运筹学实验

合集下载

《运筹学》实验四__网络计划(学生版)

《运筹学》实验四__网络计划(学生版)

实验四网络计划
一、实验目的
掌握WinQSB软件绘制计划网络图,计算时间参数,求关键路线。

二、实验平台和环境
WindowsXP平台下,WinQSB V2.0版本已经安装在D:\WinQSB中。

三、实验内容和要求
用WinQSB软件求解网络计划问题。

输人数据(PERT/CPM),显示网络图,计算时间参数,显示结果和关键工序,计算赶工时间,显示甘特图。

四、实验操作步骤
启动程序。

点击开始→程序→WinQSB→PERT_CPM.(课堂演示)
五、分析讨论题
参考上述实验过程,编制下述项目的网络计划图,计算有关参数并指出关键工序。

1、某工程项目明细如表4-1所示。

2、某工程项目明细如表4-2所示。

表4-2
六、网络计划常用术语词汇及其含义。

运筹学实验报告

运筹学实验报告

运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。

解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。

二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。

2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。

3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。

4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。

5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。

三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。

将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。

四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。

通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。

因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。

五、实验心得:通过本次实验,我对运筹学有了更深入的了解。

通过实践应用运筹学方法,我明白了运筹学的实用性和价值。

在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。

本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。

我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。

运筹学实验讲解

运筹学实验讲解

Lingo软件实验报告一、实验内容:1)用lingo软件解决线性规划问题;2)熟悉lingo软件的相关操作。

3)对线性规划问题建立目标函数,罗列对应的表达式约束条件,并且对各变量设定实际的非负约束,考虑到lingo软件能方便地输入数据,并且有内置建模语言,提供内部处理函数,能很方便地处理一系列约束条件解出目标函数的最值,所以采用lingo软件解决线性规划问题。

4)对目标规划问题进行多目标处理,添加正负偏差变量罗列对应的表达式约束条件,并且对欲达到目标顺序添加优先等级,建立目标函数,利用lingo软件能能很方便地处理一系列约束条件解出目标函数的最值,采用lingo软件解决线性规划问题。

二、实验设备:计算机三、使用软件:lingo软件四、软件特点与优势:可以简单地表示模型,能方便地输入数据和选择输出。

五、举例计算:1,线性规划A: 营养套餐问题:根据生物营养学理论,要维持人体正常的生理健康需求,一个成年人每天需要从食物中获取3000cal热量,55g蛋白质和800mg钙。

假定市场上可供选择的食品有猪肉、鸡蛋、大米和白菜,这些食品每千克所含热量和营养成分,以及市场价格见下表。

问如何选购才能满足营养的前提下,使购买食品的总费用最小?解:为了建立该问题的数学模型,假设xj(j=1,2,3,4)分别为猪肉、鸡蛋、大米和白菜每天的购买量,则目标函数为Minz=20x1+8x2+4x3+2x4表示在满足营养要求的系列约束条件下,确定各种食物的购买量,使每天购买食物的总费用最小。

其约束条件是热量需求:1000x1+800x2+900x3+200x4>=3000蛋白质需求:50x1+60x2+20x3+10x4>=55钙需求:400x1+200x2+300x3+500x4>=800决策变量的非负约束:xj>=0(j=1,2,3,4)因此,营养配餐问题的数学模型为Minz=20x1+8x2+4x3+2x41000x1+800x2+900x3+200x4>=300050x1+60x2+20x3+10x4>=55400x1+200x2+300x3+500x4>=800xj>=0(j=1,2,3,4)B: lingo代码:model:min=20*x1+8*x2+4*x3+2*x4;1000*x1+800*x2+900*x3+200*x4>=3000;50*x1+60*x2+20*x3+10*x4>=55;400*x1+200*x2+300*x3+500*x4>=800;ENDC: 结果截屏:D:运行结果分析:由运行结构可知:该线性规划的最值为13.33333,即在变量为非负的情况下,只买3.33kg的大米可以满足目标函数的要求。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学实验报告

运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。

每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。

生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。

已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。

(2)将电子表格格式转换成标准模型。

(3)将结果复制到Excel或Word文档中。

(4)分析结果。

解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。

运筹学实验

运筹学实验

试验一Matlab基本运算练习一、实验内容:矩阵运算和基于矩阵的代数运算二、实验目的:1、熟悉有关矩阵运算的各种命令。

2、能熟练地进行代数运算,包括计算矩阵的加、减、乘、逆和方阵的行列式等。

3、能求解线性方程组。

4、能运用矩阵方法求解代数问题。

三、基本知识MA TLAB的操作对象是矩阵,标量为1×1的矩阵,向量为1×n矩阵,多项式也可用矩阵表示.1.矩阵输入矩阵输入有两种方式:(1) 用中括号表示,每行元素间用逗号或空格分开,行与行之间用分号隔开;(2) a=初始值:步长:终值,可输入行矩阵.例如输入a=[1 2 3; 4 5 6; 7 8 9]或a=[1,2,3;4,5,6;7,8,9]会得到同样的结果:a=1 2 34 5 67 8 9输入a=2:2:10得到从2到10的以2为公差的数组:a =2 4 6 8 102.多项式的表示法和运算MA TLAB用行向量来表示一个多项式.例如6xp可用矩阵表示为:x)(3+-=xp=[1 0 –1 6]MA TLAB提供的多项式运算函数名见表1-1表1-1例1 求解方程 1223-=-x x x .解 输入如下命令 syms xs=solve('x^3-2*x^2=x-1') 或 syms xs= x^3-2*x^2-x+1; solve(s) 例2 求多项式12)(23--=x x x p 的微分. 解 输入 p=[1 -2 0 -1]; q=polyder(p) 得 q =3 -4 03.矩阵运算 1.MA TLAB 提供的一些特殊矩阵,见(表1-2).例如rand(3,9)产生一3行9列的矩阵,其元素数值范围为(0,1). 2.运算符,见(表1-3).3.关系运算符,见(表1-4).4.矩阵运算的命令符,见(表1-5).若方程组为B AX =,且1-A 存在,则B A X 1-=.因此可用B A X \=或B A X /=计算线性方程组的解.例3 已知矩阵A 、B 、b 如下⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=741056143A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=201181697431B []531=b(1) 输入矩阵A 、B 、b;(2) 求X1=A 的转置,X2=A+B,X3=AB; (3) 求X4=A 的行列式,X5=A 的秩; (4) 求X6=A 的逆;(5) 求方程组AX=b 的解向量.解 完成上述求解的命令为: (1)A=[3 4 –1;6 5 0;1 –4 7]B=[1 3 4;7 9 16;8 11 20] b=1:2:5 (2) x1=A'x2=A+B x3=A*B 得 x1 =3 6 145 -4 - 1 0 7 x2 =4 7 3 13 14 16 9 7 27 x3 =23 34 56 41 63 104 29 44 80(3) x4=det(A) x5=rank(A) 得 x4 = -34 x5 = 3 (4)x6=inv(A) 得 x6 =-1.0294 0.7059 -0.1471 1.2353 -0.6471 0.1765 8529 -0.4706 0.2647(5)x=inv(A)*b ’ 得 x = 0.3529 0.1765 7647例4 求方程组⎪⎩⎪⎨⎧=--+=--+=+--22302212432143214321x x x x x x x x x x x x 的解.解 输入A=[2 -1 -1 1 1;1 2 -1 -2 0;3 1 -2 -1 2]; A([1,2],:)=A([2,1],:)得A =1 2 -1 -2 02 -1 -1 1 13 1 -2 -1 2输入A(2,:)=A(2,:)-2*A(1,:);A(3,:)=A(3,:)-3*A(1,:)得A =1 2 -1 -2 00 -5 1 5 10 -5 1 5 2输入A(3,:)=A(3,:)-A(2,:)得A =1 2 -1 -2 00 -5 1 5 10 0 0 0 1由线性代数知识知方程组无解.试验二Matlab函数运算练习一、实验内容:Matlab函数编写方法与应用二、实验目的:1.区别M 脚本文件(M-Script) 和M 函数(M-function)。

运筹学实验心得(精选5篇)

运筹学实验心得(精选5篇)

运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。

本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。

2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。

我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。

3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。

例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。

同时,我们也收获了一些理论知识和实践经验。

我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。

4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。

例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。

因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。

总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。

运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。

以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。

关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。

它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。

然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。

实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。

理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学》实验指导书课程代码:0900030课程名称:运筹学/Operational Research开课院实验室:管理学院实验中心适用专业:工商管理、工程管理、管理信息、工业工程、工程造价等专业教学用书:《运筹学》(《运筹学》编写组编写,清华大学出版社出版)第一部分实验课简介一、实验的地位、作用和目的及学生能力标准运筹学是一门应用科学,在教学过程中通过案例分析与研究并与现代计算机技术相结合,力求实现理论与实践相结合,优化理论与经济管理专业理论相结合。

实验,是《运筹学》课程中重要的实践环节。

通过实验,可弥补课堂理论教学中的不足,增加学生的感性知识;要使学生能掌握系统的管理科学中的整体优化和定量分析的方法,熟练运用运筹学程序,对实际问题和研究对象进行系统模拟。

二、试验内容应用Lindo6.1 版运筹学软件包,解决实际问题。

三、实验方式与基本要求1、实验方式:综合性实验预习要求:复习编程方法及线性规划、整数规划的算法,对实际问题和研究对象,构造数学模型,确定优化技术方法,设计出原始数据表格。

实验设备:台式电脑实验要求:按实验任务要求调试程序,程序执行结果应正确。

实验分组: 1 人/组2、基本要求(1)在实验室进行实验前,学生熟悉实验软件Lindo 程序、操作方法等;(2)将程序调好后,将程序结果记录,并由实验教师检查后签字;(3)将数据及有关的参数等记录在已经设计好的原始数据表格中;(4)在一周内完成实验报告。

四、考核方式与实验报告要求学生进入实验室后签到,实验结束后,指导教师逐个检查并提问,根据学生操作、实验结果、回答问题情况及实验纪律及作风等方面给出学生成绩,再综合实验报告情况给出最后的成绩。

报告格式如附录。

第二部分Lindo背景及功能菜单简介、Lin do简介1. Li ndo 简介:LINDO (Lin ear In teractive and Discrete Optimizer)是一种专门用于求解数学规划问题的软件包。

由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。

因此在数学、科研和工业界得到广泛应用。

LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。

也可以用于一些非线性和线性方程组的求解以及代数方程求根等。

LINDO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。

一般用LINDO 解决线性规划(LP-Li near Programmi ng)。

整数规划(IP—In teger Programming)问题。

其中LINDO 6.1学生版至多可求解多达300个变量和150个约束的规划问题。

其正式版(标准版)则可求解的变量和约束在1量级以上。

2. 特点:LINDO只要通过键盘输入就可以方便地实现交互性良好的操作与使用。

另外,LINDO也可以对外建文件进行处理,只要这些文件里包含有必要的命令代码和输入数据,处理后就可以生成用于报告目的的文档。

还可以自建子程序,然后直接与LINDO相结合形成一个包括你自己的代码和LINDO本身的优化库的综合程序。

、LINDO的视窗菜单:文件一编辑一求解一报告一窗口一帮助工具栏:它包含所有的其他窗口以及所有命令菜单和工具栏。

在里面的是一个新的空白的模型窗口。

第三部分LINDO常用功能与操作简介、LINDO数据输入与保存1、打开一个空白工作表/项目File—New,出现一个新的空白的模型窗口,在此窗口中输入需求解得模型如图所示:2、数据输入:在空白窗口输入模型,输入方式与我们的数学书写的形式基本一致。

LINDO 也不区分变量中的大小写字符,约束条件中的 “<=及“>=可用“<”“ >代替。

3、 保存当前工作表:如果输入的问题模型已经不再需要改动,可用 SAVE 命 令将它存入文件中,点File ―― Save,输入文件名,点 保存” 二、求解从Solve 菜单选择Solve 命令,或者在窗口顶部的工具栏里按 Solve 按钮,LINDO 就会开始对模型进行编译。

首先,LINDO 会检查模型是否具有数学意义以及是否符 合语法要求。

如果模型不能通过这一步检查,会看到以下报错信息:An error occurred during compilation on line: n (产生错误的行数),LINDO 会自动跳转到发生错误的 行。

我们就可以检查该行的语法错误并改正过来。

通过这一检查阶段后,LINDO 就会正式开始求解,这由一个叫 LINDO solver 的处理器完成。

当solver 初始化时,会在屏幕上显示一个状态窗口,如下图所示:I.nl u in.It 491 BO nsObl'iacrlb vvILf 11^-9 ^arK-h a-u-B 0 I Iti!l ^11 ann | VF ril这个状态窗口可以显示solver 的进度,下表是对各项数据/控制按钮的说明:当solver 完成优化过程后将会提示你是否要进行灵敏度和范围分析。

如果想重新 看到刚才的模型,可键入LOOK 命令,LINDO 会询问具体的行号。

典型的应答可以 是3,或1-2,或ALL ,而结果,相应地会显示出第3行,第1-2行,或所有问题行。

数据项/控制 说明Status 给出当前解决方案的状态, 可能的值包括:Optimal (最优的)‘Feasible (可仃的),In feasible (不可仃的),Un bou nded (未疋的)Iterati ons solver 的重复次数 In feasibility多余或错误约束条件数量Objective 目标函数的当前值Best IP标示得到最优整数解决方案值, 该项只出现在IP (整数规划)模型。

i. INI > n5widow M&toJXVJCCI 0 0 0 ©1:LOOKROW: 3或:LOOK all如果想修改问题,可键入ALTER命令,LINDO会询问行号、变量名、及新的系数。

例如:如果要将上面问题中约束条件改为,再全部看一下,并求解新问题,那么键入ALTER 命令后相应的应答为2,X,和6,以下是演示过程::ALTERROW: 2VAR: XNEW COEFFICIENT: 6或:LOOK ALL三、LINDO输出结果报告在Reports Window窗口里,它可以显示64,000个字符的信息。

如果有需要,LINDO会从顶部开始刷除部分输出以腾出空间来显示新的输出。

如果你有一个很长的解决方案报告,需要完整地进行阅读使用,你可以把这些信息从Reports Window 写到另外一个磁盘文件里,方法是选取File|Log Output命令,快捷键是F10,然后你就可以找到该文件进行阅读使用。

如下所示,Reports Window里显示的是模型的最优解决方案:按照顺序,报告首先告诉我们LINDO进行了两次运算后求出该解;跟着是在约束条件的约束下我们可以得到的最大利润是145;这时X和丫分别取值10和3。

四、LINDO求解单纯的或混合型的整数规划(IP)问题LINDO可用于求解单纯的或混合型的整数规划(IP)问题。

但目前尚无相应完善的敏感性分析理论。

IP问题的输入与LP问题类似,但在END标志后需定义整型变量。

0-1型的变量可由INTEGER (可简写为INT)命令来标识:INTEGER vname 或INTEGER n五、注意事项1.进入LINDO 后,":"表示LINDO 已准备接受一个命令。

2.LINDO 中已假定所有变量非负。

变量名不能超过8 个字符。

3.如要输入<=或>= 型约束,相应以<或>代替即可。

4.LINDO 不允许变量出现在一个约束条件的右端。

5.目标函数及各约束条件之间一定要有空格分开。

6.一般LINDO 中不能接受括号( )和逗号",",例:400( X1+X2 )需写为400X1+400X2 ;10 ,000 需写为10000。

7.EDIT 命令调用一个全屏幕编辑器,可对当前模型进行全屏幕编辑。

编辑完成后用“ Esc” 键保存当前修改,退出全屏幕编辑器;此时若模型有错误,则要求改正错误后再退出。

用“ Ctr+Break 键”废弃当前修改,退出全屏幕编辑器。

8.LINDO 有DEL ,EXT ,及ALTER 等其它编辑命令,虽然全屏幕编辑器EDIT 使这些命令用处减少了,但DEL 在大块地清除一个模型时是有用的,而ALTER 可允许做全局性的替换。

9.LOOK 命令会为你在屏幕上显示你的问题( EDIT 也可如此)。

10.如想获得敏感性分析可用RANGE 命令。

11.SAVE 命令用来存储一个问题模型到文件中,RETR 或TAKE 命令用来读取一个以文件存储的模型。

TAKE 命令还可用于解读一个以文本格式存储的LINGO 格式的问题模型。

12.DIVERT 会导致大多数信息被输送到文件中,而只有少量信息被传送到屏幕。

RVRT用于结束DIVERET 。

如果你divert 到一个名为PRN 的文件,结果将被直接传到打印机。

13.LINDO 文件中常有注释间杂于各命令( COMMANDS )之中,前面注有[!] 符号。

例如:! This is a comment 。

14.LINDO 将目标函数所在行作为第一行,从第二行起为约束条件。

行号自动产生,也可以人为定义行号或行名。

行名和变量名一样,不能超过8 个字符。

15.LINDO 不能将LP 中的矩阵进行数值均衡化。

为了避免数值问题,使用者应自己对矩阵的行列进行均衡化。

一个原则是,系数矩阵中非零元的绝对值不能大于100000或者小于。

0001。

如果LINDO 觉得矩阵元素之间很不均衡,将会给出警告。

16.量纲分析与一般错误的避免天津理工大学管理学院运筹学实验报告实验日期: ____________学号_____________ 姓名_________________ 系别、专业____________________实验习题一农户拥有土地100亩和资金30000元,在冬半年(从10月中到第二年4月中),农户有劳力3500工时,在夏半年有劳力4000工时,如果有剩余劳力,那么农户就安排到邻居帮工。

冬半年工钱是 4.00元/小时,夏半年是4.50元/小时。

农户可以通过种植三种作物和饲养奶牛和蛋鸡来获得现金收入。

作物不需投资,而每买一头奶牛需支付900元,一只蛋鸡7元。

每饲养一头奶牛需用地1.5亩,在冬半年需劳力100工时,在夏半年需劳力50 工时,每头奶牛每年的纯现金收入为800元。

相应的,养鸡不需土地,一只在冬半年需0.6工时,在夏半年需0.3工时,每只鸡的年净收入5元。

相关文档
最新文档