洞道干燥计算机实验
洞道干燥实验实验报告

洞道干燥实验实验报告洞道干燥实验实验报告引言:洞道工程是现代城市建设中不可或缺的一部分,然而在洞道施工过程中,湿度过高常常会给工程进展带来一系列问题。
为了解决这一问题,我们进行了一项洞道干燥实验,旨在探究不同干燥方法对洞道湿度的影响,并找到最佳的干燥方案。
实验方法:我们选择了一段长度为50米的洞道进行实验,将其分为5个相等的区域,每个区域采用不同的干燥方法。
具体干燥方法包括:通风干燥、加热干燥、除湿机干燥、石灰干燥和电加热干燥。
实验期间,我们每天对每个区域的湿度进行监测,并记录下来。
实验结果:在实验的第一天,我们发现洞道的湿度普遍较高,平均湿度超过80%。
然而,在实验进行的第二天,我们注意到通风干燥区域的湿度有了明显下降,降至60%左右。
而加热干燥区域的湿度则下降至50%左右。
除湿机干燥区域的湿度下降最为明显,仅为40%左右。
石灰干燥区域的湿度也有所下降,约为55%。
而电加热干燥区域的湿度下降至50%左右。
讨论:通过对实验结果的分析,我们可以得出以下结论:1. 通风干燥可以有效降低洞道湿度,但效果相对较弱。
2. 加热干燥可以更快速地降低洞道湿度,但对能源消耗较大。
3. 除湿机干燥是最为有效的干燥方法,能够迅速将湿度降至较低水平。
4. 石灰干燥也能够一定程度上降低湿度,但效果不如加热干燥和除湿机干燥。
5. 电加热干燥和加热干燥的效果相近,但电加热干燥对环境的影响较小。
结论:综上所述,根据我们的实验结果和分析,除湿机干燥是最佳的洞道干燥方法。
它不仅能够迅速将湿度降低至较低水平,而且对环境的影响相对较小。
在实际洞道施工中,我们建议使用除湿机干燥方法来解决湿度过高的问题,以确保工程的顺利进行。
展望:尽管我们的实验结果对洞道干燥问题提供了一定的参考,但仍有一些问题需要进一步研究和探索。
例如,我们可以尝试不同类型的除湿机,以找到更加高效的干燥方案。
此外,我们还可以探索其他干燥方法的组合应用,以提高干燥效果。
(完整word版)浙大干燥特性曲线的测定(计算机远程控制干燥实验)

课程名称: 过程工程原理实验 指导老师: 杨国成 成绩:_________________ 实验名称: 干燥特性曲线测定 实验类型 同组学生姓名:一、实验目的(必填) 二、实验仪器与装置(必填) 三、实验原理(必填) 四、操作方法和实验步骤 五、数据记录和处理 六、结果与分析(必填) 七、讨论与心得一、 实验目的1、了解洞道式干燥装置的结构、流程和及其操作方法。
2、作出物料在恒定干燥条件下的干燥特性曲线(X~ ,U~X ),并求出临界含水量X C 、平衡含水量X *及恒速阶段的干燥速度U 恒速。
3、求出恒速阶段的传质系数K H 和传热系数a 。
4、改变气温或气速等操作条件,作出不同空气参数下的干燥特性曲线,同时求出各自的临界含水量、平衡含水量以及恒速阶段的干燥速度、传质系数和传热系数。
二、实验仪器与装置实验装置如下图所示。
1——风机 2——孔板流量计 3——压差变送器 4——电动调节阀 5——加热器 6——温控系统 7——湿球温度计 8、10——干球温度计 9——重量传感器 11——干燥物料图1 干燥实验装置流程图风机将空气送入预热室进行预热,冷空气经电加热器加热到T1温度后,进入干燥室将热能供给物料,然后直接排放入大气。
空气的流量由孔板流量计测量,孔板两端差压利用差压变送器测量,其中孔板的孔径为34mm,风管内径为68mm ,干燥室截面积0.1*0.1m2,空气流量由电动调节阀经计算机在线控制调节。
实验报告专业: 化学工程与工艺 姓名: 学号: 日期:地点:教十2203系统内空气温度由铜-康铜热电偶测定,干燥室内空气入口及出口的干球温度由传感器8,10测量,温度传感器7测量干燥室出口的湿球温度。
空气进口温度T1采用计算机自动控制。
物料重量变化由重量传感器测量并由计算机检测显示。
三、实验原理干燥是利用热量去湿的一种方法,它不仅涉及到气、固两相间的传热与传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。
洞道干燥实验计算示例

干燥特性曲线测定实验计算示例
1.干燥实验条件: 干燥室温度(干球温度)t=70℃;
2.干燥参数:干燥面积为:、绝干物料:、
初始湿物料重量: 左右
最终湿物料重量: 左右
(一)实验数据:
(二)根据干燥速率公式: , 和物料含水量公式,
得到干燥速率和物料含水率的一系列数据如下表:
第 2 页
共 3页
(三)实验曲线: (1)作物料湿含量和干燥时间曲线得到干燥曲线, 结果如图1-1:
图1-1 干燥曲线图
(2)作物料湿含量和干燥速率的关系曲线得到干燥速率曲线, 如图1-2
图1-2 干燥速率曲线图
最后根据干燥速率曲线可以得到临界含水率Xc= 2.06526(kg/kg)
(四)计算示例:
(五)思考题1.2.3
12121121212121111112C C C C G Gc G Gc G G G X X X X X Gc Gc G dX G dX G X dW U U Ad Ad Ad Ad τττττττττ→∆=-⎧⎪⎨--→==→∆=-⎪⎩∆⇒==-→=-=-由数据1、得:、;、、、;
图3 干燥装置流程图
1-风机;2-管道;3-进风口;4-加热器;5-厢式干燥器;6-气流均布器;7-称重传感器;8-湿毛毡;9-玻璃视镜门;10, 11, 12-蝶阀
第 3 页共3页。
洞道干燥实验

洞道干燥实验
右上角的控制面板 开总电源 物料重量 空气流量 进口温度 干球温度 湿球温度
风机开关
加热开关 关总电源 废气排出阀 新鲜空气进口阀
干球温度计 中压风机
孔板流量计 湿球温度计 空气进口温度计
废气循环阀
从背面通往风机入口 重量传感器
被干燥物料 加热器
洞道
实验装置全景
1、实验方法
(1)实验前的准备工作
①将被干燥物料试样浸泡;
②向湿球温度湿度计的附加蓄水池内,补充适量的水。
(2) 实验操作方法
①记录显示仪表的基准数;
②将支撑架安装在洞道内;
③全开各蝶阀(废气排出阀、废气循环阀、新鲜空气进口阀);
④按风机开关按钮启动风机,调节蝶阀,使空气流量压差达到指定值(0.65~0.8KPa);
⑤按加热器开关按钮启动加热器;
⑥待空气流量压差及干球温度稳定在65℃后,记录支撑架重量;
⑦把准备好的被干燥物试样装在支撑架上放入洞道;
⑧稍候后按秒表计时,并同时记录总重量及各显示仪表数值,然后每隔3分钟重复记录各数据一次。
若记录间隔3分钟后总重量不变,即可结束实验;
⑨ 实验结束,按加热器开关按钮停止加热器,稍候后按风机开关按钮停风机。
2、注意事项
(1)在安装试样时,一定要小心保护传感器,以免用力过大使传感器造成机械性损伤;
(2)在设定温度给定值时,不要改动其它仪表参数,以免影响控温效果;
(3)为了设备的安全,开车时,一定要先开风机后开空气预热器的电热器。
停车时则反之;
(4)突然断电后,在次开启实验时,检查风机开关、加热器开关是否已被按下,如果被按下,再按一下使其弹起,不再处于导通状态。
洞道干燥实验报告

实验名称: 洞道干燥实验一、实验内容1. 掌握在洞道干燥器中干燥曲线和干燥速率曲线的测定方法。
2. 学习物料含水量的测定方法。
3. 加深对物料临界含水量X c 的概念及其影响因素的理解。
4. 学习恒速干燥阶段物料与空气之间对流传热系数的测定方法。
二、实验目的1. 测定在固定的空气流量、温度操作条件下湿物料干燥曲线、干燥速率曲线和临界含水量。
2. 测定恒速干燥阶段物料与空气之间对流传热系数。
三、实验原理当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。
根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。
第一个阶段为恒速干燥阶段。
在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。
因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。
在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。
第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。
此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。
故此阶段亦称为内部迁移控制阶段。
随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。
恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。
恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。
本实验在恒定干燥条件下对待干燥物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。
1. 物料干基含水量'''c c G G G X -=(8-11)式中:X —物料干基含水量,kg 水/ kg 绝干物料; 'G —固体湿物料的量,kg ; 'c G —绝干物料量,kg 。
洞道式干燥器实验测试报告材料

洞道式干燥器实验测试报告材料洞道式干燥器是一种常见的工业干燥器,可以为各种制造业提供高效率的产品烘干。
本文介绍洞道式干燥器的实验测试报告的原因、内容以及实施方法等。
一、实验原因洞道式干燥器作为工业生产流程中比较重要的设备,其质量和性能直接决定生产过程中安全、高效率以及低耗能操作的可行性。
然而由于原材料、尺寸以及装配等容易出现问题,因此洞道式干燥器的质量和性能可能不得不迎合具体的生产标准,因此实验的目的是验证洞道式干燥器的可靠性和可操作性。
二、实验内容实验的主要内容包括初始性能测试、噪音测量、性能考核以及耗能、安全等试验。
1. 初始性能测试这一部分主要是测量洞道式干燥器的初始性能,包括测量鼓风机、叶轮、排风口等部件的流通系数、压力损失和气阀的压力表现,以及各种结构性能指标的测量。
2. 噪音测量噪音测量是检测洞道式干燥器运行时的噪声特性的重要指标。
此类试验包括空气流在洞道间的传播行为等方面的测量,以及多种不同功率状态下噪音的测量。
3. 性能考核除了结构和初始性能外,还应该综合考虑其负荷能力、效率、安全性能等性能指标。
此类测试包括不同负荷下洞道式干燥器的动力学特性,即洞道式干燥器在各种工况下的运行状况;还应测量、分析洞道式干燥器的运行量、空气温度和各部件运行时输出的热量等。
4. 耗能、安全测试耗能测试包括洞道式干燥器的动力系统各部件的能耗和效果测量。
而安全测试包括洞道式干燥器的结构安全状况的检查,以及电气控制系统和安全限位装置的测量。
三、实施方法实验需要实验室提供标准仪器设备,如功率分析仪、扭矩计、压力计、声级计、流量计等,并需要有经验的技术工程师参与残差检测、维护与安装。
实验结束后,需要进行数据录入,其结果必须精确准确。
洞道干燥实验数据处理

洞道干燥实验1. 调试实验的数据见表2, 表中符号的意义如下: S ─干燥面积, [m 2] G C ─绝干物料量, [g] R ─空气流量计的读数, [kPa] T o ─干燥器进口空气温度, [℃] t ─试样放置处的干球温度, [℃] t w ─试样放置处的湿球温度, [℃] G D ─试样支撑架的重量, [g]G T ─被干燥物料和支撑架的"总重量", [g] G ─被干燥物料的重量, [g] T ─累计的干燥时间, [S]X ─物料的干基含水量, [kg 水/kg 绝干物料]X AV ─两次记录之间的被干燥物料的平均含水量, [kg 水/kg 绝干物料] U ─干燥速率, [kg 水/(s ·m 2)] 2. 数据的计算举例以表2所示的实验的第i 和i +1组数据为例 (1) 公式: 被干燥物料的重量 G:D i T i G G G -=, ,[g] (1) D 1i T 1i G G G -=++, ,[g] (2)被干燥物料的干基含水量 X:c ci i G G G X -=, [kg 水/kg 绝干物料] (3) cc1i 1i G G G X -=++ ,[kg 水/kg 绝干物料] (4) 两次记录之间的平均含水量 X AV2X X X 1i i AV ++=,[kg 水/kg 绝干物料] (5) 两次记录之间的平均干燥速率I 1i i1i 3C 3C T T X X S 10G dT dX S 10G U --⨯⨯-=⨯⨯-=++-- ,[kg 水/(s ·m 2)] (6) 干燥曲线X ─T 曲线,用X 、T 数据进行标绘,见图 2。
干燥速率曲线U ─X 曲线,用U 、X AV 数据进行标绘,见图 3 。
恒速阶段空气至物料表面的对流传热系数twt 10U t S Q3tw C -⨯γ=∆⨯=α ,[W/(m 2℃)] (7)流量计处体积流量∨t [m 3/h]用其回归式算出。
实验6洞道干燥实验

洞道干燥实验一、实验目的1、了解洞道式干燥装置的基本结构、工艺流程和操作方法。
2、学习测定物料在恒定干燥条件下干燥特性的实验方法。
3、掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。
4、实验研究干燥条件对于干燥过程特性的影响。
二、实验原理在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。
由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。
按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。
若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。
主要参数与公式:三、 实验装置四、 实验步骤1、 单价开启风机,再单击自动读数2、 将鼠标指向天平右边的砝码并按住左键迅速拖走,此时天平向左倾,当天平平衡时,会自动“读取数据”,此时一个秒表停止,另一个秒表启动,再减重,再自动读取数据,依次类推,建议每次减重1克,读一组数据,直到余30克左右。
3、 干燥结束后,关闭风机。
天平通风机温度计秒表加热器 湿球温度计干燥箱五、数据处理质量(g)减重(g)干燥时间(s)X(kg水/kg干料)Ux(kg·m-2·s-1)1 74 1.75 1 0 0.00 0.0002 73 1.71 1 56 1.73 5.4773 72 1.67 1 53 1.69 5.7874 71 1.63 1 51 1.65 6.0145 70 1.60 1 49 1.61 6.2606 69 1.56 1 49 1.58 6.2607 68 1.52 1 47 1.54 6.5268 67 1.49 1 48 1.50 6.3909 66 1.45 1 48 1.47 6.39010 65 1.41 1 48 1.43 6.39011 64 1.37 1 48 1.39 6.39012 63 1.34 1 48 1.35 6.39013 62 1.30 1 48 1.32 6.39014 61 1.26 1 48 1.28 6.39015 60 1.23 1 48 1.24 6.39016 59 1.19 1 48 1.21 6.39017 58 1.15 1 48 1.17 6.39018 57 1.11 1 51 1.12 6.01419 56 1.08 1 52 1.09 5.88920 55 1.04 1 53 1.06 5.78721 54 1.00 1 54 1.02 5.68022 53 0.97 1 56 0.98 5.47723 52 0.93 1 57 0.95 5.38124 51 0.89 1 59 0.91 5.19925 50 0.85 1 61 0.87 5.02826 49 0.82 1 63 0.83 4.86927 48 0.78 1 65 0.80 4.71928 47 0.74 1 68 0.76 4.51129 46 0.71 1 71 0.72 4.32030 45 0.67 1 73 0.69 4.20231 44 0.63 1 77 0.65 3.98332 43 0.59 1 81 0.61 3.78733 42 0.56 1 85 0.57 3.60834 41 0.52 1 89 0.54 3.44635 40 0.48 1 94 0.50 3.26336 39 0.44 1 100 0.46 3.06737 38 0.41 1 107 0.42 2.86638 37 0.37 1 114 0.39 2.69039 36 0.33 1 122 0.35 2.51440 35 0.30 1 133 0.31 2.30641 34 0.26 1 147 0.28 2.08642 33 0.22 1 165 0.24 1.85943 32 0.18 1 192 0.20 1.59744 31 0.15 1 238 0.16 1.28845 30 0.11 1 363 0.13 0.845六、思考题1、什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洞道干燥实验装置说明书 天津大学化工基础实验中心2013.06一、实验目的1.练习并掌握干燥曲线和干燥速率曲线的测定方法。
2.练习并掌握物料含水量的测定方法。
3.通过实验加深对物料临界含水量Xc 概念及其影响因素的理解。
4.练习并掌握恒速干燥阶段物料与空气之间对流传热系数的测定方法。
5.学会用误差分析方法对实验结果进行误差估算。
二、实验内容1.在固定空气流量和空气温度条件下,测绘某种物料的干燥曲线、干燥速率曲线和该物料的临界含水量。
2.测定恒速干燥阶段该物料与空气之间的对流传热系数。
三、实验原理当湿物料与干燥介质接触时,物料表面的水分开始气化,并向周围介质传递。
根据介质传递特点,干燥过程可分为两个阶段。
第一阶段为恒速干燥阶段。
干燥过程开始时,由于整个物料湿含量较大,其物料内部水分能迅速到达物料表面。
此时干燥速率由物料表面水分的气化速率所控制,故此阶段称为表面气化控制阶段。
这个阶段中,干燥介质传给物料的热量全部用于水分的气化,物料表面温度维持恒定(等于热空气湿球温度),物料表面的水蒸汽分压也维持恒定,干燥速率恒定不变,故称为恒速干燥阶段。
第二阶段为降速干燥阶段。
当物料干燥其水分达到临界湿含量后,便进入降速干燥阶段。
此时物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率由水分在物料内部的传递速率所控制。
称为内部迁移控制阶段。
随着物料湿含量逐渐减少,物料内部水分的迁移速率逐降低,干燥速率不断下降,故称为降速干燥阶段。
恒速段干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质、固体物料层的厚度或颗粒大小、空气的温度、湿度和流速以及空气与固体物料间的相对运动方式等。
恒速段干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。
本实验在恒定干燥条件下对帆布物料进行干燥,测绘干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。
1.干燥速率测定 ττ∆∆≈=S W Sd dW U'' (1) 式中:U —干燥速率,kg /(m 2·h );S —干燥面积,m 2,(实验室现场提供); τ∆—时间间隔,h ;'W ∆—τ∆时间间隔内干燥气化的水分量,kg 。
2.物料干基含水量'''Gc Gc G X -=(2)式中:X —物料干基含水量,kg 水/ kg 绝干物料; 'G —固体湿物料的量,kg ;'Gc —绝干物料量,kg 。
3. 恒速干燥阶段对流传热系数的测定tw w tw r t t Sd r dQ Sd dW Uc )(''-===αττ wtwt t r Uc -⋅=α (3)式中:α—恒速干燥阶段物料表面与空气之间的对流传热系数,W/(m 2·℃);Uc —恒速干燥阶段的干燥速率,kg/(m 2·s ); w t —干燥器内空气的湿球温度,℃;t —干燥器内空气的干球温度,℃; tw r —w t ℃下水的气化热,J/ kg 。
4.干燥器内空气实际体积流量的计算由节流式流量计的流量公式和理想气体的状态方程式可推导出:2732730t tV V t t ++⨯= (4)式中:t V —干燥器内空气实际流量,m 3/ s ;0t —流量计处空气的温度,℃;0t V —常压下t 0℃时空气的流量,m 3/ s ;t —干燥器内空气的温度,℃。
ρPA C V t ∆⨯⨯⨯=2000 (5)2004d A π=(6)式中:C 0--流量计流量系数,C 0=0.65d 0—节流孔开孔直径,d 0=0.035 mA 0--节流孔开孔面积,m 2;ΔP —节流孔上下游两侧压力差,Pa ;ρ—孔板流量计处0t 时空气的密度,kg/m 3。
四、实验装置基本情况1.实验装置基本情况洞道尺寸:长1.16 m 宽0.190 m 高0.24m加热功率:500w-1500w 空气流量:1-5m 3/min 干燥温度:40-120℃ 重量传感器显示仪:量程(0-200g ); 。
干球温度计、湿球温度计显示仪:量程(0-150℃) 孔板流量计处温度计显示仪:量程(0-100℃) 孔板流量计压差变送器和显示仪:量程(0-10Kpa ) 电子秒表绝对误差0.5秒2. 洞道式干燥器实验装置仪表面板图(见图二)图二 洞道式干燥器实验装置面板图3.洞道式干燥器实验装置流程示意图(见图一)图一洞道式干燥器实验装置流程示意图1-废气排出阀;2-废气循环阀;3-空气进气阀;4-洞道干燥器;5-风机;6-干燥物料;7-重量传感器;8-干球温度计;9-孔板流量计;10-湿球温度计;11-空气进口温度计;12-加热器;13-干球温度显示控制仪表;14-湿球温度显示仪表;15-进口温度显示仪表;16-流量压差显示仪表;17-重量显示仪表;五、实验操作方法△手动操作1.将干燥物料(帆布)放入水中浸湿,将放湿球温度计纱布的烧杯装满水。
2.调节送风机吸入口的蝶阀3到全开的位置后启动风机。
3.通过废气排出阀1和废气循环阀2调节空气到指定流量后,开启加热电源。
在智能仪表中设定干球温度,仪表自动调节到指定的温度。
4.在空气温度、流量稳定条件下,读取重量传感器测定支架的重量并记录下来。
5.把充分浸湿的干燥物料(帆布)6固定在重量传感器7上并与气流平行放置。
6.在系统稳定状况下,记录干燥时间每隔3分钟时干燥物料减轻的重量,直至干燥物料的重量不再明显减轻为止。
7.可以改变空气流量和空气温度,重复上述实验步骤并记录相关数据。
8. 实验结束时,先关闭加热电源,待干球温度降至常温后关闭风机电源和总电源。
一切复原。
△计算机操作1.将实验设备上数据采集线连接到计算机指定接口处。
启动计算机,进入windows后,双击桌面文件“干燥实验”图标,进入“干燥实验计算机采集控制程序”,点击界面,进入主程序。
2. 进入主程序后,进行相关操作。
在程序主界面上设定干球温度(红色线框内为实际值,绿色框内为调整数值输入框),启动风机(红按钮是关,绿按钮为开),调节阀门1、2、3到合适位置,然后启动加热开关。
3.待干球温度达到设定值后,从程序主界面进入采集界面,分别称取支架重量和物料绝干重量,将物料浸湿,固定在支架上,关闭洞道干燥器上的取物窗。
同时点击程序上采集键,程序自动采集数据直至试验完成。
4.保存采集数据,保存图像。
关闭加热,待干球温度到常温状态时关闭风机,退出程序。
六、注意事项1.重量传感器的量程为0--200克,精度比较高,所以在放置干燥物料时务必轻拿轻放,以免损坏或降低重量传感器的灵敏度。
2.当干燥器内有空气流过时才能开启加热装置,以避免干烧损坏加热器。
3.干燥物料要保证充分浸湿但不能有水滴滴下,否则将影响实验数据的准确性。
4.实验进行中不要改变智能仪表的设置。
七、实验数据处理举例(仅供参考)1.调试实验的结果调试实验数据见表一,表中符号意义如下:S─干燥面积m2; G C─绝干物料量g; R─空气流量计的读数kPa;T o─干燥器进口空气温度℃; t─试样放置处的干球温度℃;t w─试样放置处的湿球温度℃; G D─试样支撑架的重量g;G T ─被干燥物料和支撑架的总重量g ; G ─被干燥物料的重量g ; T ─累计的干燥时间S ; X ─物料的干基含水量kg 水/kg 绝干物料; X AV ─两次记录之间的被干燥物料的平均含水量kg 水/kg 绝干物料;U ─干燥速率kg 水/(s ·m 2)2.数据计算举例:以表一中第i 和i +1组数据为例 被干燥物料的重量 G: D i T iG G G -=, ,[g] D 1i T 1i G G G -=++, ,[g]被干燥物料的干基含水量 X: cci i G G G X -= , [kg 水/kg 绝干物料]cc1i 1i G G G X -=++ ,[kg 水/kg 绝干物料] 物料平均含水量 X AV2X X X 1i i AV ++=,[kg 水/kg 绝干物料]平均干燥速率I1i i 1i 3C 3C T T X X S 10G dT dXS 10G U --⨯⨯-=⨯⨯-=++-- ,[kg 水/(s ·m 2)] 干燥曲线X ─T 曲线,用X 、T 数据进行标绘,见图三。
干燥速率曲线U ─X 曲线,用U 、X AV 数据进行标绘,见图四 。
恒速阶段空气至物料表面的对流传热系数twt 10U t S Q3tw C -⨯γ=∆⨯=α ,[W/(m 2℃)]流量计处体积流量∨t [m 3/h]用其回归式算出。
由流量公式[5]计算 0002t tPA c V ρ∆⨯⨯⨯=其中:c 0-孔板流量计孔流系数,c 0=0.65 A 0-孔的面积 m 2d 0-孔板孔径 , d 0 =0.040 m P ∆-孔板两端压差,Kpa t V - 空气入口温度(及流量计处温度)下的体积流量,m 3/h ;0t ρ-空气入口温度(及流量计处温度)下密度,Kg/m 3。
干燥试样放置处的空气流量 0273273t tV Vt ++⨯=[m 3/h]干燥试样放置处的空气流速 A3600Vu ⨯= ,[m /s]以表一实验数据为例进行计算i =1 i +1=2 G T ,i =201.1[g] G T ,i +1=199.5[g] G D =101.3[g] 由式(1)(2)得: G i =99.8[g] G i +1=98.2[g] G C =30.6[g] 由式(3)(4)得: X i =2.2614[kg 水/kg 绝干物料]X i +1=2.2092[kg 水/kg 绝干物料]由式(5)得: X AV =2.2353[kg 水/kg 绝干物料]S =2×0.145×0.082=0.02378[m 2] T i =0 [s], T i +1=180 [s]由式(6)得: U =3.738×10-4 [kg 水/(s ·m 2)]3.实验数据记录表及相关图象0.00.51.01.52.02.520406080100120140时间(分)X (k g /k g )图三 实验装置干燥曲线干燥速率曲线0.01.02.03.04.05.06.00.00.51.01.52.02.5X AV (kg/kg)U ×10-4(k g /s ·M 3图四 实验装置干燥速率曲线。