对数与对数运算教案

合集下载

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。

〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。

〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。

教学重难点:指、对数式的互化。

教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。

这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。

能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。

二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。

其中a 叫做对数的底数,N 叫做真数。

根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案一、教学目标1.了解对数的概念和性质。

2.掌握对数的换底公式。

3.能够运用对数运算解决实际问题。

二、教学重点1.对数的换底公式的掌握。

2.对数运算的实际应用。

三、教学难点1.对数的换底公式的理解与应用。

2.对数运算在实际问题中的灵活运用。

四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。

2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。

然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。

3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。

逐步提高题目的难度,以巩固学生的基本技能。

(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。

培养学生的问题解决能力和分析能力。

4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。

让学生感受到对数运算在实际问题中的重要性。

(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。

拓宽学生的数学思维。

五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。

展望下节课的内容,为下一步学习打下基础。

六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。

七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。

对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。

通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。

同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。

对数运算法则教案

对数运算法则教案

§2.2.1 对数与对数运算(第2课时)--对数的运算法则一、教学内容分析:本节课课程标准要求理解对数的运算法则,能灵活运用对数运算法则进行对数运算.本节课是在学习了“对数的概念"后进行的,它是上节内容的延续与深入,同时也是研究学习后续知识对数函数的必备基础知识.高考大纲中要求要理解对数的概念及其运算法则。

二、教学目标:知识与技能目标:理解并掌握对数法则及运算法则,能初步运用对数的法则和运算法则解题.过程与方法目标:通过法则的探究与推导,培养从特殊到一般的概括思想,渗透化归思想及逻辑思维能力. 情感态度与价值观目标:通过法则探究,激发学习的积极性.培养大胆探索,实事求是的科学精神.三、教学重难点:教学重点:对数的运算法则及推导和应用;教学难点:对数运算法则的探究与证明.四、教具准备:幻灯片、课件、多媒体五、教学方法本课采用“探究——发现”教学模式六、 教学过程:(一)复习引入1、对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0)2、指数的运算法则;m n m n m n m na a a a a a +-⋅=÷= ()mn n m a a =我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算法则,得出相应的对数运算法则吗?(二)运算法则(1)我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?解: ,,m n m n m n a a a M a N a +⋅===设 于是,m n MN a +=由对数的定义得到log ,m a M a m M =⇔=log n a N a n N =⇔=log m n a MN a m n MN +=⇔+=N M MN a a a log log log +=即:两数积的对数,等于各数的对数的和。

提问:你能根据指数的法则按照以上的方法推出对数的其它法则吗?(2)我们知道 ,那m n -如何表示,能用对数式运算吗?即:两数商的对数,等于被除数的对数减去除数的对数。

对数及其对数运算教案

对数及其对数运算教案

对数及其对数运算教案教案标题:对数及其对数运算教案目标:1. 理解对数的概念和性质。

2. 掌握对数的运算法则。

3. 能够灵活运用对数进行计算和问题解决。

教学重点:1. 对数的定义和性质。

2. 对数的运算法则。

3. 对数在实际问题中的应用。

教学难点:1. 灵活运用对数的运算法则。

2. 将对数应用于实际问题的解决。

教学准备:1. 教师准备:教案、教学课件、黑板、白板笔、计算器等。

2. 学生准备:教材、笔记本、计算器等。

教学过程:Step 1:导入新知识1. 引入对数的概念:通过举例子和问题引导学生思考,了解对数的背景和应用场景。

2. 提出问题:如果一个数的对数是3,那么这个数是多少?Step 2:对数的定义和性质1. 讲解对数的定义:对数是指数运算的逆运算,即log_a(b) = c等价于a^c = b。

2. 引导学生理解对数的性质:对数的底数必须大于0且不等于1,对数的真数必须大于0。

Step 3:对数的运算法则1. 讲解对数的运算法则:对数的乘法法则、对数的除法法则、对数的幂法则和对数的换底法则。

2. 通过例题演示和练习巩固对数的运算法则。

Step 4:实际问题的应用1. 引导学生分析实际问题中的对数运算应用:例如,解决指数增长问题、测量声音强度问题等。

2. 指导学生通过建立数学模型和运用对数进行问题求解。

Step 5:课堂练习和总结1. 给学生分发练习题,让学生独立或合作完成。

2. 总结本节课的重点内容和要点,强调对数的定义、性质和运算法则的重要性。

教学延伸:1. 给学生布置相关的课后作业,巩固对数的概念和运算法则。

2. 鼓励学生在实际生活中寻找更多对数的应用场景,并进行探究和分享。

教学评估:1. 课堂练习:通过课堂练习检查学生对对数的理解和运用能力。

2. 学生表现:观察学生在课堂上的参与和表现,评估其对对数的掌握程度。

教学资源:1. 教学课件:包含对数的定义、性质和运算法则的讲解和例题演示。

掌握对数的基本运算法则——对数运算法则教案

掌握对数的基本运算法则——对数运算法则教案

掌握对数的基本运算法则——对数运算法则教案一、教学目标1.掌握对数的定义,了解对数的意义和应用。

2.掌握对数的基本运算法则,包括对数相乘、对数相除、对数的乘方和除方等四大基本运算规则。

3.发现和理解对数运算规则与指数运算规则之间的联系,形成对数与指数相互转化的思维方式。

二、知识点分析1.对数的定义对数是一个数对另一个数的幂的指数。

它的本质是求幂的逆运算了。

比如,对于某个数b (b>0且不为1),x是另一个正数,那么用y表示x的对数和b是底数,就是:$$ y=log_bx $$读作“以b为底,x的对数是y”。

例如,2^3 = 8,那么以2为底,8的对数是几呢?$$ log_2 8 = 3 $$因此,8的对数是3,可以写作log2 8 = 3。

2.对数的意义及应用对数与指数的重要性源于它们是描述倍增或倍减量级的理想工具。

对数函数不仅在数学中用得广泛,也被广泛地应用于其他各种领域,例如:也被广泛地用于科学研究(光谱学、热力学、电子学、天文学)到统计分析(比如标准正态分布)等等。

3.对数的基本运算法则(1)对数相乘$$ log_{b}x + log_{b}y = log_{b}(x * y) $$(2)对数相除$$ log_{b}x - log_{b}y = log_{b}(x / y) $$(3)对数的乘方$$ log_{b}x^n = n*log_{b}x $$(4)对数的除方$$ log_{b}(x/y) = log_{b}x - log_{b}y $$三、教学方法本课程采用交互式教学法与游戏式教学法相结合的方式,包括课堂讲解、小组讨论、互动游戏和练习测试等环节。

在课堂讲授中,教师通过生动形象的例子讲解,引发学生对于对数学习的兴趣和好奇心。

在小组讨论环节,鼓励学生交流思考,培养学生的合作精神和团队意识。

在互动游戏环节中,采用数字海战游戏,帮助学生快速掌握对数的基本运算法则,提高学生的课堂互动和兴趣。

对数运算教案

对数运算教案

对数运算教案【篇一:高中数学对数与对数运算教案】《对数与对数运算》教案xx大学数学与统计学院xxx一、教学目标1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力;3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。

二、教学理念为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。

本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。

在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。

让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

三、教法学法分析1、教法分析新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。

本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。

2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。

学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。

在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。

四、教材分析本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。

这在解决一些日常生活问题及科研中起着十分重要的作用。

同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。

五、教学重点与难点重点:(1)对数的定义;(2)指数式与对数式的相互转化及其条件。

难点:(1)对数概念的理解;(2)对数运算性质的理解;(3)换底公式的应用。

高中数学教案:对数与对数运算

高中数学教案:对数与对数运算

高中数学教案:对数与对数运算教学目标:1. 理解对数的定义和性质;2. 掌握对数的运算法则;3. 能够利用对数解决实际问题。

教学重点:1. 对数的定义和性质;2. 对数的运算法则。

教学难点:对数运算的应用。

教学准备:教师准备好黑板、白板、彩色粉笔、教科书、练习册等教材。

教学过程:Step1 导入教师可以通过提问激发学生对对数的了解和认识,如:你们知道什么是对数吗?对数有哪些性质呢?Step2 引入教师在黑板上写下对数的定义:如果a^x=b,那么x就是以a为底b的对数,记作x=log_a b,其中a是底数,b是真数。

让学生进行解读和理解。

Step3 对数的性质1. 对数的底数必须大于0且不等于1;2. log_a a=1;3. log_a 1=0;4. log_a (m*n)=log_a m + log_a n;5. log_a (m/n) = log_a m - log_a n;6. log_a m^p = p * log_a m;教师可以结合教材上的例题来讲解这些性质,并通过示意图等方式帮助学生理解。

Step4 对数的运算法则教师介绍对数的运算法则,如:log_a (mn) = log_a m + log_a n,log_a (m/n) = log_a m - log_a n,log_a m^p = p * log_a m,等等。

通过实例演示和练习,帮助学生掌握这些运算法则。

Step5 解决实际问题教师通过一些实际问题的例子,如物种繁殖问题、地震震级问题等,引导学生使用对数进行运算,解决问题。

Step6 练习教师布置一些练习题,让学生在课下巩固对对数和对数运算的理解和掌握。

Step7 总结与拓展教师对本节课的内容进行总结,并对下一节课的内容进行预告和拓展,如指数函数的概念和性质。

Step8 课堂作业布置课堂作业,让学生对本节课所学内容进行巩固和复习。

Step9 教学反思教师对本节课上的教学进行反思,并做好备课记录,以便下次备课和教学参考。

高考数学一轮复习教案:第13课对数与对数运算

高考数学一轮复习教案:第13课对数与对数运算

一、教学目标1.能熟练进行对数式与指数式的相互转化,了解常用对数和自然对数两种常用形式的对数;2.会运用对数的运算法则和换底公式进行对数运算。

并能将对数的运算法则和指数的运算法则进行区分和联系;3.应用换底公式时,能根据题目条件正确选择以什么量为底,能进行不同底之间的转化运算。

二、基础知识回顾与梳理【回顾要求】1.阅读必修一第72—80页,完成以下任务:(1)对数的概念?底数和真数的有何要求?(2)对数式与指数式是如何互化的?变与不变的有哪些?(3)自然对数与常用对数是什么?记忆。

(4)对数的性质与运算法则?(5)换底公式是如何推导来的?(6)重点题目:P74:7;P80:10,11,122、对数式与指数式的区别与联系?【要点解析】1、关于对数的底数和真数从对数的实质看:如果a b=N(a>0且a≠1),那么b叫做以a为底N的对数,即b=log a N.它是知道底数和幂求指数的过程.底数a从定义中已知其大于0且不等于1;N在对数式中叫真数,在指数式中,它就是幂,所以它自然应该是大于0的.2、指数式a b =N 与对数式log a N =b 的关系以及这两种形式的互化是对数运算法则的关键.3、指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.4、在运算性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N *,且n 为偶数).5、注意对数恒等式、对数换底公式及等式log a b =1log b a在解题中的灵活应用. 三、诊断练习1、教学处理:本课的主要内容是对数运算,故培养学生的基本运算能力尤为重要,所以本课在教学时应注意多留出时间给学生动笔去做,以练为主,以讲为辅。

2、诊断练习点评题1.给出四个等式(1)lg(lg10)0=;(2)lg(ln )0e =;(3)若l g 100x =,则10x =;(4)若ln x e =,则2x e =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2.1对数与对数运算(第一课时)
一、教学目标
(1)知识与技能目标
1、理解对数的概念;
2、能够进行指数式与对数式的互化;
3、理解对数恒等式并能运用于有关的对数计算;
4、能够初步运用对数的性质的运算法则解决相关问题;
(2)过程与方法目标
1、通过对对数定义的探究,渗透转化的数学思想方法,体验辨证唯物主义教育.
2、通过探究与活动,明白考虑问题要细致,说理要明确;
3、通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力.
(3)情感态度与价值观目标
1、通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;
2、感知从具体到抽象、从特殊到一般、从感性到理性认知过程;
3、体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.
二、教学重点、难点
教学重点
(1)对数的定义;
(2)指数式与对数式的互化;
(3)对数的运算法则及推导和应用;
教学难点
(1)对数概念的理解;
(2)运算法则的探究与证明;
三、 教辅手段
运用多媒体辅助教学、板书、讲练结合;
四、 教学模式
采用引导发现模式——教师创设问题情境、启发讲授,引导学生思考并加以探索学习;
五、 教学过程
(一)温故知新
回顾上节课的指数的概念及运算性质,
根据指数的知识可以很容易得出22=4、52=32,但是当2=26x
时,此时的x 的值为多少呢? 把这个用来引入的问题抛给学生,引起学生的学习兴趣,接着分析讲解问题之后引出对数的概念; 问题如下:
庄子:一尺之棰,日取其半,万世不竭。

(1)取4次,还有多长?
(2)取多少次,还有0.125尺?
分析如下:
1次 2次 3次 4次 … n 次 12 212⎛⎫ ⎪⎝⎭ 312⎛⎫ ⎪⎝⎭ 412⎛⎫ ⎪⎝⎭ … 12n
⎛⎫ ⎪⎝⎭ ∴(1)取第4次的长度为:4
12⎛⎫ ⎪⎝⎭
; (2)12x ⎛⎫ ⎪⎝⎭=0.125,根据以往所学,可以求出x =3; (二) 引出概念
(1)多媒体展示出定义:
定义:一般地,如果 的x 次幂等于N , 就是 x
a N = ,那么数x 叫做 a 为底 N 的对数,记作log a x N = ,a 叫做对数的底数,N 叫做真数。

注:1)在定义中注意底数a 的取值 ; 2)在x
a N =中,,有次可以知道负数和0,没有对数;
()1,0≠>a a a ()1,0≠>a a a
说明:对数的定义中为什么规定 呢? 1) 若0a <时,则N 为某些值时,x 值不存在,如=-2a ,=8N 时,2log 8x -= 不存在;或者x 为
某些值时,N 值不存在(无意义),12,2
a x =-=
时,N = 2) 若0a =时,则N 为某些值时,x 值不存在(值不唯一)
如:0a =,2N =时,0log 2x =不存在(也可表述为:0的多少次幂等于2?);
0a =,0N =时,0log 0x =有无数多个值,值不唯一(0的任何次幂等于0)
; 3) 若1a =时,则N 为某些值时,x 值不存在(值不唯一)
如:1a =,2N =时,1log 2x =不存在(也可表述为:1的多少次幂等于2?);
1a =,1N =时,1log 1x =有无数多个值,值不唯一(也可表述为:1的任何次幂等于1);
(2)介绍两种特殊的对数;
1)常用对数:通常一10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N ;
2)自然对数:在科学技术中常使用以无理数 2.71828
e =为底的对数,以e 为底的对数叫做自然对数,
并把log e N 简记为ln N ;
(3)给出定义之后,列表,对比指数式与对数式中的各个字母的具体含义,通过对比,让同学们能够加深对对数这个概念的理解; 另外,根据指数与对数的关系,可以得到关于对数的下列结论:负数和零没有对数, , (该部分板书)
(三)运用概念
初步应用对数的知识;
对数式与指数式的互化;
运用对数的运算性质进行简单的对数运算;
[例题分析]
课堂练习(1):
求下列各式中x 的值:
(1) (2) (3) (4) (四)介绍对数的运算性质
(1)两数积的对数,等于各数的对数的和;
()1,0≠>
a a a log 10a =log 1
a a =64
2log 3x =-log 86x =lg100x =2ln
e x -=
(2)两数商的对数,等于被除数的对数减去除数的对数;
(3)幂的对数等于幂指数乘以底数的对数.
[例题分析]
课堂练习:
使用 , , 表示下式: (1) (2)
(五)小结
(1)对数的概念
(2)互换(对数与指数会互换)
(3)对数的运算性质
(六)作业
1、认真复习
2、P75 习题2.2 B 组:1、4、5
(七)板书设计
六、 教学中体现的数学思想
1、 探索发现的数学思想
log a x log a y log a z 2log a x y 2log a yz
2、归纳转化的数学思想
3、从特殊到一般的数学思想
七、教学反思
多媒体的应用,使本节数学概念课不再枯燥乏味,课堂变得生动,学生学得主动,让学生亲自参与知识的生成过程,使抽象复杂的概念与性质变得具体形象,学生掌握得更加牢固;不仅仅是教师的讲授、演示的过程,也可以让同学们多参与到课堂中来,比如增加互动环节,此时教师与学生之间不再是单一的教学关系,而是共同探讨、共同学习,不但达到教学的效果,还间接地架起了师生间友谊和相互理解相互沟通的桥梁;课外探究题设置又将激发学生的兴趣,带领学生进入关于对数的更进一步的思考和探究中,达到知识在课堂以外的延伸。

相关文档
最新文档