§3.5---条件分布与条件期望

合集下载

随机变量的条件分布与条件期望

随机变量的条件分布与条件期望

随机变量的条件分布与条件期望随机变量是概率论中十分重要的概念之一,它描述了在概率模型中可能出现的各种结果。

随机变量可以是离散的,也可以是连续的。

在概率论中,我们经常关注的是随机变量的分布以及其与其他变量之间的关系。

本文将重点讨论条件分布与条件期望。

一、条件分布条件分布是指在给定某些条件下,随机变量满足的分布。

对于离散型随机变量,条件分布的计算可以通过条件概率来进行。

假设X和Y是两个离散型随机变量,我们想要求解在给定X的取值为x的条件下,Y的取值为y的概率。

可以表示为P(Y=y|X=x)。

这个概率可以通过联合概率分布和边缘概率分布来计算。

具体计算方法为:P(Y=y|X=x) = P(X=x,Y=y) / P(X=x)对于连续型随机变量,条件分布的计算可以通过条件密度函数来进行。

假设X和Y是两个连续型随机变量,我们想要求解在给定X的取值为x的条件下,Y的取值在a到b之间的概率。

可以表示为P(a <= Y <= b | X = x)。

这个概率可以通过联合概率密度函数和边缘概率密度函数来计算。

具体计算方法为:P(a <= Y <= b | X = x) = ∫[a, b] f(x, y) dy / f_X(x)二、条件期望条件期望是指在给定某些条件下,随机变量的期望值。

对于离散型随机变量,条件期望的计算可以通过条件概率和随机变量的取值来进行。

假设X和Y是两个离散型随机变量,我们想要求解在给定X的取值为x的条件下,Y的期望值E(Y|X=x)。

可以表示为:E(Y|X=x) = Σy y * P(Y=y|X=x)其中Σ为求和符号,y为随机变量Y的取值。

对于连续型随机变量,条件期望的计算可以通过条件密度函数和随机变量的取值来进行。

假设X和Y是两个连续型随机变量,我们想要求解在给定X的取值为x的条件下,Y的期望值E(Y|X=x)。

可以表示为:E(Y|X=x) = ∫y y * f(y|x) dy其中∫为积分符号,f(y|x)为在给定X=x的条件下,Y的概率密度函数。

条件分布与条件期望

条件分布与条件期望

33
XY 3 1 2
P
61
77
43 P
77 4
例2. 设随机变量X ,Y相互独立,X P(1), Y P(2 ) ,
在X Y n的条件下,求X的条件分布.
解:X Y P(1 2 )
P(X k X Y n) P(X k, X Y n) P(X k,Y n k)
P(X Y n)
pY ( y)E( X Y y) dy E( X Y y)看作是y的函数.
E[E( X Y )]
13
例5 一矿工被困在有三个门的矿井里,第一个门通 甲坑道,须走3小时到达安全区;第二个门通乙坑 道,走5小时回到原处;第三个门通丙坑道,走7小 时回到原处。问他平均用多长时间能够到达安全区。 分析:到达安全区的时间与第一次选择的门有关,
i
1 (1 (2 EX )
yi )P(Y yi )
(n EX ))
EX
n(n 1) . 2
n
17
作业:
P197 2 4
18
The End!
Thank You!
Department of Mathematics
19
即有
P(X x Y y)
x p( x, y) dx;
pY ( y)
同样可得 P(Y y X x)
y p( x, y) dy .
pX ( x)
8
2、连续随机变量的条件分布
定义3:对y,且pY ( y) 0,在给定Y y条件下
X的条件分布函数和条件密度函数分别是:
F ( x y)
3 E( X Y 2) 5 EX; E( X Y 3) 7 EX .
E( X ) E( X Y y j )P(Y y j )

3.6 条件分布与条件期望--概率论课件

3.6 条件分布与条件期望--概率论课件
=
-r
r x
2 2
r 2 x2
x r


r x r x
2
2
2
2
0,
1 dy, 2 r
r xr
其他
r xr 其他
2 r 2 x 2 , 2 r 0,
同理,
fY ( y ) f ( x, y )dx
2 r y , r y r 2 r 0, 其他
1 2 2 F | ( x | y ) 为 N a1 ( y a2 ), 1 (1 ) 分布 2
2 2 2 F| ( y | x) 为 N a2 ( x a1 ), 2 (1 ) 分布 1
注意
FX Y ( x y ), f X Y ( x y ) 仅是 x 的函数,
y是常数, 对每一 fY (y) >0 的 y 处, 只要
符合定义的条件, 都能定义相应的函数. FY X ( y x), fY X ( y x) 相仿论述. 类似于乘法公式:
f ( x, y ) f X ( x ) f Y X ( y x ) fY ( y ) f X Y ( x y )
( x a1 )( y a2 )
1 2
( y a2 ) 2 2 2
1 e 2 2
( y a2 )2 2 2 2
1 ( x a1 )2 ( x a1 )( x a2 ) 2 ( y a2 )2 exp 2 2 2 2 2 1 2 2 21 1 2(1 ) 1 1
2 x a1 1 1 y a2 exp 2 2 2(1 ) 1 2 2 1 1

概率论与数理统计教程第三章

概率论与数理统计教程第三章
p 2
M p
i
M
华东师范大学
第三章 多维随机变量及其分布
3.2.3 边际密度函数
第32页
巳知 (X, Y) 的联合密度函数为 p(x, y),则
X 的密度函数为 :
p(x) p(x,y)dy
Y 的密度函数为 : p(y) p(x,y)dx
4/29/2020
华东师范大学
第三章 多维随机变量及其分布
3.3.1 多维随机变量 ➢ 定义3.1.1
若X, Y是两个定义在同一个样本空间上的 随机变量,则称(X, Y) 是两维随机变量.
➢ 同理可定义 n 维随机变量 (随机向量).
4/29/2020
华东师范大学
第三章 多维随机变量及其分布
第3页
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
则称 (X, Y) 服从 D 上的均匀分布, 记为 (X, Y) U (D) .
4/29/2020
华东师范大学
第三章 多维随机变量及其分布
第20页
四、二维正态分布
若二维连续随机变量 (X, Y) 的联合密度为:
1 p(x,y)
212 12
exp2(112)(x121)2 (y222)2 2(x11)(y22)
记 P(Ai) = pi ,
i = 1, 2, ……, r
记 Xi 为 n 次独立重复试验中 Ai 出现的次数.
则 (X1, X2, ……, Xr)的联合分布列为: P (X 1 n 1 ,X 2 n 2 ,......,X r n r )= n 1 ! n 2 n ! L !n r !p 1 n 1 p 2 n 2 L L p r n r
解: 由题意得

概率论与数理统计公式精粹条件期望条件方差与条件分布

概率论与数理统计公式精粹条件期望条件方差与条件分布

概率论与数理统计公式精粹条件期望条件方差与条件分布条件期望、条件方差和条件分布是概率论与数理统计中重要的概念和技巧。

它们能帮助我们更准确地描述和计算随机现象的特征和性质。

本文将对条件期望、条件方差和条件分布进行精炼的介绍和讨论。

一、条件期望条件期望是指在给定某些信息或条件下,对随机变量的期望进行计算的概念。

对于随机变量X和事件A,条件期望E(X|A)表示在事件A发生的条件下,随机变量X的平均取值。

条件期望的计算可以通过基本的期望定义进行推导。

对于离散型随机变量,条件期望的计算公式为:E(X|A) = ∑x P(X=x|A) * x其中,P(X=x|A)表示在事件A发生的条件下,随机变量X取值为x的概率。

对于连续型随机变量,条件期望的计算公式为:E(X|A) = ∫xf(x|A) dx其中,f(x|A)表示在事件A发生的条件下,随机变量X的概率密度函数。

二、条件方差条件方差是在给定某些信息或条件下,对随机变量的方差进行计算的概念。

对于随机变量X和事件A,条件方差Var(X|A)表示在事件A发生的条件下,随机变量X的离散程度。

条件方差的计算可以通过基本的方差定义进行推导。

对于随机变量X和事件A,条件方差的计算公式为:Var(X|A) = E[(X-E(X|A))^2|A]其中,E(X|A)表示在事件A发生的条件下,随机变量X的条件期望。

三、条件分布条件分布是指在给定某些信息或条件下,随机变量的分布情况。

对于随机变量X和事件A,条件分布P(X=x|A)表示在事件A发生的条件下,随机变量X取值为x的概率。

条件分布的计算可以通过基本的概率计算进行推导。

对于随机变量X和事件A,条件分布的计算公式为:P(X=x|A) = P(X=x, A) / P(A)其中,P(X=x, A)表示事件A发生且随机变量X取值为x的概率,P(A)表示事件A的概率。

四、应用与扩展条件期望、条件方差和条件分布在实际问题中有广泛的应用。

条件概率,条件分布,条件期望

条件概率,条件分布,条件期望

FX Y ( x y )
x
y
f X Y ( x y ) d x [ f ( x , y ) fY ( y )]d x .
y
x
FY X ( y x )
说明

fY X ( y x ) d y [ f ( x , y ) f X ( x )]d y .
定义
设二维随机变量( X ,Y ) 的概率密度为
f ( x , y ), ( X ,Y ) 关于 Y 的边缘概率密度为 fY ( y ).若 f ( x, y) 对于固定的 y , fY ( y ) 0, 则称 为在Y y fY ( y ) 的条件下 X 的条件概率密度 , 记为 f ( x, y) f X Y ( x y) . fY ( y )
为在事件A发生的条件下事件B发生的条件概率.

条件分布
一、离散型随机变量的条件分布
问题
考虑一大群人, 从其中随机挑选一个人 , 分别 用 X 和 Y 记此人的体重和身高 , 则X 和 Y 都是随 机变量, 他们都有自己的分布 .
现在如果限制Y 取值从1.5 m 到1.6 m , 在这个限制下求X 的 分布 .
一 条件概率 (Conditional Probability) 条件概率是指在事件A发生的条 件下,另一事件B发生的概率,记用 P(B|A).
引例 从所有有两个孩子的家庭随机抽取一个家庭记录男 孩女孩的情况。
则试验所有可能的结果为(男孩记为“b”,女孩记为“g”) (b,b) (b,g) (g,b) (g,g) 设A={ 至少一个男孩}, B ={ 至少一个女孩}, 考虑在事件A发生的条件下,事件B发生的概率。
定义 设 ( X ,Y ) 是二维离散型随机变量 , 对于固定

条件分布与条件期望

条件分布与条件期望



这表明,二元正态分布的条件分布仍为正态分布:
1 2 2 N r y , 1 r 2 1 1 2



31
二.条件数学期望
32
1.条件数学期望的概念
33
条件分布的数学期望称为条件数学期望.
34
对于离散型随机变量,当 Y y j 时,随机变量 X 的条 件分布律为
1 2 PX Y n
n!
n
e
1 2

所以,当 X Y n 时, X 的取值为 0, 1,
2, , n .
13
PX k X Y n
PX k , X Y n PX k , Y n k PX Y n PX Y n
PX k PY n k k! n k ! PX Y n 1 2 n e 1 2 n!
n! 1 k!n k ! 1 2
k
1k
e 1
2 n k
e 2
2 2 1
17
所以,
PY k PX nP Y k X n
n 0

PX nP Y k X n PX nP Y k X n
n 0 nk
k 1


n 0
k 1
n
n!
e 0
nk

n
n!
e C p 1 p
f X x 0 .
26

设二维随机变量 X , Y 服从平面区域
x, D
y:
x y 1

概率论中的条件期望计算公式

概率论中的条件期望计算公式

概率论中的条件期望计算公式概率论是数学中的重要分支,研究随机事件和概率规律的数学理论。

条件期望是概率论中的一个重要概念,用于描述在给定条件下的期望值。

本文将介绍条件期望的计算公式及其应用。

一、条件期望的定义及性质条件期望是在给定条件下的期望值,记作E(X|Y),其中X和Y为随机变量。

条件期望于普通期望相似,区别在于条件期望要求在给定条件下对随机变量进行求平均。

条件期望的计算公式如下:E(X|Y) = ∑[x P(X=x|Y)] (离散变量)E(X|Y) = ∫[x f(x|Y) dx] (连续变量)其中,P(X=x|Y)表示在给定随机变量Y的条件下,随机变量X取值为x的概率;f(x|Y)表示随机变量X在给定Y的条件下的概率密度函数。

条件期望的性质:1. 条件期望是随机变量Y的函数,它是Y的函数的期望;2. 如果X和Y相互独立,则条件期望等于普通期望,即E(X|Y) =E(X);3. 若Z=g(X,Y),则E(Z|Y) = E(g(X,Y)|Y)。

二、条件期望的计算举例为了帮助读者更好地理解条件期望的计算公式及应用,以下将通过两个具体的案例来说明。

案例一:假设有一批产品,其质量可以用随机变量X表示,X的取值范围为[1, 10],代表产品的质量评分。

同时,还有一个随机变量Y表示产品的价格,Y的取值范围为[100, 1000]。

现在要求在给定产品价格的条件下,计算产品质量的条件期望。

解决方法如下:根据条件期望的计算公式,我们需要计算P(X=x|Y)。

假设随机变量Y的取值为y,则产品质量为x的条件概率为P(X=x|Y=y)。

如果我们已知产品价格与质量的关系,可以通过分析或者实验得到条件概率的分布。

然后,根据条件概率计算条件期望即可。

案例二:现假设随机变量X和Y相互独立,且它们都服从正态分布。

我们要计算X与Y的乘积Z的条件期望E(Z|Y)。

解决方法如下:根据条件期望的性质,当X和Y相互独立时,条件期望等于普通期望,即E(Z|Y) = E(Z)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在Y y 的条件下X的条件分布密度记为PX|Y(x | y)
FX|Y(x | y) P(X x |Y y)
lim P(X x | y Y y y) y0
lim P(X x, y Y y y) y0 P( y Y y y)
lim F (x, y y) F (x, y) 分子、分母同除 y y0 FY ( y y) FY ( y)
Pij PJ
i=1,2,.....
Pj|i
Pij Pi
j=1,2,........
例3.5.5.设(X, Y)的联合密度为:
P( x,
y)
24(1
0
x)
y
0 x 1, 0 y x 其它
求条件密度函数 PX|Y (x | y)和 PY|X ( y | x)
解:PX (x)
P(x, y)dy
5 4 20
PX 0,Y 1 P(X 0)P(Y 1| X 0) 2 3 6
5 4 20
PX 1,Y 0 P(Y 1)P(Y 0 | X 1)
32 6 5 4 20
PX 1,Y 1 P(X 1)P(Y 1| X 1)
32 6 5 4 20
XY 0 1
0
2
6
20 20
1
X|Y 3 1
2
P
4/7 3/7
例3.5.3 设随机变量X,Y独立,X P(1),Y P(2)
在X Y n 条件下,求X 的条件分布?
解:由已知条件和泊松分布的可加性得:XY P(1 2)
所以 P(X k |XY n)
P(X k, XY P(XY n)
n)
P(X k ,Y n k) P(XY n)
6
6
20 20
pj
2 5
3 5
pi• 从实际出发求条件分布列
2
5 在X 1的条件下 在X 0的条件下
3 5
0 1
0 1
P 2 2 44
P 1 3 44
定义:3.5.1 设对任意的j 有
PJ
0,
则称
Pi| j
Pij PJ
为给定 Y yj条件下的X的条件分布列。
i=1,2,........
一、离散场合下的条件分布
例2.2.1 袋中有5个形状相同的球,其中3个新的,2个旧的, 从中任取一球,无返回地取两次,

1 X 0
第一次取新球 第一次取旧球
1 Y 0第二次取新Fra bibliotek 第二次取旧球
求 X,Y 得联合分布列,边际分布列,条件分布列。
解:PX 0,Y 0 P(X 0)P(Y 0 | X 0) 2 1 2
mk
m e
m! pk (1 p)mk
mk m! k!(m-k)!
e
m pk (1 p)mk
mk k!(m-k)!
kpk e [(1 p)]mk
k! mk (m-k)!
kpk e [(1 p)]t
k!
t0
t!
k pk e e (1p)
k!
(p)k ep
k 0,1, 2,3,.........
p j p 1 p 2 p 3 …. p n …
定分布。条件分布内容丰富, 应用广泛。
条件分布列的个数=联合分布列的行数+列数
例2.6.2 设(X,Y)有联合分布列: 求所有的条件分布列
XY 1 2 3
pi
1 0.1 0.3 0.2 0.6
2 0.2 0.05 0.15 0.4
p j 0.3 0.35 0.35 1
x3
p31 p32 p33 .........p3n ........ p3
y
(X, Y)的联合分布列只有一个, 而条件分布有多个,X和Y的取 值越多,得到的条件分布也就 越多。每个条件分布都是从一 个侧面描述了一种状态下的特
….. ….
.........................................
lim [F (x, y y) F (x, y)] / y y0 [FY ( y y) FY ( y)] / y
F (x, y) y
PY ( y)
关于x求导得
PX|Y
(x
|
y)
P(x, y) PY ( y)
同理可得:
PY|X
(y
|
x)
P(x, y) PX (x)
与离散型是何等相似!
Pi| j
(同学们自己做)
在Y 1的条件下,X得分布列
X|Y 1 1
2
P
1/3 2/3
在X 1的条件下,Y得分布列
在Y 2的条件下,X得分布列
Y|X 1 1 2 3
P
1/6 1/2 1/3
X|Y 2 1
2
P
6/7 1/7
在X 2的条件下,Y得分布列
Y|X2 1 2 3
P
1/2 1/8 3/8
在Y 3的条件下,X得分布列
x
24(1 x) ydy
0
12x2 (1 x)
o x 1
PY ( y)
P(x, y)dx
1
24(1 x) ydx
x
12 y(1 y)2 0 y 1
故当
0 y 1 时,
PX|Y (x
|
y)
P(x, y) PY ( y)
24(1 x) y 12y(1 y)2
y x 1
2(1 x)
i=1
i=1
在Y
y
条件下的条件数学期望。简称条件期望。
j
并记作 E(X|Y yj) xi Pi|j
i=1
类似 E(Y|X xi ) yj Pj|i j1
为Y在X xi条件下的条件期望。
连续型: E(X|Y=y)= xP(x | y)dx -
E(Y | X x) yP( y | x)dy -
N(1,12 ),Y
N(2
,
2 2
),求
P(x |
y) ?
解:P(x | y) P(x,y)
PY ( y) 1
1 [( x1 )2 2 ( x1 )( y2 ) ( y2 )2 ]
e 2(1 2 )
1
2
2
2 1 2 1 2
1
( y2 )2
e 2
2 2
2 2
1
e
212
1 (1
2
[ )
x
(
1
同理

Pj|i
Pij Pi
j=1,2,........
为给定 X xi条件下的Y的条件分布列。
对比:P(AB) P(A)P(B | A) P(B | A) P(AB) P(A)
定义3.5.2, 给定Y=y j条件下X的分布函数为:
y
F(x | yj) P(X xi | Y yj) xi x
X在[- 1 y2, 1 y2 ]上均匀分布。
1
例如,当
y 0时
P(x |
y)
2
0
1 x 1 其他
即 当 y 0时,X在[-1,1]上均匀分布。
y
0.5
又如,当 y 0.5 时
-1
0
1
P(x
|
y)
3
0
3 x 3
2
2
其他
x
1
例3.5.7 设 (X, Y) N(1,2,12, 22,)
则X
即为连续场合下的全概公式形式
同理 P(x,y) PX (x)P( y | x)
PY ( y)
P(x,y)dx
PX (x)P( y | x)dy
用条件概率的定义可推出连续场合下的逆概公式
P(x | y) P(x,y) PY ( y)
PX (x)P( y | x)
PX (x)P( y | x)dy
条件数学期望E(X | Y y)是y的函数,它与无条件期望不仅在 计算公式上,而且在含义上都有很大的区别。
如:用X表示我国成年男人身高,用Y表示我国成年男人足长, 则 无条件期望EX表示我国成年男人平均身高,
EY表示我国成年男人平均足长, E(X | Y 24)则表示足长为24cm的我国成年男人的平均身高, 对不同足长的男人,其平均身高未必相同。
P( y | x) P(x,y) PX (x)
PY ( y)P(x | y)
PY ( y)P(x | y)dy
例3.5.8 设X N(, 2 ),在X x的条件下Y|X=x N(x, 2)
求Y的密度函数?
x 2
解:已知:PX (x)
1
e
212
,P( y | x)
2 1
PY ( y) PX (x)P( y | x)dx
x 0x
同理 F( y | xi ) P(Y yj | X xi )
yj y
X Y y1 y2 y3..........yn........ pi
x1
p11 p12 p13 .........p1n ........ p1
x2
p21 p22 p23 .........p2n ........ p2
(1
y)2
0
其它
0
y x 1 其它
当 0 x 1 时,
PY|X ( y | x)
P(x, y) PX (x)
24(1 x) y 12x2 (1 x)
0
0 yx 其它
2y
x
2
0
0 yx 其它
例3.5.6设(X,Y)在G={(x, y) | x2 y2 1上均匀分布,求给定
Y=y 的条件下,X的条件分布密度 P(x | y) ?
1
相关文档
最新文档