(1,+∞),故选:C.【点评】:本题考查集合的化简和运算,考查二次不等式和指数函数的值域,考查运算能力,属于中档题.2.(单选题,5分)直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=0【正确答案】:C【解析】:圆x2+y2+2x-4y+1=0化为标准方程,可得圆心坐标,先求出垂直于直线l的直线的斜率,再求出直线l的斜率,利用点斜式可得直线方程.【解答】:解:圆x2+y2+2x-4y+1=0化为标准方程为(x+1)2+(y-2)2=4,圆心坐标为C (-1,2).∵弦AB的中点D(-2,3),∴k CD= 3−2−2+1=-1,∴直线l的斜率为1,∴直线l的方程为y-3=x+2,即x-y+5=0.故选:C.【点评】:本题考查直线方程,考查直线与圆的位置关系,正确求出直线的斜率是关键.3.(单选题,5分)将函数y=sin(x+ π4)的图象上各点的纵坐标不变,横坐标缩短到原来的1 2,再向右平移π4个单位,所得到的图象解析式是()A.y=sin2xB.y=sin 12xC.y=sin(2x+ π4)D.y=sin(2x- π4)【正确答案】:D【解析】:利用三角函数的伸缩变换将y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再利用平移变换可得答案.【解答】:解:函数y=sin(x+ π4)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y=sin(2x+ π4)图象,再将函数y=sin(2x+ π4)图象向右平移π4个单位,所得图象的函数解析式为y=sin[2(x- π4)+ π4)]=sin(2x- π4),故选:D.【点评】:本题考查函数y=Asin(ωx+φ)的图象变换,掌握其平移变换与伸缩变换的规律是关键,属于中档题.4.(单选题,5分)已知方程x217−k + y2k−8=1表示焦点在x轴上的双曲线,下列结论正确的是()A.k的取值范围为8<k<17B.k的取值范围为k<8C.双曲线的焦距为10D.双曲线的实轴长为10【正确答案】:B【解析】:由题意可得17-k>0,k-8<0,解得k的范围,将双曲线的方程化为标准方程,可得a,b,c,即可判断正确结论.【解答】:解:方程x 217−k + y2k−8=1表示焦点在x轴上的双曲线,可得17-k>0,k-8<0,解得k<8,则双曲线的方程为x 217−k - y28−k=1,可得a= √17−k,b= √8−k,c= √25−2k,则A,C,D均错,B正确.故选:B.【点评】:本题考查双曲线的方程和性质,主要是实轴长和焦距,考查运算能力,属于基础题.5.(单选题,5分)在△ABC中,a=8,b=10,△ABC的面积为20√3,则△ABC中最大角的正切值是()A. 5√33B. −√3C. −√33D. 5√33或−√3【正确答案】:D【解析】:根据三角形的面积公式求出C的值,再讨论确定是否为最大角,从而求出最大角的正切值.【解答】:解:由△ABC的面积为S△ABC= 12×8×10×sinC=20 √3,解得sinC= √32;又0<C<π,所以C= π3或2π3.① 当C= 2π3时,C是最大角,其tan 2π3=- √3;② 当C= π3时,由余弦定理得c= √82+102−2×8×10×cosπ3=2 √21<10.所以边b是最大边.由余弦定理得cosB= 2√21)222×8×2√21= √2114,所以B为锐角,sinB= √1−cos2B = √1−(√2114)2= 5√714,所以tanB= sinBcosB =5√714√2114= 5√33.综上知,△ABC中最大角的正切值是- √3或5√33.故选:D.【点评】:本题考查了三角形的面积计算问题,也考查了余弦定理和正切函数的应用问题,是中档题.6.(单选题,5分)若双曲线x2a2−y2b2=1的渐近线方程为2y±x=0,则椭圆x2a2+y2b2=1的离心率为()A. √32B. 12C. √22D. 13【正确答案】:A【解析】:利用双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,得到ba= 12,由此可求出椭圆x2 a2+y2b2=1的离心率.【解答】:解:∵双曲线x 2a2−y2b2=1的渐近线方程为2y±x=0,∴ b a = 12,即b= 12a.∴在椭圆x2a2+y2b2=1中,c= √a2−(12a)2= √32a,∴e= ca = √32.故选:A.【点评】:本题考查椭圆的离心率,考查双曲线的性质,考查学生的计算能力,属于基础题.7.(单选题,5分)在平面直角坐标系中,有不共线的三点A,B,C,已知AB,AC所在直线的斜率分别为k1,k2,则“k1k2>-1”是“∠BAC为锐角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:D【解析】:根据充分条件和必要条件的定义分别进行判断即可.>0,【解答】:解:由题意“∠BAC为锐角”,可得:tan∠BAC= k1−k21+k1k2即(k1-k2)(1+k1k2)>0,∵k1k2>-1,不一定大于0,∴tan∠BAC= k1−k21+k1k2>0,同理tan∠BAC= k1−k21+k1k2k1k2不一定大于-1∴是既不充分也不必要条件.故选:D.【点评】:本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.(单选题,5分)对于曲线C:y=f(x)上任意一点A(x1,y1),在曲线C上都存在唯一的B(x2,y2),满足线段AB的中点在直线l:y-2=0上,则称直线l为曲线C的“腰线”,则下列曲线中:① y=e x;② y=x3-x;③ y=2sinx;④ y=lnx.则l为“腰线”的曲线的条数为()A.1B.2C.3D.4【正确答案】:A【解析】:由题意可得直线l为曲线C的“腰线”的前提是y1+y2=4成立,且满足任意的点A,存在唯一的点B,分别对① ② ③ ④ ,结合函数的值域和单调性,即可得到所求结论.【解答】:解:由题意可得直线l为曲线C的“腰线”,等价为y1+y2=4,对于① ,y=e x,由e x1+e x2=4,且e x>0,不满足任意的x1,存在唯一的x2,故① 错误;对于② ,y=x3-x,由y1+y2=4,即(x13-x1)+(x23-x2)=4,当x13-x1=4,x23-x2=0,可得x2=0或x2=±1,不满足任意的点A,存在唯一的点B,故② 错误;对于③ ,y=2sinx的值域为[-2,2],由2sinx1+2sinx2=4,可得sinx1=sinx2=1,不满足任意的x1,存在唯一的x2,故③ 错误;对于④ ,y=lnx的值域为R,且y=lnx在(0,+∞)递增,由lnx1+lnx2=4,满足任意的x1,存在唯一的x2,故④ 正确.故选:A.【点评】:本题考查新定义的理解和运用,以及函数的单调性和值域,考查方程思想和运算能力,属于中档题.9.(填空题,4分)直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,那么m的值是___ .【正确答案】:[1]2【解析】:利用两直线平行的位置关系即可求出m的值.【解答】:解:∵直线2x+(m+1)y+4=0与直线mx+3y-6=0平行,∴ 2 m =m+13≠4−6,∴m=2,故答案为:2.【点评】:本题主要考查了两直线平行的位置关系,是基础题.10.(填空题,4分)在等比数列{a n}中,a2=2,且1a1+1a3=54,则a1+a3的值为___ .【正确答案】:[1]5【解析】:利用等比数列的通项公式即可得出.【解答】:解:设等比数列{a n}的公比为q,∵a2=2,且1a1+1a3=54,∴ q 2 + 12q= 54,解得q=2或12.当q=2时,则a 1+a 3= 22+2×2 =5; 当q= 12时,则a 1+a 3= 212+2× 12=5.故答案为:5.【点评】:本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题. 11.(填空题,4分)直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4,则k 的值为___ .【正确答案】:[1] 12【解析】:直接利用直线与圆的位置关系的应用求出结果.【解答】:解:直线l :y=kx-1被圆C :(x-2)2+y 2=4截得的弦长为4, 所以:直线y=kx-1经过圆心(2,0), 则0=2k-1,解得k= 12 . 故答案为: 12 .【点评】:本题考查的知识要点:直线与圆的位置关系,主要考查学生的运算能力和转换能力及思维能力,属于基础题.12.(填空题,4分)已知m ,4,n 是等差数列,那么 (√2)m•(√2)n=___ ;mn 的最大值为___ .【正确答案】:[1]16; [2]16【解析】:由m ,4,n 是等差数列,可得m+n=8.再利用指数幂的运算性质、基本不等式的性质即可得出.【解答】:解:∵m ,4,n 是等差数列, ∴m+n=8.则 (√2)m•(√2)n= (√2)m+n= (√2)8=24=16; mn ≤(m+n 2)2=16,当且仅当m=n 时取等号.因此mn 的最大值为16. 故答案分别为:16;16.【点评】:本题考查了等差数列的性质、指数幂的运算性质、基本不等式的性质,考查了计算能力,属于基础题.13.(填空题,4分)如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下列说法:① 图(2)的建议是:降低成本,并保持票价不变;② 图(2)的建议是:提高成本,并提高票价;③ 图(3)的建议是:提高票价,并保持成本不变;④ 图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是___ .【正确答案】:[1] ① ③【解析】:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,再对比观察图(2)和图(3)中的改变量与未变量即可得解.【解答】:解:图(1)中,点A的几何意义代表付出的成本,射线AB的倾斜程度表示票价,图(2)中射线AB的倾斜程度未变,只将点A上移,所以说法① 正确,图(3)中点A的位置未变,将射线AB的倾斜程度变大,所以说法③ 正确,故答案为:① ③ .【点评】:本题考查函数图象的变换,理解函数图象中截距和倾斜度的几何意义是解题的关键,考查学生将理论与实际生活相联系的能力和逻辑推理能力,属于基础题.14.(填空题,4分)曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:① 曲线C过点(-1,1);② 曲线C关于点(-1,1)对称;③ 若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④ 设p0为曲线C上任意一点,则点P1关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是___ .【正确答案】:[1] ② ③ ④【解析】:由题意曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.【解答】:解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y-1|=k2,对于① ,将(-1,1)代入验证,此方程不过此点,所以① 错;对于② ,把方程中的x被-2-x代换,y被2-y 代换,方程不变,故此曲线关于(-1,1)对称.② 正确;对于③ ,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y-1|∴|PA|+|PB|≥2 √|PA||PB| =2k,③ 正确;对于④ ,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④ 正确.故答案为:② ③ ④ .【点评】:此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.)+2 √2 cos2x.15.(问答题,12分)已知函数f(x)= √2 sin(2x- π6(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)的最值.【正确答案】:【解析】:(Ⅰ)利用三角函数的倍角公式以及两角和差的正弦公式,进行化简,结合三角函数的单调性进行求解.(Ⅱ)根据三角函数的有界性进行求解即可.【解答】:解:(Ⅰ)f (x )= √2 sin (2x- π6 )+2 √2 cos 2x= √2 (sin2x• √32 - 12 cos2x+cos2x+1)= √2 (sin2x• √32 + 12 cos2x+1)= √2 sin (2x+ π6 )+ √2 , 由2kπ- π2 ≤2x+ π6 ≤2kπ+ π2 ,k∈Z 得kπ- π3 ≤x≤kπ+ π6 ,k∈Z ,即函数的单调递增区间为[kπ- π3 ,kπ+ π6 ],k∈Z , 由2kπ+ π2≤2x+ π6≤2kπ+ 3π2,k∈Z 得kπ+ π6 ≤x≤kπ+ 2π3 ,k∈Z ,即函数的单调递减区间为[kπ+ π6,kπ+ 2π3],k∈Z ; (Ⅱ)当sin (2x+ π6)=1时,函数f (x )取得最大值, 此时最大值为f (x )= √2+√2 =2 √2 .当sin (2x+ π6 )=-1时,函数f (x )取得最小值, 此时最大值为f (x )=- √2+√2 =0.【点评】:本题主要考查三角函数的图象和性质,利用倍角公式以及辅助角公式将三角函数进行化简是解决本题的关键.16.(问答题,12分)设函数f (x )=x 2+ax-lnx (a∈R ). (Ⅰ)若a=1,求函数f (x )的单调区间;(Ⅱ)若函数f (x )在区间(0,1]上是减函数,求实数a 的取值范围;(Ⅲ)过坐标原点O 作曲线y=f (x )的切线,证明:切线有且仅有一条,且切点的横坐标恒为1.【正确答案】:【解析】:(Ⅰ)a=1时,f (x )=x 2+ax-lnx (x >0), f′(x )=2x +1−1x =(2x−1)(x+1)x,根据函数的定义域,确定f′(x )>0和f′(x )>0的范围,进而得到函数f (x )的单调区间;(Ⅱ)若函数f(x)在区间(0,1]上是减函数,则f'(x)≤0对任意x∈(0,1]恒成立,进而a≤1x−2x对任意x∈(0,1]恒成立,进而将问题转化为函数的最值问题后,可得实数a的取值范围;(Ⅲ)设出切点坐标,利用导数法求出切线斜率(切点处的导函数值),进而利用点斜式方程结合切线过原点求出切线方程,通过证明t=1是方程t2+lnt-1=0的唯一的解,可得结论.【解答】:解:(Ⅰ)a=1时,f(x)=x2+ax-lnx(x>0),∴ f′(x)=2x+1−1x =(2x−1)(x+1)x,又∵ x∈(0 , 12) , f′(x)<0 , x∈(12 , +∞) , f′(x)>0,f(x)的单调递减区间为(0 , 12),单调递增区间为(12 , +∞).(Ⅱ)∵ f′(x)=2x+a−1x又∵f(x)在区间(0,1]上是减函数,∴f′(x)≤0对任意x∈(0,1]恒成立,即2x+a−1x≤0对任意x∈(0,1]恒成立,∴ a≤1x−2x对任意x∈(0,1]恒成立,令g(x)=1x−2x,∴a≤g(x)min,易知g(x)在(0,1]单调递减,∴g(x)min=g(1)=-1.∴a≤-1.(Ⅲ)设切点为M(t,f(t)),f′(x)=2x+a−1x,∴过M点的切线方程为:y-f(t)=f′(t)(x-t),即y−(t2+at−lnt)=(2t+a−1t)(x−t)又切线过原点,所以,0−(t2+at−lnt)=(2t+a−1t)(0−t),即t2+lnt-1=0,显然t=1是方程t2+lnt-1=0的解,设φ(t)=t2+lnt-1,则φ′(t)=2t+ 1t>0恒成立,φ(t)在(0,+∞)单调递增,且φ(1)=0,∴方程t2+lnt-1=0有唯一解1.∴过坐标原点O作曲线y=f(x)的切线,切线有且仅有一条,且切点的横坐标恒为1.【点评】:本题考查的知识点是利用导数研究函数的单调性,利用导数研究曲线上某点的切线方程,是导数的综合应用,难度中档.17.(问答题,12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2 + y2b2=1(a>b>0)的离心率为√32,且过点(1,√32).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.(Ⅰ)求椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.【正确答案】:【解析】:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C过点(1,√32),所以1a2+34b2=1,解得椭圆C的方程;(Ⅱ)若MB是线段PN的垂直平分线,k PB•k MB=-1,设P(x0,y0),则P关于B的对称点N(2-x0,-y0),进而得到实数m的值.【解答】:(本小题满分16分)解:(Ⅰ)因为椭圆C的离心率为√32,所以a2=4b2.又因为椭圆C 过点(1, √32),所以 1a 2+34b 2=1 ,解得a 2=4,b 2=1.所以椭圆C 的方程为 x 24+y 2=1 . (Ⅱ)设P (x 0,y 0),-2<x 0<2,x 0≠1,则 x 024+y 02=1 .因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0),所以2-x 0=m . 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y= y 0x 0+2(x+2), 令x=m ,得y= y 0x0+2(m+2),即M (m , y 0x0+2(m+2)). 因为PB⊥MB ,所以k PB •k MB =-1,所以k PB •k MB = y 0x 0−1 • y0x 0+2(m+2)m−1=-1,即 y 02•(m+2)(x 0−1)(x 0+2)(m−1) =-1.因为 x 024+y 02=1 .所以 (x 0−2)(m+2)4(x 0−1)(m−1)=1. 因为x 0=2-m ,化简得3m 2-10m+4=0,解得m= 5±√133. 因为m >2,所以m= 5+√133【点评】:本题考查的知识点是椭圆的标准方程,直线与椭圆的位置关系,直线垂直的充要条件,难度较大.。
人大附中2019-2020年高三第二次教学质量检测理科数学

人大附中2019-2020年高三年级教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题元效.第I 卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为( )A .3B .2C .1D .02.集合M ={4,-3m +(m -3)i}(其中i 为虚数单位),N ={-9,3},若M ∩N ≠∅,则实数m 的值为( )A .-1B .-3C .3或-3D .33.已知x ,y R ∈,且0x y >>,则( ) A.110x y -> B.sin sin 0x y -> C.11()()022x y -< D.ln ln 0x y +>4.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是5.o o o o sin 20cos10cos160sin10- =( )A. B. C.12- D.126.在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )C.-D.-7.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.1308.C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( ) A.1b =r B.a b ⊥r r C.1a b ⋅=r r D.()4C a b +⊥B u u u r r r 9.圆2228130xy x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( ) A.43- B.34- D.210.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .1311.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .1012.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12- B .13 C .12D .1第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.函数sin y x x =的图像可由函数sin y x x =的图像至少向 右平移_______个单位长度得到.14.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2019年人大附中高一数学期中考试

x 1 2
x 2
xR Nhomakorabea求f
x 的值域;
(3)若存在 m R 且 m Z ,使得 f m f m ,则称函数 f x 是 函数,若函数 f x x a 是
x 函数,求 a 的取值范围.
5
D.存在 x0 R ,使得 x02 0
5.己知函数
f
x 的图象是两条线段(如图,不含端点),则
f
f
1 3
=(
)
A. 1
1
B.
3
3
C. 2
2
D.
3
3
1
6.已知 a, b 是实数,则“ a b 0 且 c d 0 ”是“ a b ”的( ) dc
C. 3,3
D. (0, 5]
五、填空题(本大题共 3 小题,每小题 6 分,共 18 分.请把结果填在答题纸上的相应位置.)
21.已知函数 f x 1 x x 3 ,则函数 f x 的最大值为___ __,函数 f x 的最小值点为________.
22.关于 x 的方程 g x t(t R) 的实根个数记 f t .
A. 0,1
B.1, 0,1
2.下列各组函数是同一函数的是( )
A. y x 与 y 1 x
C.0,1, 2
D.1, 0,1, 2
B. y x 12 与 y x 1
C. y x2 与 y x x
D.
y
x3 x2
x 1
与
y
x
3.下列函数中,在区间 0, 2 是增函数的是( )
2020-2021学年度人教版八年级数学下册期中试卷2

2020-2021学年度人教版八年级数学下册期中综合培优调研卷题号一二三总分得分时间:90分钟满分:120分考试内容:第十六至第十八章一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020广东广州模拟,12,★☆☆)使代数式1x-3+5-x 有意义的正整数x有( )A.3个B.4个C.5个D.无数个2.(2020江苏宿迁沭阳期末,6,★☆☆)已知a≠0且a<b,化简二次根式-a3b 的结果是( )A.a abB.-a abC.a-abD.-a-ab3.(2019山东威海文登期中,9,★☆☆)给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是( )A.①②B.②③C.③④D.①④4.(2020辽宁辽阳七中期末,10,★★☆)如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成的,其中AE=10,BE=24,则EF的长是( )A.14B.13C.14 3D.14 25.(2020北京人大附中期末,14,★★☆)如图,平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点B的坐标是( )A.(0,5)B.(0,6)C.(0,7)D.(0,8)6.(2020湖南长沙岳麓长郡梅溪湖中学开学测试3,★★☆)如图,四边形ABCD是菱形,DH⊥AB于点H,若AC=8cm,BD=6cm,则DH=( )A. 5 3 cmB.2 5 cmC.245cm D.485cm7.(2020山西太原期中,13,★★☆)如图,已知△ABC中,A=10,AC=8,BC=6,AB的垂直平分线分别交AC,AB于D, E,连接BD,则CD的长为( )A.1B.54C.74D.2548.(2020黑龙江哈尔滨四十七中一模,8,★★☆)如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为( )A.60海里B.45海里C.20 3 海里D.30 3 海里9.如图,在□ABCD中,∠BAD=120°,连接D,作AE∥BD交CD的延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是( )A.2B.1C. 3D. 210.(2020河南郑州登封期末,10,★★★)点A1,A2,A3,…,A n在一条直线上,点C1,C2,C3,…,C n在x轴上,若正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的位置放置,且正方形A1B1C1O的面积是1,直线A1A3与x轴的夹角是45°,则点A2020的坐标是( )A.(22019+1,22019-1) B.(22020,22019-1) C.(22019-1,22019) D.(22019-1,22020)二、填空题(本大题共8小题,每小题4分,共32分)11.(2020湖南娄底新化期末,15,★☆☆)若二次根式5a+3 是最简二次根式,则最小的正整数a 为________ 12.(2020辽宁大连金普新区期末,14,★☆☆)已知=11 -1,则a 2+2a+2的值是________13.(2020四川眉山仁寿期末,14,★☆☆)已知:a,b 在数轴上对应的点的位置如图所示,化简代数式:(a -1)2-(a+b)2+1-b =________14.(2020湖北黄冈麻城思源实验学校月考,17,★☆☆)如图,在Rt△ABC 中,∠ACB=90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD,过点B 作BE∥DC 交AF 的延长线于点E,则BE 的长为________15.(2020重庆九龙坡育才中学期末,16,★★☆)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,AC =3,BC =2,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到如图②所示的“数学风车”,则这个风车的外围周长(图中实线部分)是________16.(2020北京海淀外国语学校模拟,13,★★☆)如图所示的网格是正方形网格,△ABC 和△CDE 的顶点都是网格线交点,那么∠BAC+∠CDE=________。
北京市海淀区人大附中2019-2020学年高三物理10月月考试题

人大附中2019-2020学年度高三10月质量检测题物理2019年10月08日说明:本练习共四道大题,19道小题,共8页,满分100分,考试时间90分钟,请在答题纸上作答,试卷作答无效。
第I 卷(选择题部分共42分)一、 单项选择题(本题共8小题;每题3分,共计24分。
在每小题的选项中有且只有一个......符合题意。
)1.“梧桐一叶落,天下尽知秋。
” 如图1所示,某日清晨,无风,明月同学在上学路上经过一株梧桐树下,恰看到一片巴掌大小的梧桐树叶脱离枝杈飘落到地面。
据明月估测,脱离处离地面竖直高度约4m 。
根据你所学的物理知识判断,这片树叶在空中飘落的总时间可能是( ) A .0.2s B .0.4s C .0.8s D .3s2.某物体(可视为质点)某段时间内做直线运动,设物体的运动时间为t ,位移为x ,得到物体的xt-t 图像如图2所示,下列说法正确的是( )A. 0~b 时间内物体的加速度大小为bcB. 0~b 时间内物体的初速度大小为bC. 0~b 时间内,物体做单向直线运动D. 0~b 时间内,物体做往返直线运动3.如图3所示,在长约一米的一端封闭的玻璃管中注满清水,水中放一个大小适当的圆柱形红蜡块,玻璃管的开口端用胶塞塞紧,保证将其迅速竖直倒置时,红蜡块能沿玻璃管由管口匀速上升到管底。
现将此玻璃管倒置安装在置于桌面上的小车上的同时,小车从A 位置在恒力F 作用下从静止开始运动。
经过一段时间后,小车运动到虚线表示的B 位置。
按照图3中建立的坐标系,在这一过程中红蜡块实际运动的轨迹可能是( )4. 1845年英国物理学家和数学家斯·托马斯(S.G.Stokes)研究球体在液体中下落时,发现了液体对球的粘滞阻力与球的半径、速度及液体的种类有关,有F =6πηrv ,其中物理量η为液体的粘滞系数,它还与液体的种类及温度有关。
如图4所示,现将一颗小钢珠由静止释放到盛有蓖麻油的足够深量筒中,下列描绘小钢珠在下沉过程中加速度a 大小与时间t 关系的图像可能正确的是( )5.应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入。
2019-2020学年北京市海淀区人大附中高一(上)期中物理试卷

2019-2020学年北京市海淀区人大附中高一(上)期中物理试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列物理量中,属于矢量的是()A.质量B.时间C.路程D.加速度2.(3分)如图所示四个图象分别表示物体的速度v随时间t变化的规律,其中表示物体处于平衡状态的是()A.B.C.D.3.(3分)国庆假期,某同学估测一辆汽车在起动阶段的加速度。
他测得汽车起动后在10s内速度达到80km/h,然后又经过8s达到120km/h。
则关于该车的上述运动过程下列说法正确的是()A.汽车前一阶段的加速度大B.汽车后一阶段的加速度大C.汽车前一阶段的位移大D.汽车前一阶段的平均速度大4.(3分)用如图所示的方法可以测出一个人的反应时间,甲同学用手握住直尺顶端,乙同学手的上边缘在直尺下端刻度为a的地方做捏住直尺的准备,但手没有接触到直尺.当乙同学看到甲同学放开直尺时,立即握住直尺.设直尺从静止开始自由下落,到直尺被乙同学抓住,直尺下落的距离为h,乙同学的反应时间为t,则下列结论正确的是()A.t与h成正比B.t与成正比C.t与成正比D.t与h2成正比5.(3分)2019年9月29日,中国女排在日本大阪夺得2019年女排世界杯冠军。
这是她们队史上的世界杯第5冠。
比赛中主攻手朱婷凌厉扣杀给观众留下了深刻的印象。
在她某次发球时一位摄影爱好者从侧面给她拍了张全身照,朱婷的实际身高为1.98m,相机的曝光时间为秒,在照片上朱婷身高5.00cm,排球在照片上留下了0.50cm 的径迹,根据以上数据可估算出她发出球的速度约为()A.12m/s B.24m/s C.36m/s D.48m/s6.(3分)如图所示,两个物体A和B,质量分别为M和m,用跨过定滑轮的轻绳相连,A静止于水平地面上,不计摩擦,则下列说法正确的是()A.物体A对绳的作用力大小为MgB.物体A对绳的作用力大小为mgC.物体A对地面的作用力大小为MgD.物体A对地面的作用力大小为(M+m)g7.(3分)如图所示,长方体形的物块a静止在水平地面上,长方体形的物块b叠放在物体a上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年北京人大附中八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案属于轴对称图案的是()A. B. C. D.2.若分式1有意义,则a的取值范围是()a−1A. a≠1B. a≠0C. a≠1且a≠0D. 一切实数3.下列运算中正确的是()A. x2÷x8=x−6B. a⋅a2=a2C. (a2)3=a5D. (3a)3=9a34.如图,点P是∠AOB的角平分线OC上一点,PD⊥OA,垂足为点D,PD=2,M为OP的中点,则点M到射线OB的距离为()A. 12B. 1C. √2D. 25.如图,AB=AC,BD=CD.若∠B=70°,则∠BAC=()A. 20°B. 30°C. 40°D. 50°6.如图,∠MON内有一点P,点P关于OM的对称点是G,点P关于ON的对称点是H,GH分别交OM,ON于点A,B.若∠MON=35°,则∠GOH的度数为()A. 60°B. 70°C. 80°D. 90°7.如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A. a2+b2=(a+b)(a−b)B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. (a−b)2=a2−2ab+b28.如图,已知AD是△ABC的角平分线,CE⊥AD,垂足为O,CE交AB于E,则下列命题:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正确的是()A. ①②③B. ①②④C. ①③④D. ②③④9.已知△ABC的三边长a、b、c满足等式a2+b2+c2+50=6a+8b+10c,那么△ABC是()A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形10.点A(−2,1)关于x轴的对称点Aˈ的坐标是()A. (−2,−1)B. (2,1)C. (−2,1)D. (2,−1)二、填空题(本大题共9小题,共18.0分)11.当x=_________时,分式2x−3的值为0.2x+312.计算:3−2−(−3)0=______ .13.计算0.25100×4100=______ .14.若(x−a)(x−5)的展开式中不含有x的一次项,则a=______.15.如图,在△ABC中,DE是AC的垂直平分线,AB=3,BC=5,则△ABD的周长是______.16.若m+n=6,mn=4,则m3n+2m2n2+mn3=__________.17.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=3,5BC=2√10.则AE=______.18.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=√3,则BC的长是______.19.如图,点D为等腰直角△ABC内一点,∠ACB=90°,∠CAD=∠CBD=15°,E为AD延长线上一点,且CE=CA,给出以下结论:①DE平分∠BDC;②△BCE是等边三角形;③∠AEB=45°;④DE=AD+CD;正确的结论有______.(请填序号)三、解答题(本大题共9小题,共52.0分)20.(1)分解因式:−4x2+24xy−36y2;(2)分解因式:(2x+y)2−(x+2y)2.(3)分解因式:(p−4)(p+1)+621.计算:(x+1)2+x(x−2)−(x+1)(x−1).22.计算:(1)(−3a)2⋅(a2)3÷a3(2)(x−3)(x+2)−(x−2)2(3)先化简,再求值:(a+b)(a−b)−(4a3b−8a2b2)÷4ab其中a=−2,b=−1.23.如图,∠AOB=60°,点P为射线OA上的一动点.过点P作PC⊥OB于点C.点D在∠AOB内,且满足∠APD=∠OPC,DP+PC=10.(1)当PC=6时,求点D到OB的距离;(2)在射线OA上是否存在一定点M,使得MD=MC?若存在,请用直尺(不带刻度)和圆规作出点M(不必写作法,但要保留作图痕迹),并求OM的长;若不存在,说明理由.24.已知:如图,AD,BC相交于点O,OA=OD,AB//CD.求证:AB=CD.25.你能求出(x−1)(x99+x98+x97+⋯+x+1)的值吗⋅遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值: ①(x−1)(x+1)=; ②(x−1)(x2+x+1)=; ③(x−1)(x3+x2+x+1)=;由此我们可以得到(x−1)(x99+x98+⋯+x+1)=;请你利用上面的结论,完成下面两题的计算:(1)299+298+⋯+2+1;(2)(−3)50+(−3)49+⋯+(−3)+1.26.如图,在△ABC中,AD平分∠BAC交BC于点D,且∠ABC=2∠C.求证:AB+BD=AC.27.已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.(1)如图1,若点M在线段BD上.①依据题意补全图1;②求∠MCE的度数.(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系.28.已知:在平面直角坐标系xOy中,点A、B的坐标分别为(3,0),(0,4),点C(t,0)是x轴上一动点,点M是BC的中点.(1)当点C和点A重合时,求OM的长;(2)若S△ACB=10,则t的值为______;(3)在(2)的条件下,直线AM交y轴于点N,求△ABN的面积.-------- 答案与解析 --------1.答案:A解析:解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.根据轴对称图形的概念求解.此题主要考查了轴对称图形,关键是正确确定对称轴位置.2.答案:A解析:解:若分式1有意义,则a−1≠0,即a≠1,a−1故选:A.分式有意义的条件是分母不等于零,据此可得.本题主要考查分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.3.答案:A解析:解:A、x2÷x8=x−6,故原题计算正确;B、a⋅a2=a3,故原题计算错误;C、(a2)3=a6,故原题计算错误;D、(3a)3=27a3,故原题计算错误;故选:A.根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握各运算法则.4.答案:B解析:解:作PE⊥OB于E,MN⊥OB于N,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PE=PD=2,∵PE⊥OB,MN⊥OB,∴PE//MN,又M为OP的中点,PE=1,即点M到射线OB的距离为1,∴MN=12故选:B.作PE⊥OB于E,MN⊥OB于N,根据角平分线的性质求出PE,根据三角形中位线定理计算即可.本题考查的是角平分线的性质、三角形中位线定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.解析:解:∵AB=AC,∴∠C=∠B=70°,∴∠BAC=180°−∠B−∠C=40°,故选C.根据等腰三角形的性质即可得到结论本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.6.答案:B解析:【分析】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选B.7.答案:B解析:【分析】本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.第一个图中的面积=a2−b2,第二个图中梯形的面积=(2a+2b)(a−b)÷2=(a+b)(a−b),两图形阴影面积相等,据此即可解答.【解答】解:由题可得:第一个图中的面积=a2−b2,第二个图中梯形的面积=(2a+2b)(a−b)÷2=(a+b)(a−b),∵两图形阴影面积相等,∴a2−b2=(a+b)(a−b).故选B.8.答案:A解析:【分析】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的根据角平分线的性质及CE⊥AD判断出△AEO≌△ACO即可解答.【解答】解:∵AD是△ABC的角平分线,∴∠EAD=∠CAD,∵CE⊥AD,∴∠AOE=∠AOC,∵AO=AO,∴△AEO≌△ACO.∴①AE=AC,②CO=OE,③∠AEO=∠ACO均正确,④无法判断.故选:A.9.答案:B解析:【分析】本题考查了勾股定理逆定理的应用,是基础知识,较简单.a2+b2+c2+50=6a+8b+10c可变为(a−3)2+(b−4)2+(c−5)2=0,可知道a、b、c分别为3,4,5满足勾股定理,即可判断出三角形的形状.【解答】解:a2+b2+c2+50=6a+8b+10c变形为(a−3)2+(b−4)2+(c−5)2=0,解之得:a=3,b=4,c=5,符合勾股定理的逆定理,故选B.10.答案:A解析:【分析】本题考查了如下内容:关于x轴对称的两个点之间的坐标关系;关于x轴对称的点,横坐标不变,纵坐标互为相反数.本题比较容易,可直接利用平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点求得答案.【解答】解:两点若关于x轴对称,则横坐标不变,纵坐标互为相反数.点A(−2,1)关于x轴的对称点A′的坐标是(−2,−1).故选A.11.答案:32解析:【分析】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.分式值为零的条件是分子等于零且分母不等于零.【解答】的值为0,解:∵分式2x−32x+3∴2x−3=0且2x+3≠0,.解得:x=32故答案为32.12.答案:−89解析:解:原式=19−1=−89幂的负整数指数幂的运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算,任何非0数的0次幂等于1.本题是考查含有零指数幂和负整数指数幂的运算,属较简单题目.13.答案:1解析:解:原式=(0.25×4)100=1.故答案为:1.直接利用积的乘方运算法则将原式变形求出答案.此题主要考查了积的乘方运算法则,正确将原式变形是解题关键.14.答案:−5解析:解:(x−a)(x−5)=x2−5x−ax+5a=x2+(−5−a)x+5a,∵(x−a)(x−5)的展开式中不含有x的一次项,∴−5−a=0,a=−5.故答案为:−5.根据多项式乘以多项式法则展开,再合并同类项,根据已知得出−5−a=0,求出即可.本题考查了多项式乘以多项式法则,解一元一次方程等知识点的应用.15.答案:8解析:解:∵DE是AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+DA=AB+BD+DC=AB+BC=8,故答案为:8.根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.答案:144解析:【分析】本题考查知识点是因式分解,属于基础题,解答本题的关键是能够灵活运用因式分解中的提取公因式法与公式法,掌握整体带入法,方可得出答案.题中m3n+2m2n2+mn3=mn(m2+2mn+n2)=mn(m+n)2,整体带入:mn、(m+n)的值即可得出答案.【解答】解:因为m3n+2m2n2+mn3=mn(m2+2mn+n2)=mn(m+n)2=4×62=144,所以答案为144.17.答案:5解析:【分析】根据已知条件设BD=3x,AB=5x,根据勾股定理得到AD=√AB2−BD2=4x,根据等腰三角形的性质得到AC=5x,求得CD=x,根据勾股定理列方程得到AD=8,设AE=m,则DE=8−m,过E作EF⊥AB于F,根据角平分线的性质得到EF=DE=8−m,根据三角函数的定义即可得到结论.本题考查了解直角三角形,等腰三角形的性质,角平分线的性质,正确的作出辅助线是解题的关键.【解答】解:∵BD⊥AC于D,∴∠ADB=∠CDB=90°,∵sinA=35,∴设BD=3x,AB=5x,∴AD=√AB2−BD2=4x,∵AB=AC,∴AC=5x,∴CD=x,∵BD2+CD2=BC2,∴(3x)2+x2=(2√10)2,∴x=2,(负值舍去),∴AD=8,设AE=m,则DE=8−m,过E作EF⊥AB于F,则∠AFE=90°,∵BE平分∠ABD,∴EF=DE=8−m,∵sinA=EFAE =35,∴8−mm =35,∴m=5,∴AE=5.故答案为:5.18.答案:√3解析:【分析】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【解答】解:∵AB=AC,∠A=36°,=72°,∴∠B=∠ACB=180°−36°2∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=√3,故答案为√3.19.答案:①②③④解析:解:①∵△ABC是等腰直角三角形,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°−15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=∠CAD+∠ACD=15°+45°=60°,∵∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC;所以①正确;②∵CA=CB,CA=CE,∴CB=CE,∵∠CAD=∠AEC=15°,∴∠ACE=180°−15°−15°=150°,∵∠ACB=90°,∴∠BCE=150°−90°=60°,∴△BCE是等边三角形;所以②正确;③∵△BCE是等边三角形,∴∠BEC=60°,∵∠AEC=15°,∴∠AEB=60°−15°=45°,所以③正确;④在DE上取一点G,使DC=DG,连接CG,∵∠EDC=60°,∴△DCG是等边三角形,∴DC=DG=CG,∠DCG=60°,∴∠GCE=150°−60°−45°=45°,∴∠ACD=∠GCE=45°,∵AC=CE,∴△ACD≌△ECG,∴EG=AD,∴DE=EG+DG=AD+DC,所以④正确;正确的结论有:①②③④;故答案为::①②③④.①先根据等腰直角三角形的性质及已知条件得出∠DAB=∠DBA=30°,则AD=BD,再证明CD是边AB的垂直平分线,得出∠ACD=∠BCD=45°,然后根据三角形外角的性质求出∠CDE=∠BDE= 60°即可;②先利用等角对等边证BC=CE,再推得∠BCE=60°可得结论;③利用差可求得结论:∠AEB=∠BEC−∠AEC;④截取DG=DC,证明△DCG是等边三角形,再证明△ACD≌△ECG,利用线段的和与等量代换可得结论.本题考查了等腰三角形、全等三角形的性质和判定、等腰直角三角形、等边三角形等特殊三角形的性质和判定,熟练掌握有一个角是60°的等腰三角形是等边三角形这一判定等边三角形的方法,在几何证明中经常运用,要熟练掌握.20.答案:解:(1)原式=−4(x2−6xy+9y2)=−4(x−3y)2;(2)原式=(2x+y+x+2y)(2x+y−x−2y)=3(x+y)(x−y);(3)原式=p2−3p+2=(p−1)(p−2).解析:(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可;(3)原式整理后,利用十字相乘法分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.答案:解:(x+1)2+x(x−2)−(x+1)(x−1)=(x2+2x+1)+(x2−2x)−(x2−1)=x2+2x+1+x2−2x−x2+1=x2+2.解析:本题主要考查整式的混合运算.利用完全平方公式、单项式乘以单项式、单项式乘以多项式的运算法则进行运算,再合并同类项即可.22.答案:解:(1)(−3a)2⋅(a2)3÷a3=9a2⋅a6÷a3=9a5;(2)(x−3)(x+2)−(x−2)2=x2−x−6−(x2−4x+4)=3x−10;(3)(a+b)(a−b)−(4a3b−8a2b2)÷4ab=a2−b2−(a2−2ab)=2ab−b2,把a=−2,b=−1代入上式可得:原式=2×(−2)(−1)−(−1)2=3.解析:(1)直接利用积的乘方运算以及结合同底数幂的乘除运算法则化简求出答案;(2)直接利用多项式乘以多项式运算法则求出答案;(3)直接利用多项式乘以多项式运算法则以及多项式除以单项式运算法则化简,进而代入已知数据求出答案.此题主要考查了整式的混合运算−化简求值,正确掌握相关运算法则是解题关键.23.答案:解:(1)作DH⊥OB于H,PE⊥DH于E,如图1,∵DP+PC=10,PC=6,∴PD=4,∵∠AOB=60°,∴∠OPC=∠APD=30°,∴∠DPE=30°,PD=2,∴DE=12易得四边形PCHE为矩形,∴EH=PC=6,∴DH=DE+EH=2+6=8,即点D到OB的距离为8;(2)存在.如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,则点M为所作;作MN⊥OB于N,如图2,则MN=12×10=5,在Rt△OMN中,ON=√33MN=5√33,∴OM=2ON=10√33.解析:本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了点到直线的距离和含30度的直角三角形三边的关系.(1)作DH⊥OB于H,PE⊥DH于E,如图1,先计算出PD=4,利用含30度的直角三角形三边的关系得到DE=12PD=2,易得四边形PCHE为矩形,然后计算DH即可;(2)如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,利用∠D′PA=∠DPA=30°可判断点D、D′关于OA对称,所以MD′=MD,而MD′=MC,所以点M 满足MD=MC,作MN⊥OB于N,如图2,易得MN=5,根据含30度的直角三角形三边的关系求出ON、OM即可.24.答案:证明:∵AB//CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,{∠B=∠C ∠A=∠DOA=OD,∴△AOB≌△DOC(AAS),∴AB=CD.解析:此题主要考查了全等三角形的判定与性质的知识,解答本题的关键是熟练掌握判定定理以及平行线的性质,此题基础题,比较简单.首先根据AB//CD,可得∠B=∠C,∠A=∠D,结合OA=OD,可知证明出△AOB≌△DOC,即可得到AB=CD.25.答案:解: ①x2−1; ②x3−1; ③x4−1;x100−1.(1)299+298+⋯+2+1=(2−1)×(299+298+⋯+2+1)=2100−1.(2)(−3)50+(−3)49+⋯+(−3)+1=−14×(−3−1)×[(−3)50+(−3)49+⋯+(−3)+1] =−14×[(−3)51−1]=351+1.4解析:【分析】此题考查了多项式乘多项式,弄清题中的规律是解本题的关键.直接利用规律填空.(1)将式子乘以(2−1),利用题中的规律计算即可得到结果;×(−3−1),利用(1)的结论即可得到所求式子的值.(2)将所求式子乘以−1426.答案:证明:在边AC上截取AP=AB,连接PD.∵AD是△ABC的角平分线,∴∠BAD=∠PAD.在△ABD和△APD中,∴△ABD≌△APD(SAS).∴∠APD=∠B,PD=BD.∵∠B=2∠C,∴∠PDC=∠C.∴PD=PC.∴AB+BD=AP+PC=AC.解析:本题考查全等三角形的判定和性质,先在在边AC上截取AP=AB,连接PD.因为AD平分∠BAC 交BC于点D,利用角平分线的定义可知∠BAD=∠PAD,根据全等三角形的判定可知△ABD≌△APD,再根据全等三角形的性质得出对应角和对应边的相等关系,结合∠ABC=2∠C进一步可求证结果。