微分方程练习题基础篇答案

合集下载

微分方程单元测试题(含答案)

微分方程单元测试题(含答案)

微分方程单元测试题(含答案)题目一已知微分方程 $\frac{dy}{dx} = 2x$,求出这个微分方程的通解。

答案:根据微分方程的定义,我们可以利用变量分离法来求解这个微分方程。

首先我们将 $\frac{dy}{dx} = 2x$ 两边同时乘以 $dx$ 和$\frac{1}{2x}$,得到 $\frac{dy}{2x} = dx$。

然后我们进行积分,得到 $\int \frac{dy}{2x} = \int dx$。

将积分限写入,得到 $\int\frac{dy}{2x} = \int_{y_0}^y dx$(这里 $y$ 是变量 $x$ 的函数)。

对于左边的积分,我们可以用换元法来进行计算,令 $u = 2x$,则$du = 2dx$。

将其代入积分式中,得到 $\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| + C_1 = \ln|u|^{1/2} + C_1$ (其中 $C_1$ 是常数)。

对于右边的积分,我们可以直接计算得到 $x + C_2$(其中$C_2$ 是常数)。

将左右两边的积分结果合并,得到 $\ln|u|^{1/2} + C_1 = x + C_2$,进一步化简得到 $\ln|2x|^{1/2} = x + C_3$,其中$C_3 = C_2 - C_1$ 是常数。

对等式两边同时取指数函数,得到$|2x|^{1/2} = e^{x + C_3}$,再进一步化简得到 $|2x|^{1/2} = e^{x}e^{C_3}$。

最后取绝对值,得到 $2x = \pm e^{x} e^{C_3}$,进一步化简得到 $x = \pm \frac{e^{x} e^{C_3}}{2}$。

因此,微分方程的通解为 $x = \pm \frac{e^{x} e^{C_3}}{2}$,其中 $C_3$ 是常数。

题目二已知微分方程 $\frac{dy}{dx} + y = 3x$,求出这个微分方程的特解。

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

微分方程习题及答案

微分方程习题及答案

微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解. (1)yx y y x C y xy x -=¢-=+-2)2(,22(2)ò¢=¢¢=+y 0222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C ,,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x ,处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -=¢-;(2)0tan sec tan sec 22=×+×xdy y ydx x ;(3)23xy xy dxdy =-;(4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解(1)0,02==¢=-x y x y ey ;(2)21,12==+¢=x y y y y x3. 求下列微分方程的通解求下列微分方程的通解(1))1(ln+=¢x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x yxydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=¢;(2))ln (ln y x y y y x +=+¢(3)11+-=¢yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?B A P(x ,y ) §3 一阶线性方程与贝努利方程1.求下列微分方程的通解.求下列微分方程的通解(1)2x xy y =-¢; (2)0cos 2)1(2=-+¢-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -=¢; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解.求下列微分方程的特解(1)0 ,sec tan 0==-¢=x y x x y y ; (2)1|,sin 0==+¢=x y x xx yy3.一.一曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程. 4.设可导函数)(x j 满足方程满足方程ò+=+ x0 1sin )(2cos )(x tdt t x x j j ,求)(x j . 5.设有一个由电阻W =10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系. 6.求下列贝努利方程的通解.求下列贝努利方程的通解(1) 62y x x y y =+¢(2)x y x y y tan cos 4+=¢(3)0ln 2=-+y x x dy dxy (4)2121xy x xy y +-=¢§4 可降阶的高阶方程 1.求下列方程通解。

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。

为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。

练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。

微分方程单元测试1-2-3参考答案

微分方程单元测试1-2-3参考答案

解方程2121dy x y dx x y -+=-+。

解. 解方程组{210,210,x y x y -+=-+=得11,33x y =-=。

令1,31,3x z y y =-=+⎧⎨⎩代入原方程,则有22d y z ydz z y-=-。

再令y u z =,即y uz =,则上式化为()()21221u dudzzu u-=-+,两边同时积分,得()22ln1ln u u z c -++=,即()22ln y z y z c -+=。

所以,原方程的通解为:2211111ln 3333y x y x c ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-++=⎢⎥ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,化简为22x y xy x y c +-+-=。

这里113c c e =-,1c 为任意常数。

2、解方程22y x y dx dy -=。

解 将原方程改为2dx x y dy y=-,这是一个以x 为函数,y 为自变量的一阶线性微分方程。

容易求得其齐次方程2dx x dy y=的解为 2x cy =。

令原方程的解为2()x c y y =,对其两边关于y 求导,得到2()2()dx dc x y c y dy dy=+,并代入原方程得到 ()1dc y dy y=-,积分得到()ln ||c y y c =-+。

因此原方程的通解为 2(ln ||)x y c y =-。

3、解方程 1yxdy exe dx -⎛⎫+= ⎪⎝⎭。

解 原方程可以变形为 ()()x y d y x xe dx++=即()()x y e d x y xdx -++=。

积分之,则得到()22x yx e c -++= 这就是原方程的通解。

4、解方程 23222(32)3(2)0xyx dx x y y dy +++=。

解 因为12Mxy y∂=∂,12N xy x ∂=∂,故方程是恰当微分方程。

把方程重新“分项组合”,得到 ()223266430xy dx xydy x dx y dy +++=,即 ()224330d xy x y ++=,于是,方程的通解为22433x y x y c ++=,这里c 是任意常数。

第六章微积分微分方程初步(含答案)

第六章微积分微分方程初步(含答案)

第六章微积分微分⽅程初步(含答案)微分⽅程初步⼀、单项选择题1.微分⽅程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分⽅程222y x dxdy x +=是( b ) A.⼀阶可分离变量⽅程 B.⼀阶齐次⽅程 C.⼀阶⾮齐次线性⽅程 D.⼀阶齐次线性⽅程3.下列⽅程中,是⼀阶线性微分⽅程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.⽅程x y xy =-'满⾜初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分⽅程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分⽅程y y x ='满⾜1)1(=y 的特解为( a )A.x y =B. c x y +=C.cx y =D.0=y7. 设21,y y 是⼆阶常系数线性齐次⽅程()()0y P x y Q x y '''++=的两个线性⽆关的解,21,C C 是两个任意常数,则下列命题中正确的是( c )(A ) 2211y C y C +是微分⽅程的特解。

(B )2211y C y C +不可能是微分⽅程的通解。

(C )2211y C y C +是微分⽅程的通解。

(D )2211y C y C +不是微分⽅程的解。

8.微分⽅程05))(sin(2''=+-+x y y xy y 是( a )A ⼀阶微分⽅程B ⼆阶微分⽅程C 可分离变量的微分⽅程D ⼀阶线性微分⽅程9.微分⽅程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =⼆、填空题1.微分⽅程34()"30y y y y '++=的阶数为__2____;2.微分⽅程0=+y dxdy 的通解是x y ce -=; 3.微分⽅程02=+'xy y 的通解是2x y ce -=;4.微分⽅程x y y e +'=的通解是()10,0x y e C e C ++=<;5. 微分⽅程03='+''y y x 的通解为 221xC C y +=; 6. n 阶微分⽅程的通解含有__n __个独⽴的任意常数。

微分方程练习题基础篇答案.docx

微分方程练习题基础篇答案.docx

常微分方程基础练习题答案求下列方程的通解dydyx 2Ce 2, C 为任意常数1.xy 分离变量xdx , ydxydy x dx , y Ce1 x22.xydx 1 x 2 dy 0 分离变量1 , C 任意常数yx 2dy 1 3.xy y ln y 0 分离变量dx , y Ce xy ln yx4.( xy 22y y)dy 0 分离变量 ydyxdx2)(12) Cx)dx ( xy 21 x2,(1yx15.dy(2 x y 5)2令 u2x y 5 则du2 dy , du2 dx , 1 arctan ux C 1 dxdxdx u 2 2 2dy x y dy 1 yy , dy u xdu,代入得 2x ,令 u 1 u du 1dx6.x ,原方程变为dxdxy1 y x dxdx 1 u 2xx2arctan u uln xC , uy x回代得通解2arctany xln xyxCdyy y 2y dudx 7.xy y x2y 20 dxxxx1 u 2x1 ,令 u,代入得arctanu ln x C, uy 回代得通解 arctan yln x y Cx xx8.xdyy lny,方程变形为dyyln y,令 u y du dx eCx 1,yxeCx 1,, udx xdx x x x u(ln u 1)x9. dy2xdx2 xdxdx C) Cex22xy 4x ,一阶线性公式法 y e( 4 xe2dx 10.dyy2x 21 ( 2x 2e1dx C) x 3Cxdxdxdx x11.( x 21)y2xy 4x 2,方程变形为 y2xy 4x 21 (43C)2x 2一阶线性公式法 y1 x2 xx 11312.( y 2 6x)dy2y0,方程变形为dx3 x1 y 一阶线性公式法 y 1 y2 Cy 3dxdy y2213. y 3xy xy2,方程变形为 1 dy3x1x 伯努利方程,令 z y 1,dzy 2dy代入方程得y 2 dxydxdxdz 3xz x 一阶线性公式法再将 z 回代得 13 x 2Ce2dxy1314.dy1 y1(1 2x) y 4 ,方程变形为 1 dy1 1 1 (1 2x) 伯努利方程,令 dx 33 y4 dx3 y 33zy 3, dz3y 4dy代入方程得 dzz 2x 1,一阶线性公式法再将z 回代得dx dxdx1 Ce x2x 1y 315.y5y 6 y 0 ,特征方程为 r 2 5r 6 0 ,特征根为 r 12, r 23 ,通解y C 1e 2x C 2e 3x16.16y 24y 9y0,特征方程为 16r224r 9 0 ,特征根为 r 1,23 ,通解43 xy(C 1 C 2 x)e 417.yy0 ,特征方程为 r 2 r 0 ,特征根为 r 1 0, r 2 1 ,通解 y C 1 C 2e x18.y4y5y 0 ,特征方程为 r 2 4r 5 0 ,特征根为 r 1 2 i, r 2 2 i ,通解y e 2 x (C 1 cos x C 2 sin x)19.( x 2 y)dx xdy0 ,全微分方程 x 2 dx ( ydxxdy)0 ,d x 3d( xy) 0 ,通解x 3xy C3320.( x 3 y)dx ( xy)dy 0 ,全 微 分 方程x 3dx ( ydx xdy ) ydy,d x 4d( xy)d y 20 ,通解 x 4xyy 2C424221.( x 2 y 2 )dx (2 xy y)dy 0 全微分方程 x 2dx( y 2 dx 2xydy ) ydy 0,d x3d ( xy 2) dy 20 ,通解x 3xy 2y 2 C3 2 3222.(x cosy cosx) y ysin x sin y 0 ,全微分方程( xcos ydy sin ydx) (cos xdyysin xdx)0, d( x sin y) d( y cosx) 0 ,通解xsin y y cosx C23.(3 x 2 y)dx (2 x 2 y x)dyC ,3x 2 dx 2x 2 ydyydx xdy 0 ,积分因子1x 2 ,方程变为 3dx 2ydyydx xdy 0 , d3x dy 2dy0 ,通解 3x y 2y Cx 2xx24.xdxydy( x2y 2)dx,积分因子1,方程变为xdx ydydx 0 ,2y 2x 2y 2xd[ 1ln( x2y 2)]dx 0 通解1ln( x 2 y 2 ) x C2225.( x 2 y 2y)dx xdy 0 , ( x 2 y 2 )dx ydx xdy 0 ,积分因子1,方程变为x 2y 2 dxydxxdy0 , dxxx Cx 2y 2d arctan0,通解 x arctanyy26. y e3xsin x ,可降阶 y( n)f (x) 型,逐次积分得通解 y1e 3 x sin x C 1x C 2927. y1 y2 , 可 降 阶 令 p( x)y , 原 方 程 化 为 p1 p2 可分离变量型,得yp tan( xC 1 ) ,积分得通解 y ln cos(x C 1 ) C 228.yyx ,可降阶 yf (x, y ) 型,令 p(x) y ,原方程化为 ppx ,一阶线性非齐次公式法得 y pC 1e x x 1 ,积分得通解 y C 1e x1 x2 x C 2229. y y 3y ,可降阶 yf ( y, y ) 型,令 p( y) y , y pdp,原方程化为 pdpp 3pdydy即 p[dp(1 p 2)]0 , p0 是 方 程 的 一 个 解 , 由dp(1 p 2 ) 0 得dydyarctan p y C 1 即 yp tan( y C 1) ,通解为 y arcsin e x C 2C 1xf (x) e xP m ( x) 型,1是特征方程230.y 2 y y 4xe ,二阶常系数非齐次2 10的重根,对应齐次方程的通解为 Y(C 1C 2 x)e x ,设特解为 y *x 2 (ax b)e x ,代入方程得 (6ax 2b)ex4xe x,得 a2, b 0 ,故原方程的特解为 y *2x 3e x ,原方程通33解为 y (C1C2 x)e x 2x3e x 331.y a y ex ,二阶常系数非齐次 f ( x)e m特征方程ra0 ,特征值为1,2ai2x P(x) 型,22r,对应齐次方程的通解为YC1 cosax C2 sin ax , 1 不是特征根,设原方程特解为y*Ae x Ae x a2 Ae x e x,得 A12则 y*e x2 ,原方程通解为,代入方程得1a 1 ay C1 cosax C2 sin axe x 1a232.y y x cosx ,对应齐次方程的通解为Y C1 cos x C2 sin x ,设y y x 的一个特解为y1Ax B 代入此方程得A1,B 0 ,故y1x ;设y y cosx 的一个特解为 y2Ex cos x Dx sin x 代入此方程得E0, D1,故y21xsin x ;原方程22通解为Y C cosx C sin x x1xsin x 12233.y 6 y9 y e x cos x ,特征方程r26r90 ,特征值为 r1,23,对应齐次方程的通解为Y C1e3x C2 xe3x,1i 不是特征根,原方程特解设为y*e x (a cos x b sin x)代入方程得a3, b4,则 y*e x (3cos x4sin x)25252525,原方程通解为Y C e3x C xe3x e x (3cosx 4sin x)12252534.已知y1e3 x xe2 x , y2e x xe2x , y3xe2 x是某二阶常系数非齐次线性方程的三个解,则该方程的通解y()答案: y C1e x C2 e3 x xe2 x,y1y3e 3x , y2y3e x是对应齐次方程两个线性无关的解35.函数 yC 1e x C 2 e 2x xe x 满足的一个微分方程是()( A) yy 2y 3xe x( B) y y 2 y 3e x(C ) yy 2 y 3xe x( D ) yy 2 y 3e x解析:特征根为 1 1,22,则特征方程为(1)( 2) 0 即22 0 ,故对应齐次方程为 y y 2 y0 ; y *xe x为原方程的一个特解,1,为单根,故原方程右端非齐次项应具有xf ( x) Ce 的形式。

常微分习题解答1

常微分习题解答1
x 解: y′ = y / x + tan( y / x) 令 y = zx z + xz′ = z + tan z ⇒ z′ = tan z / x; z = kπ ⇒ y = kπ x , sin z = Cx ⇔ sin y = Cx
x
20
5) xy′ − y = (x + y) ln x + y x
18
z = 0, z = 1 ⇔ y = 0, y = x ,
或 ln(z −1) − ln z = − ln x + c , x( y − x) = Cx
3) (x2 + y2 ) dy = 2xy dx
解: dy = 2 y / x ,let z = y , then
dx 1+ ( y / x)2
8
另外,当 y ≠ 0 且 y ≠ 1时 dy = dx 既 dy − dy = dx
y( y −1)
y −1 y
所以 ln y −1 = x + c y
再考虑初始条件,故原初值问题的解为 y = 1
2) (x2 −1) y′ + 2xy2 = 0, y(0) = 1
解: dy + 2xdx = 0 , − 1 + ln | x2 −1 |= C 得 C = −1
y2 x2 −1
y
9
因此 y(ln | x2 −1 | +1) = 1
3) y′ = 33 y2 , y(2) = 0
解: y = 0 或 y = (x + C)3 得 C = −2 ,
y
=
⎧(x ⎩⎨0
+
C)3, ,
x x
≥ <
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程基础练习题答案求下列方程的通解1.dyxy dx= 分离变量 dy xdx y =,22xy Ce =,C 为任意常数2.0xydx = 分离变量dy y =,y =C 任意常数3.ln 0xy y y '-= 分离变量1ln dy dx y y x=,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量2211ydy xdx y x=+-,22(1)(1)y x C +-= 25.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+1x C =+ 6.dy x y dx x y +=-,原方程变为11ydy x y dx x+=-,令y u x =,dy du u x dx dx=+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+,yu x=回代得通解2arctan ln y y x C x x =++7.0xy y '-=方程变形为0dy y dx x =+=,令y u x =dx x = arctan ln u x C=+,yu x=回代得通解arctan ln y y x C x x =++8.ln dy y xy dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x=-,1Cx u e +=,1Cx y xe +=9.24dy xy x dx+=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --⎰⎰=+=+⎰210.2dy y x dx x-=,一阶线性公式法1123(2)dx dx x x y e x e dx C x Cx -⎰⎰=+=+⎰2211.(1)24x y xy x '++=,方程变形为2222411x x y y x x '+=++一阶线性公式法3214()13y x C x =++ 212.(6)20dyy x y dx-+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+213.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx--==-代入方程得3dz xz x dx+=-一阶线性公式法再将z 回代得232113x Ce y -=- 41114.(12)33dy y x y dx +=-,方程变形为431111(12)33dy x y dx y +=-伯努利方程,令 34,3dz dy z y y dx dx --==-代入方程得21dzz x dx-=-,一阶线性公式法再将z 回代得3121xCe x y=-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解2312x x y C e C e --=+16.162490y y y '''-+=,特征方程为2162490r r -+=,特征根为1,234r =,通解3412()x y C C x e =+17.0y y '''+=,特征方程为20r r +=,特征根为120,1r r ==-,通解12x y C C e -=+18.450y y y '''-+=,特征方程为2450r r -+=,特征根为122,2r i r i =-=+,通解212(cos sin )x y e C x C x =+219.()0x y dx xdy --=,全微分方程2()0x dx ydx xdy -+=,3()03x d d xy -=,通解33x xy C -= 320.()()0x y dx x y dy ---=,全微分方程3()0x dx ydx xdy ydy -++=,42()042x y d d xy d -+=,通解4242x y xy C -+=2221.()(2)0x y dx xy y dy +++=全微分方程22(2)0x dx y dx xydy ydy +++=,322()032x y d d xy d ++=,通解32232x y xy C ++=22.(cos cos )sin sin 0x y x y y x y '+-+=,全微分方程(cos sin )(cos sin )0x ydy ydx xdy y xdx ++-=,(sin )(cos )0d x y d y x +=,通解 sin cos x y y x C +=2223.(3)(2)x y dx x y x dy C ++-=,22320x dx x ydy ydx xdy ++-=,积分因子21x μ=,方程变为2320ydx xdy dx ydy x -++=,230y d x dy d x +-=,通解23y x y C x+-=2224.()xdx ydy x y dx +=+,积分因子221x y μ=+,方程变为220xdx ydydx x y+-=+,221[ln()]02d x y dx +-=通解221ln()2x y x C +-= 2225.()0x y y dx xdy ++-=,22()0x y dx ydx xdy ++-=,积分因子221x y μ=+,方程变为220ydx xdy dx x y -+=+,arctan 0x dx d y +=,通解arctan xx C y+= 326.sin x y e x ''=+,可降阶()()n y f x =型,逐次积分得通解3121sin 9x y e x C x C =-++ 227.1y y '''=+,可降阶令()p x y '=,原方程化为21p p '=+可分离变量型,得1tan()y p x C '==+,积分得通解12ln cos()y x C C =-++28.y y x '''=+,可降阶(,)y f x y '''=型,令()p x y '=,原方程化为p p x '-=,一阶线性非齐次公式法得11xy p C e x '==--,积分得通解21212x y C e x x C =--+ 329.y y y ''''=+,可降阶(,)y f y y '''=型,令(),dp p y y y pdy '''==,原方程化为3dpp p p dy=+ 即2[(1)]0dp p p dy -+=,0p =是方程的一个解,由2(1)0dpp dy-+=得1arctan p y C =-即1tan()y p y C '==-,通解为21arcsin x C y e C +=+30.24x y y y xe '''-+=,二阶常系数非齐次()()x m f x e P x λ=型,1λ=是特征方程2210λλ-+=的重根,对应齐次方程的通解为12()x Y C C x e =+,设特解为*2()xy x ax b e =+,代入方程得(62)4xxax b e xe +=,得2,03a b ==,故原方程的特解为*323x y x e =,原方程通解为3122()3xx y C C x e x e =++231.x y a y e ''+=,二阶常系数非齐次()()x m f x e P x λ=型,特征方程220r a +=,特征值为1,2r ai=±,对应齐次方程的通解为12cos sin Y C ax C ax =+,1λ=不是特征根,设原方程特解为*x y Ae =,代入方程得2x x xAe a Ae e +=,得211A a=+则*21xe y a =+,原方程通解为122cos sin 1xe y C ax C ax a =+++32.cos y y x x ''+=+,对应齐次方程的通解为12cos sin Y C x C x =+,设y y x ''+=的一个特解为1y Ax B =+代入此方程得1,0A B ==,故1y x =;设cos y y x ''+=的一个特解为2cos sin y Ex x Dx x =+代入此方程得10,2E D ==,故21sin 2y x x =;原方程通解为121cos sin sin 2Y C x C x x x x =+++ 33.69cos x y y y e x '''-+=,特征方程2690r r -+=,特征值为1,23r =,对应齐次方程的通解为3312x x Y C e C xe =+,1i λ=±不是特征根,原方程特解设为*(cos sin )x y e a x b x =+代入方程得34,2525a b ==-,则*34(cos sin )2525x y e x x =-,原方程通解为331234(cos sin )2525x x x Y C e C xe e x x =++- 34.已知3222123,,x x x x xy e xe y e xe y xe =-=-=-是某二阶常系数非齐次线性方程的三个解,则该方程的通解y =( )答案:3212x x xy C e C e xe =+-,31323,x xy y e y y e -=-=是对应齐次方程两个线性无关的解35.函数212x x xy C e C e xe -=++满足的一个微分方程是( )()23x A y y y xe '''--= ()23x B y y y e '''--= ()23x C y y y xe '''+-= ()23x D y y y e '''+-=解析:特征根为121,2λλ==-,则特征方程为(1)(2)0λλ-+=即220λλ+-=,故对应齐次方程为20y y y '''+-=;*x y xe =为原方程的一个特解,1,λ=为单根,故原方程右端非齐次项应具有()xf x Ce =的形式。

相关文档
最新文档