拉曼与红外的区别-严慧敏共32页
拉曼光谱和傅里叶红外的区别

拉曼光谱和傅里叶红外的区别
拉曼光谱和傅里叶红外(FTIR)光谱都是常见的光谱分析技术,但它们有一些区别。
1. 原理:拉曼光谱是通过探测样品散射光的频率变化来分析样品分子内部的振动模式,而傅里叶红外光谱则是通过探测样品吸收红外光的频率来分析样品中化学键的振动。
2. 分析范围:拉曼光谱可以用于分析无机物和有机物,但在分析有机物方面受限制。
傅里叶红外光谱则可以用于分析几乎所有化学物质,包括无机物和有机物。
3. 分辨率:拉曼光谱的分辨率相对较高,可以分辨非常相似的分子,但傅里叶红外光谱的分辨率更高,可以分辨非常细微的化学键振动模式。
4. 取样:拉曼光谱需要非常干净的样品表面,以避免与杂质发生干扰。
傅里叶红外光谱则可以直接分析固体、液体和气体样品。
5. 仪器:拉曼光谱仪的构造比傅里叶红外光谱仪复杂,成本也更高。
综上所述,拉曼光谱和傅里叶红外光谱各有优缺点,适用于不同领域和需要的分析应用。
红外与拉曼光谱的比较

极化率是分子的平均偶极矩u与电场强度E的比 值。符号α ;u=αE 它是统计平均值
拉曼光谱和红外光谱的互相补充 1)同种分子的非极性键S-S,C=C,N=N,CC产生强拉曼谱 带, 随单键双键三键谱带强度增加。 2)红外光谱中,由C N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。
40—4000cm-1
光谱产生的方式 吸收光谱
散射光谱
检测对象
化学分子的的偶极距
分子的电子云的极化。
测定要求 水溶液样品
谱图信息
能斯特灯、碳化硅棒等作光源; 激光作光源;样品不需前处理 样品需前处理
水的吸收强,严重影响测试结 吸收弱,可以应用于生物的活体测试 果,限制了应用领域
主要反映分子的官能团
主要反映分子的骨架,用于分析生物 大分子
拉曼光谱技术 的特点
一些缺点
信号强度弱 有荧光干扰 数据库仍然不全
THANKS
照射过程中,光子与分子之间没 有能量交换,光子只改变运动方 向,不改变频率
照射过程中,光子与分子之间 发生能量交换,光子不仅改变 运动方向,而且改变频率
小结:红外与拉曼原理的区别
红外光谱 吸收;分子在振动跃迁过程中有偶极矩的改变
偶极矩指正、负电荷中心间的距离d和电荷中心 所带电量q的乘积,表达式为μ=qd,方向规定为 从正电中心指向负电中心。
3)环状化合物的对称振动常常是最强的拉曼谱带。
5)C-C伸缩振动在拉曼光谱中是强谱带。
红外与拉曼谱图对比
红外:基团 拉曼:分子骨架的测定
甲基的特征吸收频率: 2960cm-1 2870cm-1 1460cm-1 1380cm-1
红外光谱和拉曼光谱的异同

红外光谱和拉曼光谱的异同红外光谱和拉曼光谱是研究分子结构及组态、物质成分鉴定和结构分析的有力工具,由于具有无损伤、灵敏度高和时间短等特点,在物理、化学、生物学、矿物学、考古学和工业产品质量控制等领域中得到了广泛的应用,在物质结构分析中,极性基团如C=O,N-H及S-H 具有强的红外延伸振动,而非极性基团如C=C,C-C及S-S有强的拉曼光谱带,因此,红外光谱和拉曼光谱常常在一起,共同用于完成一个物质分子结构的完整分析。
通常,红外光谱适用于分析干燥的非水样品,拉曼光谱适合于含水的生物系统分析。
总体来说:红外光谱与拉曼光谱同属于分子振动光谱,但红外光谱是吸收光谱,拉曼光谱是散射光谱,二者机制不同,但互为补充。
红外光谱和拉曼光谱的联系和区别具体如下:(1)红外光谱常用于研究极性基团的非对称振动;拉曼光谱常用于研究非极性基团与骨架的对称振动。
红外吸收弱或无吸收的官能团在拉曼散射谱中均有强峰;反之,拉曼散射峰弱则红外吸收强。
例如,许多情况下C =C伸缩振动的拉曼谱带比相应的红外谱带较为强烈,C= O的伸缩振动的红外谱带比相应的拉曼谱带更为显著。
(2)拉曼光谱一次可以同时覆盖40-4000cm-1波数的区间,可对有机物及无机物进行分析。
若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器,(3)拉曼光谱可测水溶液,而红外光谱不适用于水溶液的测定。
(4)红外光谱解析中的定性三要素(即吸收频率、强度和峰形)对拉曼光谱解析也适用。
但拉曼光谱中还有去偏度P,通过测定P,可以确定分子的对称性。
光源红外光谱光源一、一般是黑体或者是通电碳化硅棒,黑体通常情况下是最佳的光源,原因是处在相同的温度的时候,黑体的辐射功率密度比其他热辐射红外光源都要大得多。
白炽灯泡也能被称为红外光源,有些朋友会觉得不解,白炽灯不是可见光源吗?其实不然,白炽灯可以把它75%的电能都转化成红外辐射光,因此也可以把它叫做红外光源,但因为白炽灯辐射出的红外辐射都被它外面的玻璃壳吸收掉了,所以呈现出来的红外线光并不多,所以说它是一种接近红外光线的光源。
红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点
作为检测物质构成的有效手段,红外光谱和拉曼光谱具有相似性和区别。
在相似之处,首先,它们都是物质分子振动光谱的重要手段之一。
红外光谱和拉曼光谱都是通过测量物质对特定频率的光吸收或散射来识别和定量化学物质。
其次,他们不仅可以用于定性分析,而且可以用于定量分析。
通过每种物质的红外光谱和拉曼光谱的独特性,可以对其进行准确鉴定。
它们也可以通过吸收或散射的光强度来测量物质的浓度。
还有,它们都可以通过在积分球中测量来进行全反射。
尽管他们有共同之处,但红外光谱和拉曼光谱之间也存在显着的差异。
比如,在分析技术上,红外光谱通常使用吸收法,而拉曼光谱使用散射法。
另一个不同点是,红外光谱更多的研究分子的振动模式,而拉曼光谱更重视的是研究分子的旋转模式。
此外,红外光谱受到水吸收的影响更大,而拉曼光谱较少受到水分影响。
在采样方面,拉曼光谱可以进行非接触式采样,而红外光谱通常需要将样品直接接触到探头。
在应用上,由于拉曼光谱对诸如配位化合物、有机化合物等物质的分析能力强,因此在化学、生物及材料科学中有着广泛的应用。
而红外光谱适用于碳氢化合物、无机化合物、有机化合物等物质的分析,在环境监测、食品安全和生物医学等诸多领域都有应用。
总的来说,尽管红外光谱和拉曼光谱在分析化学物质方面都非常有效,但它们在测量技术、影响因素、采样方式以及应用领域等方面存在着显著的异同。
请简述 raman 光谱和红外光谱的联系和区别。

请简述 raman 光谱和红外光谱的联系和区别。
Raman光谱和红外光谱都是用于分析物质结构的非破坏性光谱技术,但它们的原理和应用略有不同。
Raman光谱是通过测量样品散射光的频率变化来分析样品结构的,
其原理是当激光照射样品时,光子与分子发生相互作用,发生Stokes
和Anti-Stokes散射。
Stokes散射是光子与分子相互作用后,使光子
的能量降低,频率下移,而Anti-Stokes散射则是光子的能量和频率
增加。
根据这种散射现象,我们可以得到Raman光谱,其中纵向振动
和横向振动的谱带代表了分子振动的信息。
Raman光谱主要用于分析分
子的振动和固体的结构,具有高灵敏度、高特异性和非破坏性的优点。
红外光谱则是通过测量在物质分子中的振动和转化所产生的细微
振动能谱来分析样品的结构,基于分子中化学键振动和伸缩等量性运
动导致的能量吸收。
当样品被红外光照射后,它会吸收一些频率特定
的光子,而吸收谱就是吸收频率和强度的正常分布。
其中纳米应力和
分子极性等都会影响谱线位置和强度。
红外光谱适用于分析样品中的
官能团和发现新化合物,特别是对无机分子分析效果更明显。
Raman光谱和红外光谱虽然分析原理不同,但它们的应用有重叠之处。
一些晶体的密度、对称性和结构等可由Raman光谱确定,而红外光谱可以用于测量无机物质的分子结构,例如金属氧化物和硫化物。
此外,Raman光谱和红外光谱都可用于表明分子的三维构象,特别是在药物分析中,因为分析药物造成的副作用,这一应用十分重要。
红外光谱拉曼光谱区别

红外光谱拉曼光谱区别红外光谱和拉曼光谱呀,这俩就像是光谱世界里的一对兄弟,各有各的本事,可别把它们弄混喽。
先来说说红外光谱吧。
红外光谱就像是一个特别敏感的小耳朵,它能听到分子振动的声音呢。
你看啊,分子在红外光的照射下,那些化学键就像小弹簧一样开始振动,不同的化学键振动的频率不一样,这就好比不同的琴弦,弹出来的声音高低不同。
红外光谱呢,就把这些不同的“声音”记录下来,变成了独特的光谱图。
比如说,有个有机化合物,里面有碳氢键、碳氧键啥的,红外光谱就能清楚地告诉我们,这些键在什么频率下振动,就像给这个化合物做了一个独特的声音指纹。
不过呢,红外光谱也有它的小脾气。
有些分子它可能就不是那么听话,比如那些对称的分子,红外光谱对它们就有点头疼,可能就没办法把它们的情况完完全全地探测出来。
再讲讲拉曼光谱吧。
拉曼光谱就像是一个独特的小画家,它用一种很特别的方式来描绘分子的样子。
拉曼散射这个过程就像是分子和光在玩一个有趣的游戏。
光打到分子上,一部分光就被散射了,这个散射光的能量会发生变化,而这个变化就跟分子的结构有关系。
拉曼光谱就是把这个能量变化记录下来。
这就好比啊,一个小皮球打到墙上,弹回来的时候速度变了,这个变化就告诉我们墙的一些特性。
拉曼光谱对于一些对称分子就特别拿手,就像一把专门开对称分子这把锁的钥匙。
它能看到红外光谱看不到的一些东西,这多神奇呀。
那这俩到底有啥区别呢?红外光谱主要是检测分子的偶极矩变化,这就像是看分子在电场里的表现。
拉曼光谱呢,检测的是分子的极化率变化,这又像是看分子在另一种场里的反应。
这就好比两个人看同一个东西,一个从左边看,一个从右边看,看到的肯定有不一样的地方。
红外光谱对极性键比较敏感,像碳氧双键这种极性很强的键,在红外光谱里就特别明显。
拉曼光谱呢,对非极性键、对称分子更友好。
比如说,像碳碳双键这种非极性键,拉曼光谱可能就比红外光谱能给出更多有用的信息。
还有哦,从仪器的角度看,红外光谱仪和拉曼光谱仪工作起来也有很大不同。
分子拉曼和红外

分子拉曼和红外都是分子光谱技术,用于研究分子的振动和转动状态。
分子拉曼光谱是通过测量分子对激光的散射来获取分子的振动和转动信息。
当激光照射到分子上时,分子会吸收部分光能并发生振动和转动,这些振动和转动会导致分子的极化率发生变化,从而改变分子对激光的散射。
通过测量散射光的频率和强度,可以得到分子的振动和转动信息。
红外光谱是通过测量分子对红外光的吸收来获取分子的振动和转动信息。
当红外光照射到分子上时,分子会吸收部分光能并发生振动和转动,这些振动和转动会导致分子的偶极矩发生变化,从而改变分子对红外光的吸收。
通过测量吸收光的频率和强度,可以得到分子的振动和转动信息。
分子拉曼和红外技术都可以用于分子结构的鉴定、化学反应的研究、材料的表征等领域。
它们的主要区别在于拉曼光谱是通过测量散射光的频率和强度来获取分子的振动和转动信息,而红外光谱是通过测量吸收光的频率和强度来获取分子的振动和转动信息。
此外,拉曼光谱对非极性分子的检测更敏感,而红外光谱对极性分子的检测更敏感。
拉曼光谱与红外光谱的区别

拉曼光谱和红外光谱是两种常用的光谱分析技术,它们在分子结构和化学成分分析方面有 一些区别。
1. 原理:拉曼光谱是通过测量样品散射光的频移来分析样品的分子振动和转动模式。而红 外光谱是通过测量样品吸收红外光的频率来分析样品的分子振动模式。
2. 能量变化:拉曼光谱是非弹性散射,测量的是光子与分子相互作用后的能量变化。红外 光谱是通过分子吸收红外光的能量来分析分子的振动模式。
拉曼光谱与红外光谱的区别
3. 可测量的范围:拉曼光谱可以测量分子的振动和转动模式,包括低频和高频振动。红外 光谱主要用于测量分子的振动模式,包括伸缩振动和弯曲振动。
4. 样品要求:拉曼光谱对样品的要求相对较松,可以测量固体、液体和气态。
5. 信息获取:拉曼光谱提供了关于分子的化学键和结构的信息,能够检测非常细微的结构 变化。红外光谱提供了关于分子的官能团和官能团之间的化学键的信息,能够确定化合物的 功能团。
拉曼光谱与红外光谱的区别
总的来说,拉曼光谱和红外光谱是两种互补的光谱技术,可以提供不同层面的分子结构和 化学成分信息。选择使用哪种技术取决于所需的分析目的和样品特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生