电路与模拟电子第三章PPT课件
合集下载
第3章正弦交流电路电路与模拟电子技术(1)

j 3π 4 ( π 2) 5π 4 0
j 5π 4 2π 3 π 4
( 2 ) i1 ( t ) 10 cos( 100 π t 30 )
0
i2 ( t ) 10 sin( 100 π t 15 )
0
i1 ( t ) 10 sin(100πt 1200 )
i1 i2
称i1超前于i2
t
j 12 < 0
i2 i1
称i1滞后于i2
t
1
2
20
称i1与i2 同相位
t
1=
j 1 2 = 0
i1 i2
j 12 = 1800
i1 i2
i1与i2 反相位
t
1 2
12
15
例
解
计算下列两正弦量的相位差。
(1) i1 ( t ) 10 sin(100π t 3π 4) i2 ( t ) 10 sin(100π t π 2)
60 o 30 o
I 860 A I 6 30 A
o 1
. o 2
.
I2
相量图 相量式
22
正弦量的相量表示:
有效值相量
复数的模表示正弦量的有效值 复数的幅角表示正弦量的初相位
u(t ) 2U cos( t ) U U
幅值相量 复数的模表示正弦量的幅值
复数的幅角表示正弦量的初相位
第3章 正弦交流电路
3.1 正弦量的基本概念 3.2 正弦量的相量表示法及相量图 3.3 正弦稳态电路的相量模型
3.4 阻抗和导纳
3.5 阻抗的串联与并联
3.6 正弦稳态电路的分析
3.7 正弦稳态电路的功率及功率因数的提高
j 5π 4 2π 3 π 4
( 2 ) i1 ( t ) 10 cos( 100 π t 30 )
0
i2 ( t ) 10 sin( 100 π t 15 )
0
i1 ( t ) 10 sin(100πt 1200 )
i1 i2
称i1超前于i2
t
j 12 < 0
i2 i1
称i1滞后于i2
t
1
2
20
称i1与i2 同相位
t
1=
j 1 2 = 0
i1 i2
j 12 = 1800
i1 i2
i1与i2 反相位
t
1 2
12
15
例
解
计算下列两正弦量的相位差。
(1) i1 ( t ) 10 sin(100π t 3π 4) i2 ( t ) 10 sin(100π t π 2)
60 o 30 o
I 860 A I 6 30 A
o 1
. o 2
.
I2
相量图 相量式
22
正弦量的相量表示:
有效值相量
复数的模表示正弦量的有效值 复数的幅角表示正弦量的初相位
u(t ) 2U cos( t ) U U
幅值相量 复数的模表示正弦量的幅值
复数的幅角表示正弦量的初相位
第3章 正弦交流电路
3.1 正弦量的基本概念 3.2 正弦量的相量表示法及相量图 3.3 正弦稳态电路的相量模型
3.4 阻抗和导纳
3.5 阻抗的串联与并联
3.6 正弦稳态电路的分析
3.7 正弦稳态电路的功率及功率因数的提高
模拟电路第三章 多级放大电路

整理ppt
1. 双端输入单端输出:共模信号作用下的分析
Ad
1(Rc∥RL)
2 Rbrbe
AcRbrb(R ec2 ∥ (1R L))Re
KCMRA Ad c Rb2 rb(R eb2(1rbe))Re
整理ppt
2. 单端输入双端输出
共模输入电压 差模输入电压 输入差模信号的同时总是伴随着共模信号输入:
3.3.2 差分放大电路
一、电路的组成
零点 漂移
参数理想对称: Rb1= Rb2,Rc1= Rc2, Re1= Re2;T1、T2在任何温度下特性均相同。 uI1与uI2所加信号大小相等、极性相同——共模信号
整理ppt
二、长尾式差分放大电路
典型电路
信号特点? uI1与uI2所加信号大小相等、极性相反——差模信号
在实际应用时,信号源需要有“ 接地”点,以避免干扰; 或负载需要有“ 接地”点,以安全工作。
根据信号源和负载的接地情况,差分放大电路有四种接法: 双端输入双端输出、双端输入单端输出、单端输入双端输出、 单端输入单端输出。
整理ppt
三、差分放大电路的四种接法 1. 双端输入单端输出:Q点分析
由于输入回路没有变化,所以
共模放大倍数 Ac
uO c uIc
参数理想对称A时 c 0
Re的共模负反馈作用:温度变化所引起的变化等效为共模信号
如 T(℃)↑→IC1↑ IC2 ↑→UE↑→ IB1 ↓IB2 ↓→ IC1 ↓ IC2 ↓
Re负反馈作用抑制了每只差分管集电极电流、电位的变化。
整理ppt
3. 放大差模信号 差模信号:数值相等,极性相反的输入信号,即
uI1uI2uId/2
i B 1 i B2 i C 1 i C2 u C 1 u C2 u O 2 u C1
1. 双端输入单端输出:共模信号作用下的分析
Ad
1(Rc∥RL)
2 Rbrbe
AcRbrb(R ec2 ∥ (1R L))Re
KCMRA Ad c Rb2 rb(R eb2(1rbe))Re
整理ppt
2. 单端输入双端输出
共模输入电压 差模输入电压 输入差模信号的同时总是伴随着共模信号输入:
3.3.2 差分放大电路
一、电路的组成
零点 漂移
参数理想对称: Rb1= Rb2,Rc1= Rc2, Re1= Re2;T1、T2在任何温度下特性均相同。 uI1与uI2所加信号大小相等、极性相同——共模信号
整理ppt
二、长尾式差分放大电路
典型电路
信号特点? uI1与uI2所加信号大小相等、极性相反——差模信号
在实际应用时,信号源需要有“ 接地”点,以避免干扰; 或负载需要有“ 接地”点,以安全工作。
根据信号源和负载的接地情况,差分放大电路有四种接法: 双端输入双端输出、双端输入单端输出、单端输入双端输出、 单端输入单端输出。
整理ppt
三、差分放大电路的四种接法 1. 双端输入单端输出:Q点分析
由于输入回路没有变化,所以
共模放大倍数 Ac
uO c uIc
参数理想对称A时 c 0
Re的共模负反馈作用:温度变化所引起的变化等效为共模信号
如 T(℃)↑→IC1↑ IC2 ↑→UE↑→ IB1 ↓IB2 ↓→ IC1 ↓ IC2 ↓
Re负反馈作用抑制了每只差分管集电极电流、电位的变化。
整理ppt
3. 放大差模信号 差模信号:数值相等,极性相反的输入信号,即
uI1uI2uId/2
i B 1 i B2 i C 1 i C2 u C 1 u C2 u O 2 u C1
中南大学电路与模拟电子技术(计算机类专用) 第3章 正弦交流电路PPT课件

5.2 正弦量2 (ti)为正弦量随时间变化的核心部分,它反映了正弦量的
变化进程,称为正弦量的相角或相位。
( )就是相角随时间变化的频率,即
d (t
dt
i
)
单位:rad/s,它是反映正弦量变化快慢的要素。
、T和f三者之间的关系:
T2
2f
频率f的单位为赫芝(HZ)
1KH 1Z30HZ 1MH 1Z 60 HZ
在工程实际中,往往以频率的大小作为区分电路的标志,如高频
电路,低频电路。
5
<三> 初相角Yi
i= Imcos( t+i)
5.2 正弦量3 它是正弦量在t=0时刻的相角,即 (ti)/t 0i
单位:弧度或度 ( 0 ) 。
i 主值范围内取值
iImcost(76)Imcost(56)
Yi的大小与计时起点的选择有关。
正弦交流电路 章3第
第5章 正弦交流电路相量法
掌握相量与正弦量的关系;电阻、电容和电感元件电压和电 流的相量关系。掌握用相量法分析正弦稳态电路的方法(包 括结点法、网孔法、叠加定理和戴维宁定理),掌握正弦电 路功率计算问题。 注意:直流电路的一般分析方法和电路定理同样可用于分析
正弦稳态电路。 相量是正弦量的一种表示方法,它们之间是一一对应 关系, 而相量不等于正弦量。
A B B A e ejj B a B Aej(a b)B A(ab)
几何意义: j
B A/B
A
1
16
3.2.3 相量法的基础
一、正弦量5的.相3量相量法的基础1
欧拉公式: co sjsin ej
i 2Icost (i)Re2[Iej(ti)] Re2[Iejiejt]
变化进程,称为正弦量的相角或相位。
( )就是相角随时间变化的频率,即
d (t
dt
i
)
单位:rad/s,它是反映正弦量变化快慢的要素。
、T和f三者之间的关系:
T2
2f
频率f的单位为赫芝(HZ)
1KH 1Z30HZ 1MH 1Z 60 HZ
在工程实际中,往往以频率的大小作为区分电路的标志,如高频
电路,低频电路。
5
<三> 初相角Yi
i= Imcos( t+i)
5.2 正弦量3 它是正弦量在t=0时刻的相角,即 (ti)/t 0i
单位:弧度或度 ( 0 ) 。
i 主值范围内取值
iImcost(76)Imcost(56)
Yi的大小与计时起点的选择有关。
正弦交流电路 章3第
第5章 正弦交流电路相量法
掌握相量与正弦量的关系;电阻、电容和电感元件电压和电 流的相量关系。掌握用相量法分析正弦稳态电路的方法(包 括结点法、网孔法、叠加定理和戴维宁定理),掌握正弦电 路功率计算问题。 注意:直流电路的一般分析方法和电路定理同样可用于分析
正弦稳态电路。 相量是正弦量的一种表示方法,它们之间是一一对应 关系, 而相量不等于正弦量。
A B B A e ejj B a B Aej(a b)B A(ab)
几何意义: j
B A/B
A
1
16
3.2.3 相量法的基础
一、正弦量5的.相3量相量法的基础1
欧拉公式: co sjsin ej
i 2Icost (i)Re2[Iej(ti)] Re2[Iejiejt]
模拟电子技术基础A 第3章习题的答案-PPT课件

U GS 2 ID ID S( 1 ) S U GS (o f) f
2. 两种基本接法电路的分析:CS、CD
2)动态性能指标的计算:微变等效电路
2 gm ID ID O Q U G S (th )
2 g ID ID m S S Q U G S (o ff)
3-3已知某N沟道结型场效应管的UGS(off)=- 5V。下表给出 四种状态下的UGS和UDS 的值,判断各状态下的管子工作在什 么区。( a.恒流区 b.可变电阻区 c.截止区 )
2. 两种基本接法电路的分析:CS、CD 1)静态工作点的分析计算。 • 利用场效应管栅极电流为0,得到栅源电压与 漏极电流之间关系式。 • 列出场效应管在恒流区的电流方程。 联立上述两方程,求解UGSQ和IDQ,并推算 UDSQ。 • 注意解算后应使得管子工作在恒流区。
5
U 2 GS ID IDO ( 1 ) U GS (th )
-
3-7:如图所表示的电路图。已知 UGS=-2V,场 效应管子的IDSS=2mA,UGS(off)=-4V。
• 1.计算ID和Rs1的值。
解:
I I ( 1 ) 0 . 5 m A D Q D S S U G S ( o f f)
2
U G S Q
U GSQ U GQ U SQ 2V RS1 U GSQ ID 2V 4 k 0 . 5 mA
3-4: 判断图所示的电路能否正常放大 ,并说明原因。
• 绝缘栅型N沟道耗尽型ห้องสมุดไป่ตู้场效应管。 • 因为没有漏极电阻, 使交流输出信号到地 短路uo无法取出。 • 不能。
3-4: 判断图所示的电路能否正常放大 ,并说明原因。
• 满足正常放大条件。 如在输入端增加大电 阻RG,可有效提高输入 电阻。 • 能。
模拟电子技术基础 3.3差分放大电路PPT课件

uod = 2ic1RL
ic2 = ic1
而(对镜像源):
二、双端变单端的转换电路
对共模信号:
ic4 = ic3 ≈ ic1
iL = ic4 – ic2 = 0
uoc = 0
ic2 = ic1
而
具有双端输出的效果!
3.3.4 差分放大电路的差模传输特性
O
ui
iC
iC1
iC2
I0
UT
-UT
4UT
采用 V3 管代替 R
4 FET管电流源
I0 = IREF
2、有源负载
以电流源取代电阻作放大电路的负载。
优点:既提高了电压放大倍数,又设置了合适的工作点。
一、电流源与有源负载
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路
CMOS差分放大电路
V1、V2构成差放, V3、V4构成电流源作有源负载, V5、V6 、V7构成电流源提供偏置。
第3章 放大电路基础
3.1 放大电路的基础知识 3.2 基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路 3.5 多级放大器
3.3 差分放大电路
3.3.1 基本差分放大电路
3.3.2 电流源与具有电流源的差分放大电路
3.3.3 差分放大电路的输入、输出方式
差分放大电路又称差动放大电路,简称差放,具有输出电压近似与两个输入电压之差成正比的特性,是集成运放中重要的基本单元电路。
3.3.3 差分放大电路的差模传输特性及应用
一、电路组成及静态分析
一般
3.3.1 基本差分放大电路
结构特点: 1 两个输入端,两个输出端; 2 电路结构和元件参数对称; 3 双电源供电; 4 RE是公共发射极电阻。
ic2 = ic1
而(对镜像源):
二、双端变单端的转换电路
对共模信号:
ic4 = ic3 ≈ ic1
iL = ic4 – ic2 = 0
uoc = 0
ic2 = ic1
而
具有双端输出的效果!
3.3.4 差分放大电路的差模传输特性
O
ui
iC
iC1
iC2
I0
UT
-UT
4UT
采用 V3 管代替 R
4 FET管电流源
I0 = IREF
2、有源负载
以电流源取代电阻作放大电路的负载。
优点:既提高了电压放大倍数,又设置了合适的工作点。
一、电流源与有源负载
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路
CMOS差分放大电路
V1、V2构成差放, V3、V4构成电流源作有源负载, V5、V6 、V7构成电流源提供偏置。
第3章 放大电路基础
3.1 放大电路的基础知识 3.2 基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路 3.5 多级放大器
3.3 差分放大电路
3.3.1 基本差分放大电路
3.3.2 电流源与具有电流源的差分放大电路
3.3.3 差分放大电路的输入、输出方式
差分放大电路又称差动放大电路,简称差放,具有输出电压近似与两个输入电压之差成正比的特性,是集成运放中重要的基本单元电路。
3.3.3 差分放大电路的差模传输特性及应用
一、电路组成及静态分析
一般
3.3.1 基本差分放大电路
结构特点: 1 两个输入端,两个输出端; 2 电路结构和元件参数对称; 3 双电源供电; 4 RE是公共发射极电阻。
模拟电子技术第三章 场效应三极管

+
d g s
源 极
上页 下页 首页
栅 极
N沟道结型场效应管的结构和符号
3
s
2. 工作原理
⑴ 当uDS = 0 时, uGS 对耗尽层和导电沟道的影响。
ID=0 ID=0
d
P+
d
N 型 沟 道
P+ P+
d
P+ P+ P+
g
g
N 型 沟 道
g
s uGS = 0
s uGS < 0
4
预夹断轨迹
恒流区
IDO O
UGS(th) 2UGS(th) uGS/V
O
截止区
uDS/V
转移特性曲线可近似用以下公式表示:
iD I DO ( uGS U GS(th) )
2
当uGS ≥ UGS(th)时
12
上页
下页
首页
2. N沟道耗尽型MOS场效应管 预先在二氧化硅中掺入大 量的正离子,
使uGS = 0 时,
形成一个N型导电沟道。
又称之为反型层 开启电压,用uGS(th)表示
导电沟道随uGS 增大而增宽。
10
B uGS > UGS(th)时 形成导电沟道
上页 下页 首页
uDS对导电沟道的影响
uGS为某一个大于UGS(th)的固定值, 在漏极和源极之间加正电压,且 s uDS < uGS - UGS(th) 即uGD = uGS - uDS > UGS(th) 则有电流iD 产生,
在制造时就具有 原始导电沟道
31
3. 场效应管的主要参数
(1) 开启电压 UGS(th):是增强型MOS管的参数 (2) 夹断电压 UGS(off): 是结型和耗尽型 (3) 饱和漏电流 IDSS: MOS管的参数
d g s
源 极
上页 下页 首页
栅 极
N沟道结型场效应管的结构和符号
3
s
2. 工作原理
⑴ 当uDS = 0 时, uGS 对耗尽层和导电沟道的影响。
ID=0 ID=0
d
P+
d
N 型 沟 道
P+ P+
d
P+ P+ P+
g
g
N 型 沟 道
g
s uGS = 0
s uGS < 0
4
预夹断轨迹
恒流区
IDO O
UGS(th) 2UGS(th) uGS/V
O
截止区
uDS/V
转移特性曲线可近似用以下公式表示:
iD I DO ( uGS U GS(th) )
2
当uGS ≥ UGS(th)时
12
上页
下页
首页
2. N沟道耗尽型MOS场效应管 预先在二氧化硅中掺入大 量的正离子,
使uGS = 0 时,
形成一个N型导电沟道。
又称之为反型层 开启电压,用uGS(th)表示
导电沟道随uGS 增大而增宽。
10
B uGS > UGS(th)时 形成导电沟道
上页 下页 首页
uDS对导电沟道的影响
uGS为某一个大于UGS(th)的固定值, 在漏极和源极之间加正电压,且 s uDS < uGS - UGS(th) 即uGD = uGS - uDS > UGS(th) 则有电流iD 产生,
在制造时就具有 原始导电沟道
31
3. 场效应管的主要参数
(1) 开启电压 UGS(th):是增强型MOS管的参数 (2) 夹断电压 UGS(off): 是结型和耗尽型 (3) 饱和漏电流 IDSS: MOS管的参数
电子技术基础——电路与模拟电子(第3章)

du(t ) p(t ) = u (t )i (t ) = Cu(t ) dt
(3―6)
对上式从-∞到 进行积分 可得t时刻电容上的储能为 进行积分, 对上式从 到t进行积分,可得 时刻电容上的储能为 计算过程中认为u(-∞)=0。 。 计算过程中认为
ωC (t ) = ∫
t
−∞
p (ξ )d ξ
(3-7)
1 1 1 = + C C1 C2
或写为
C1C2 C= C1 + C2
(3―18)
上式中C为电容 相串联时的等效电容。由式(3―17)画出 上式中 为电容C1与C2相串联时的等效电容。由式 为电容 画出 其等效电路如图3.6(b)所示。同理可得,若有 个电容 k(k=1,2,…,n) 所示。同理可得,若有n个电容 个电容C 其等效电路如图 所示 相串联, 相串联,其等效电容为
第3章 动态电路分析
电容元件及电容电流波形分别如图3.2( )、 例3-1 电容元件及电容电流波形分别如图 (a)、 (b)所示,已知 )所示,已知u(0)=0,试求 ,试求t=1s、t=2s、t=4s时的电 、 、 时的电 容电压u以及 以及t=2s时电容的储能。 时电容的储能。 容电压 以及 时电容的储能
第3章 动态电路分析
电感串并联: 电感串并联:
是电感L 相串联的电路, 图 3.8(a)是电感 1 与 L2 相串联的电路 , 流过两电感的电流是同一电 是电感 的微分形式和KVL,有 流i。根据电感 。根据电感VAR的微分形式和 的微分形式和 ,
L = L1 + L2
(3―25)
称为电感L1与 L2串联时的等效 称为电感 与 串联时的等效 电感。 由式(3―26)画出相应的等效 电感 。 由式 画出相应的等效 电路如图3.8(b)所示 。 同理 , 若有 所示。 同理, 若有n 电路如图 所示 个 电感 Lk(k=1,2,…,n) 相 串联 , 可 推 导其等效电感为
模电第三章之 放大电路的频率响应

C1 + +
+
+
3.3.1 混合 型等效电路
一、混合 型等效电路cBiblioteka brbcrbb
+
b
Ib U be rb b
b
C bc
Ic c
+
gmU be
b
rbe
U be
rbe
C be
e
U ce
(a)三极管结构示意图
e
(b)等效电路
特点:(1)体现了三极管的电容效应 . .
10 f
f
图 3.2.1 的波特图
3.2.1 共射截止频率 f
值下降到 0.707 (即 1 0 )时的频率。 0 2
当 f = f 时,
1 0 0.707 0 2
20 lg 20 lg 0 - 20 lg 2 20 lg 0 - 3(dB )
对数幅频特性:
20 lg Au / dB
实际幅频特性曲线:
0.1 fL fL 10 fL f
0 3dB -20
高通特性:
-20dB/十倍频
-40
当 f ≥ fL(高频),
幅频特性
Au 1
图 3.1.4(a)
当 f < fL (低频), Au 1
且频率愈低,Au 的值愈小,
最大误差为 3 dB, 发生在 f = fL处
2
-20 lg 1 f L 20 lg Au f
2
则有:
当 f f L 时, Au 0 dB 20lg
f f 当 f f L 时, lg Au -20 lg L 20 lg 20 f fL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源极s 栅极-g 漏极d
-
-
1.N沟道增强型MOS管 (1)结构
4个电极:漏极D,
源极S,栅极G和 衬底B。 - d
g
符号:
--
b
s
N+
N+
P衬 底
-
衬底b
(2)工作原理
①栅源电压uGS的控制作用
当uGS=0V时,漏源之间相当两个背靠背的 二极管,在 d、s之间加上电压也不会形成电流,即管子截止。
两个PN结夹着一个N型沟道。 三个电极:
g:栅极 d:漏极 s:源极
栅极g
-
符号:
-d
g
--
-d
g
--
s N沟道
s P沟道
漏极d
-
p+
p+
N
源极 - s
2. 结型场效应管的工作原理
(1)栅源电压对沟道的控制作用
在栅源间加负电压uGS ,令
ddd
uDS =0
①当uGS=0时,为平衡PN结,导 电沟道最宽。
②当│uGS│↑时,PN结反偏,耗尽层 变宽,导电沟道变窄,沟道电阻 增大。
③当全│合uG拢S│。↑到一定值时 ,沟道会完
定义: 夹断电压UP——使导电沟道完全 合拢(消失)所需要的栅源电压 uGS。
gg g
pp++p+ pp++p+
VVGGGVG G G
NNN
ss s
(2)漏源电压对沟道的控制作用
i D (mA)
4
3
2
△ iD
1
uGS=6V
=5V
△ uGS
=3V
10V
i D (mA)
4
3
2
1
u
DS
(V)
△ iD △ uGS
2 46
u
GS
(V)
2.N沟道耗尽型MOSFET
在栅极下方的SiO2层中掺入了大量的金属正离子。所以当 uGS=0时,这些正离子已经感应出反型层,形成了沟道。
特点:
当uGS=0时,就有沟道 ,加入uDS,就有iD。 当uGS>0时,沟道增宽 ,iD进一步增加。 当uGS<0时,沟道变窄 ,iD减小。
恒流区的特点:
△ iD /△ uGS = gm ≈常数 即: △ iD = gm △ uGS
(放大原理)
uGS=-3V 截止区
(c)夹断区(截止区)。
(d)击穿区。
击穿区
u
DS
(2)转移特性曲线: iD=f( uGS )│uDS=常数
可根据输出特性曲线作出移特性曲线。 例:作uDS=10V的一条转移特性曲线:
4. MOS管的主要参数
(1)开启电压UT (2)夹断电压UP (3)跨导gm :gm=iD/uGS uDS=const (4)直流输入电阻RGS ——栅源间的等
效电阻。由于MOS管栅源间有sio2绝缘 层,输入电阻可达109~1015。
二. 结型场效应管
1. 结型场效应管的结构(以N沟为例):
4 3
2 1
uGS=6V
uGS =5V uGS =4V uGS=3V
10V
i D (mA)
4
3
2
1
u
DS
(V)
UT
2 46
u
GS
(V)
一个重要参数——跨导gm:
gm=iD/uGS uDS=const (单位mS)
gm的大小反映了栅源电压对漏极电流的控制作用。 在转移特性曲线上, gm为的曲线的斜率。 在输出特性曲线上也可求出gm。
入电阻极高等优点绝,缘得栅到场了效广应泛管应用增。强型
N沟道 P沟道
FET分类:
结型场效应管
耗尽型
N沟道 P沟道
N沟道 P沟道
一. 绝缘栅场效应管
绝缘栅型场效应管 ( Metal Oxide Semiconductor FET),
简称MOSFET。分为: 增强型 N沟道、P沟道 耗尽型 N沟道、P沟道
定义:
源极s 栅极-g 漏极d
-
-
++++++++++++
N+
N
P衬 底
-
衬底b
-d
g
--b -
s
夹断电压( UP)——沟道刚刚消失所需的栅源电压uGS。
3、P沟道耗尽型MOSFET
P沟道MOSFET的工作原理与N沟道 MOSFET完全相同,只不过导电的载流 子不同,供电电压极性不同而已。这如 同双极型三极管有NPN型和PNP型一样 。
Байду номын сангаас
i D (mA)
4 3
2 1
uGS=0V
uGS =-1V uGS =-2V uGS=-3V
10V
i D (mA)
d
id
i D (mA)
uGSS==00VV
g
p+
p+
VDD
VGG
s
uuGGS=S =--11VV
uGS =-2V uGS=-3V
u
DS
设:UT= -3V
四个区: 可变电阻区
(a)可变电阻区
i D (mA)
(预夹断前)。
恒流区 uGS=0V
(b)恒流区也称饱和 区(预夹断 后)。
uGS =-1V uGS =-2V
在靠漏极处夹断——预夹断。
④uDS再↑,预夹断点下移。
NN
预夹断前, uDS↑→iD ↑。 预夹断后, iDS↑→iD 几乎不变。
ss
(3)栅源电压uGS和漏源电压uDS共同作用 iD=f( uGS 、uDS),可用输两组特性曲线来描绘。
3、 结型场效应三极管的特性曲线
(1)输出特性曲线: iD=f( uDS )│uGS=常数
3.1 场效应管
BJT是一种电流控制元件(iB~ iC),工作时,多数载 流子和少数载流子都参与运行,所以被称为双极型器件
。
场效应管(Field Effect Transistor简称FET)是一
种电压控制器件(uGS~ iD) ,工作时,只有一种载流子 参与导电,因此它是单极型器件。
FET因其制造工艺简单,功耗小,温度特性好,输
在漏源间加电压uDS ,令uGS =0 由于uGS =0,所以导电沟道最宽。
dddiiiddd
①当uDS=0时, iD=0。
②uDS↑→iD ↑
→靠近漏极处的耗尽层加宽,
g
沟道变窄,呈楔形分布。 ③当uDS ↑,使uGD=uG S- uDS=UP时,
g pppp++++
pppp++++
VVVDDDDDD
当uGS>0V时→纵向电场 →将靠近栅极下方的空穴向
下排斥→耗尽层。
再增加uGS→纵向电场↑ →将P区少子电子聚集到 P区表面→形成导电沟道,
如果此时加有漏源电压, 就可以形成漏极电流id。
--
s s VDVDDD VGG -g-g
-d-d
id 二氧化硅
二氧化硅
N
+ N
+
N
+ N
+
P衬P衬底底
bb
定义: 开启电压( UT)——刚刚产生沟道所需的 栅源电压UGS。
N沟道增强型MOS管的基本特性: uGS < UT,管子截止, uGS >UT,管子导通。 uGS 越大,沟道越宽,在相同的漏源电压uDS作 用下,漏极电流ID越大。
②转移特性曲线: iD=f(uGS)uDS=const
可根据输出特性曲线作出移特性曲线。 例:作uDS=10V的一条转移特性曲线:
i D (mA)