平面向量数量积教学反思

合集下载

高中数学_平面向量的数量积教学设计学情分析教材分析课后反思

高中数学_平面向量的数量积教学设计学情分析教材分析课后反思

向量数量积的定义一、教学设计平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。

本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。

其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。

同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

二、教学目标1通过向量夹角的定义及练习使学生掌握向量夹角的求法2 掌握向量在轴上正射影数量的求法3 掌握向量的数量积的定义及性质三、教学重难点1、重点:平面向量数量积的定义。

2、难点:平面向量数量积的定义的理解。

四、教学准备1、实验教具:计算机、黑板、粉笔2、教学支持资源:制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

五、教学过程平面向量数量积学情分析1.从学生的知识储备分析:本节课的学生是高一的学生,在学习本节课之前,学生已经学习掌握了平面向量的线性运算,并且学习了空间内直线与平面位置关系以及直线与平面平行的知识向量的分解与向量的坐标运算,因此学生对于平面向量数量积的学习有良好的认知基础。

但是学生对于数量积的定义的理解有一定的困难,要通过物理当中的做功运算一步步引导学生学习平面向量数量积的定义2、从我校教学特点分析,我校每个班级都成立了学习小组,小组成员是根据学生的学习能力安排的,每个小组均有学优生和学困生,可以有效完成小组合作,学生可以小组为单位进行讨论、探究式学习。

高三平面向量教学反思范文(精选3篇)

高三平面向量教学反思范文(精选3篇)

高三平面向量教学反思高三平面向量教学反思范文(精选3篇)身为一名优秀的人民教师,教学是我们的任务之一,通过教学反思可以有效提升自己的课堂经验,来参考自己需要的教学反思吧!以下是小编收集整理的高三平面向量教学反思范文(精选3篇),欢迎阅读,希望大家能够喜欢。

高三平面向量教学反思1本堂课属于概念课,作为数学的概念课是非常难讲的课题,一来你得让学生在第一时间能清晰的对概念的内涵和外延有深的认识,争取打成思维上的认同,避免理解的偏差和错误;二来更要让学生能融入到他原有的知识结构体系中,把在碰撞中的问题在起始阶段帮助他们搞透彻。

这是一个很难处理的环节,因为学生是不是能准确积极的思维是你不能控制的,现在的学生总是喜欢去用这些东西死死的去做题,根本不去深刻理解其中的内涵,总是在不断的做题中去发现自己对概念定理的误区,从而在错误中爬起来,爬起来再倒下,如此数个回合,有些明白了,有些就觉得难的要死......其实根本的原因还是在第一次接触这个内容的课堂中自己埋下了“惨死”的伏笔!回首这堂课的设计,在公开课结束以后总体感觉还是不错:1、课前设计4个前置活动,基本已经把定理中基本环节搞清了,但是对于核心的部分还没有处理好;2、通过课内探究的第5个活动,(学生课前的做的学案都错误了)旨在让学生养成一种分类讨论的思想,同时更好的明确定理中为什么两个原始向量必须不共线;3、作为定理的探究还要进一步的明确任意向量都可以有两个原始向量线性表示中的任意,这个任意性的处理也是这堂课中的难点,由此也要把定理的拓展定理搞明白,让学生真正知道好多问题的实质在何方!4、定理中存在唯一性的问题很好处理,学生理解也没有问题,这是很好的表现。

总评此定理要明确不共线、存在唯一、对于任意向量的分类处理以及从中拓展的定理和应用。

存在的几个问题:1、在最后的环节中处理有点仓促,还没有小结;2、课堂把握上前松后紧,如果最后的课堂检测,分组处理会更好,这样可以有小结反思的时间;3、课件的制作中对于拓展定理的证明可以提到前面一张幻灯片,这样似乎更自然;4、路漫漫的环节,没有处理,本来是想出彩的,可是没有出上呵呵,但是我的'观点还是应该把课堂延续到课外,让学生能知道下一节课的学习其实和以前我们学习的东西是有连贯性的,告诫学生需要周而复始的一点一滴的积累,把课堂的每一个细节都做好。

高三数学高效复习的实践与思考——“平面向量的数量积及其应用”教学反思

高三数学高效复习的实践与思考——“平面向量的数量积及其应用”教学反思

( 2 )在 A A B C中 ,
是B C的 中点 , A M=3,
B C =1 0,则 A B・ A C= — — .
C ( x 3 , Y ) ,求 A O A B的面积 .
( 2 )已知 1 { =2,i bj =1 ,a 与 b的夹 角为 6 0 , 且 c= a +2 6.则 I c l = ;c 与 口的夹 角 0=一 .
( 3 ) 已知 a=( 1 , 2 ) ,b =( - 2 , ) ,则
l + +
’ X+2 y=1, . 。 . =1 一( 1 —2 y ) 一Y=Y=, ” c.

或利 用 式
+ 口 O B+m c O C=0,


E是 A C中点 B E为 中线 .
则可 得到 一 m: .



0为外 心 O E为 AC中垂 线 ,
・ .

变 式 2 已知 A O A B中, O A=a, O B=b,求 变 式 3 已知 A O A B中 , A ( x , Y , ) ,8 ( x , Y : ) ,
求A O A B的面积 .

变 式 4 已知 A O A B中 , A ( x , Y ) , 【 , Y ) ,
似 比较 复杂 的代 数 式经 过复 杂 的运 算 从变 中发现 不

( m + m B + m c ) O
=, ” 口 ( o B— O A ) + c ( o c— O A ) ,
m OA + m OB +mcOC : O .
变的东西 ,往往可以通过常识性知识如几何法等找 到 固有 的规律 揭 示 问题 本质 ,而对 这 些规 律 进 行拓 展推广便可以运用这一简单的规律解决复杂 的运算

循本索源 变中出彩——高三数学复习课“平面向量的数量积”教学反思

循本索源 变中出彩——高三数学复习课“平面向量的数量积”教学反思

1 课 堂教 学 简 录 与 反 思
1 1 一 题 多 变 。 醒 知 识 . 唤
问题 l 已知 J 一2 = 4 向量 a与 b l ,I l , n b = 的夹 角为 6 。求 n・ b n 0, ( — )的 值. 师 : 是 20 这 0 8年北 京 卷 的一 个 改 编 题 , 同 请 学 们快 速 给 出答案 .
— — —
图 2
I AB— AC l 平方 后转 化
为关 于 的二次 函数 1 B A

÷
I AE 一 2× 1= 2 J .
图 3
AC 1 2 一 1 + 3 = ( ) 2
师 : 6的想法 太妙 了 , 生 对平 面 向量 数 量积 的
公 式 的本 质 理解 了. 事实 上 这种 方 法称 为投 影法 , 它可 以把 两个 向量 投 影 到 一 个 向量 上 , 共 线 向 用
A ~ AC 的 几 何 意 义 人 手 解 决 . 图 3 要 使 B 如 ,
l B— AC I A 取得 最 小值 , 只要 向量A — AC B
过变 式创 造 了利 用平 面 向量 数量 积 公式 的各 个 不
与AC垂 直 就可 以 了 , 题 速 度 会 快 很 多 , ( B 解 即 A
应 的 向量. 于 ( ) 焦 点 主要 是 坐 标 代 入 运算 还 对 2,
是用 运算 法 则. 生 相互 评点 方法 的优 劣 , 师适 学 教 时B一2 A , C一4 求A ・ B. , D A
学 生讨 论 , 法 主 要 有 : 向量 分 解 成 A = 方 将 D = :
也 一样 . 由此可 见很 多处 理 问题 的方 法 是相 通 的.

平面向量的数量积教学反思

平面向量的数量积教学反思

平面向量的数量积教学反思平面向量的数量积是高中数学中的重要概念之一,也是数学中的基础知识。

在教学实践中,我发现学生对于数量积的理解和应用存在一些困难和误解。

因此,我对平面向量的数量积进行了反思和总结,希望能够提高教学效果。

一、教学目标的明确在教学中,首先要明确教学目标,让学生知道学习数量积的目的和意义。

数量积是向量的一种重要运算,可以用来求向量的夹角、向量的投影等,是解决向量问题的重要工具。

因此,我们要让学生明确数量积的作用和应用,提高学生的学习兴趣和学习动力。

二、教学内容的系统性在教学中,要注重教学内容的系统性,让学生了解数量积的定义、性质和应用。

首先,要让学生掌握数量积的定义和计算方法,包括向量的坐标表示、数量积的坐标表示和数量积的计算公式。

其次,要让学生了解数量积的性质,包括数量积的对称性、数量积的线性性和数量积的几何意义。

最后,要让学生了解数量积的应用,包括求向量的夹角、向量的投影和向量的垂直判定等。

三、教学方法的多样性在教学中,要注重教学方法的多样性,采用多种教学方法来提高学生的学习效果。

首先,要采用讲解法,让学生了解数量积的定义、性质和应用。

其次,要采用举例法,通过具体的例子来帮助学生理解数量积的概念和应用。

最后,要采用练习法,让学生通过练习来巩固和提高数量积的运算能力。

四、教学过程的互动性在教学中,要注重教学过程的互动性,让学生参与到教学中来,提高学生的学习兴趣和学习效果。

首先,要让学生提出问题和疑惑,通过讨论和解答来帮助学生理解和掌握数量积的概念和应用。

其次,要让学生参与到教学实践中来,通过实际操作来巩固和提高数量积的运算能力。

最后,要让学生进行小组讨论和展示,通过交流和分享来提高学生的学习效果。

总之,平面向量的数量积是高中数学中的重要概念之一,也是数学中的基础知识。

在教学实践中,我们要注重教学目标的明确、教学内容的系统性、教学方法的多样性和教学过程的互动性,提高学生的学习兴趣和学习效果,让学生掌握数量积的概念和应用,为后续的学习打下坚实的基础。

新课标理念下“平面向量数量积”的教学设计与反思

新课标理念下“平面向量数量积”的教学设计与反思

点 到平 面的距 离这 两 个 问题 情境 出发 , 出 引 研究课 题“ 向量 数 量 积 ” 然 后 对 概 念进 行 具 体 地 ,
“ 式化”之间 架起桥 梁 , 形 使引人 合情合 理 , 体现直
观性 、 味性 、 发 性 和铺 垫性 原 则 , 发 学 生浓 趣 启 激 妙 和美 丽 , 发 学生 喜欢 数学 , 用数 学 的眼光 去 激 能
的形 成性 练 习 , 3 4 1 一说 , 固学 习 成果 , 如 .. 说 巩
布 置作业 : 习题 1. 第 123题 21 、、
4 教学 效果评 价

个结合 , 学思 结合 , 用结合 , 习动机 与毅力 即“ 学 学
结合 ” 纵 观整个 教 学 过 程 , 够达 到预 期 的各 层 , 能 目标 . 而对 学生 思维 品质 的培 养 , 从 数学 思想 的逐
步形成 , 心理 品质 的优化起 到 良好作 用.
维普资讯
新课标理念下“ 平面向量数量积” 的教学设计 与反 思
( 上海 南汇 中学 2 1 0 ) 许 利群 0 3 0
随着 数学课 程 改革 的不 断深化 及新 的课 程标 准( 试行稿 )的颁 发 , 人 的发 展 为本 ”的教 学理 以“ 念 越来 越深人 人 心. 数 学课 程 标准 》中强 调 : 数 《 “ 学课 程 要实 现 , 人人 学有 价值 的数 学 , 人人 都获 得 必需 的数 学 , 同 的人 在 数 学 上 得 到 不 同 的 发 不 展. ”同时 , 倡导 的“ 注 过程 ” 强调 本 质 ” “ 她 关 “ , 体
具体 设计 :
现数学 的文化价 值 ” 发 展数 学 的应 用 意 识”等都 “
向我 们 昭示 出高 中数学课 程 的价值 取 向.

平面向量数量积的坐标表示教学反思.doc范文

平面向量数量积的坐标表示教学反思.doc范文

平面向量数量积的坐标表示教学反思.doc范文第一篇:平面向量数量积的坐标表示教学反思.doc范文《平面向量数量积的坐标表示、模、夹角》教学反思1、本节课先是通过对相关知识的回顾,然后引进与x轴、y轴方向相同的两个单位向量,进一步探索两个向量数量积的坐标表示。

最后通过几个例题加强学生对两个向量数量积的坐标表示的理解及其灵活应用。

课堂结构清晰完整流畅。

在教学中,知识的回顾,题目的设计都围绕数量积坐标表示展开。

数量积公式得出后,启发学生自己动手推导出模、夹角的坐标表示,回顾了公式的同时又培养了学生的推导能力、自主学习能力。

在与学生的课堂交流中能倾听学生的想法,及时纠正偏差,激发了学生自主探究的欲望,较好的提升了学生的思维能力,对于学生在探究过程中出现的问题都能认真加以点评,适时指出不足与优点,对于学生的发现与总结都能给于很好的评价与赞扬,让学生收到激励,保持学习的热情。

2、教学设计结构严谨,过渡自然,时间分配合理。

知识回顾部分把上节课的数量积、夹角、模、垂直、平行的有关知识进行回顾,每一条知识点的回顾都是本堂课的新课内容。

3、新课引入部分问题设计合理,但提问的字句还需斟酌,要语简意赅,如22思考2中:对于上述向量i,j,则i,j,i.j分别等于什么?这样的问法觉的还是太繁琐,是否可以改为计算i2,j2,i.j?这样可能更直接一点。

4、公式的得出,在应用之前或者应用之后都应该对公式的结构特征进行归纳总结。

学生因为接受新知识,对公式肯定不是很了解,应该要引导学生分析公式特征及应用的注意点。

5、一节课的知识与技能是否落实,难点是否得到突破,是教学者最为关心的话题。

课堂习题正是检验教学效果的工具。

在习题设置上,除了覆盖重难点外,还应做到由简入深。

同时,在教学过程中,通过旧知生成新知的过程,采用问题串的形式引导学生一步步完成自主探究得到生成,是比较有效的教学方式。

6、通过本次公开订,学到了很多东西,争取下一次做得更好,另外还需改进语言表达能力,希望课堂气氛可愉更加活跃。

(完整版)《平面向量的数量积》教学设计及反思

(完整版)《平面向量的数量积》教学设计及反思

《平面向量的数量积》教学设计及反思交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。

向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。

一、总体设想:本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。

教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:1.了解向量的数量积的抽象根源。

2.了解平面的数量积的概念、向量的夹角3.数量积与向量投影的关系及数量积的几何意义4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算三、重、难点:【重点】1.平面向量数量积的概念和性质2.平面向量数量积的运算律的探究和应用【难点】平面向量数量积的应用四、课时安排:2课时五、教学方案及其设计意图:1.平面向量数量积的物理背景平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。

首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为Wθ⋅F,这里的θ是矢量F和s的夹角,也即是两个=scos⋅向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。

这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。

2.平面向量数量积(内积)的定义已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π).并规定0与任何向量的数量积为0.零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a⋅b = |a||b|cosθ无法得到,因此另外进行了规定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量数量积教学反思
平面向量数量积教学反思
一、本节课的设想与基本流程:本节课主要是研究向量与向量的内积的问题,也就是向量的数量积。

因为之前刚学习了向量的线性运算,所以我就直接从向量的线性运算引入了数量积这一概念,请同学来回答数量积的概念,在此过程中特别强调了夹角的概念,强调要共起点。

这是学生容易出问题的地方,因此后面安排的例题就特意考察了这一问题;另外还强调了两个向量的数量积不是一个向量,而是一个数量,这也是它与之前的线性运算的区别;接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识。

二、我的体会:通过本节课的教学,我有以下几点体会:
(1)让学生经历数学知识的形成与应用过程高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。

对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。

(2)鼓励学生自主探索、自主学习教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。

对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。

(3)注重学生数学思维的培养本节通过特殊到一般进行观察归纳、合情推理,探求定义、性质和几何意义。

在整个探求过程中,充分利用“旧知识”及“旧知识形成过程”,并利用它探求新知识。

这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程。

我感觉不足的有:(1)教师应该如何准确的提出问题在教学中,教师提出的问题要具体、准确,而不应该模棱两可。

(2)教师如何把握“收”与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。

(3)教师要点拨到位在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质。

(4)课堂语言还需要进一步提炼。

在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强。

以上就是本人的教学反思,只有不断地反思,不断地总结才能在今后的教学中取得更好的教学效果,尽快地提高自身的教学水平。

1 / 1。

相关文档
最新文档