高考理科数学一轮复习指数与指数函数专题复习题
新高考数学一轮复习考点知识专题讲解与练习 11 指数与指数函数

新高考数学一轮复习考点知识专题讲解与练习考点知识总结11指数与指数函数高考概览高考在本考点的常考题型为选择题,分值为5分,中等难度考纲研读1.了解指数函数模型的实际背景2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点4.体会指数函数是一类重要的函数模型一、基础小题1.设2x=8y+1,9y=3x-9,则x+y的值为()A.18 B.21 C.24 D.27答案 D解析因为2x=8y+1=23(y+1),所以x=3y+3,因为9y=3x-9=32y,所以x-9=2y,解得x=21,y=6,所以x+y=27.2.化简(a>0,b>0)的结果是()A.ba B.ab C.a2b D.ab答案 D解析3.函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案 D解析由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.故选D.4.已知a=(2)43,b=225,c=913,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b答案 A解析5.函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是()A.f(b x)≤f(c x) B.f(b x)≥f(c x)C.f(b x)>f(c x) D.与x有关,不确定答案 A解析∵f(x+1)=f(1-x),∴f(x)图象的对称轴为直线x=1,由此得b=2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).故选A.6.已知x∈(0,+∞)时,不等式9x-m·3x+m+1>0恒成立,则m的取值范围是() A.(2-22,2+22) B.(-∞,2)C.(-∞,2+22) D.[2+22,+∞)答案 C解析令t=3x(t>1),则由已知得函数f(t)=t2-mt+m+1的图象在t∈(1,+∞)上恒在x轴的上方,则对于方程f(t)=0,有Δ=(-m)2-4(m+1)<0或⎩⎪⎨⎪⎧Δ≥0,m2≤1,f (1)=1-m +m +1≥0,解得2-22<m <2+22或m ≤2-22,所以m <2+2 2.故选C. 7.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .1x 2+1>1y 2+1B .ln(x 2+1)>ln (y 2+1)C .sin x >sin yD .x 3>y 3 答案 D解析 因为实数x ,y 满足a x <a y (0<a <1),所以x >y ,根据函数y =x 2的对称性和单调性,可知x 2,y 2的大小不确定,故A ,B 中的不等式不恒成立;根据正弦函数的单调性,可知C 中的不等式也不恒成立;由于函数f (x )=x 3在R 上单调递增,所以x 3>y 3,所以D 中的不等式恒成立.故选D.8.(多选)设函数f (x )=2x ,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ) A .f (x 1+x 2)=f (x 1)·f (x 2) B .f (x 1·x 2)=f (x 1)+f (x 2) C .f (x 1)-f (x 2)x 1-x 2>0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2答案 ACD 解析9.(多选)已知函数f (x )=e x -1-e -x +1,则下列说法正确的是( ) A .函数f (x )的最小正周期是1 B .函数f (x )是单调递增函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 答案 BD解析 函数f (x )=e x -1-e -x +1,即f (x )=e x -1-1e x -1,可令t =e x -1,即有y =t -1t ,由y =t -1t 在t >0时单调递增,t =e x -1在R 上单调递增,可得f (x )在R 上为增函数,则A 错误,B 正确;由f (2-x )=e 1-x -e x -1,可得f (x )+f (2-x )=0,即有f (x )的图象关于点(1,0)对称,则C 错误,D 正确.故选BD.10.(多选)已知函数f (x )=πx -π-x 2,g (x )=πx +π-x2,则f (x ),g (x )满足( )A .f (-x )+g (-x )=g (x )-f (x )B .f (-2)<f (3)C .f (x )-g (x )=π-xD .f (2x )=2f (x )g (x ) 答案 ABD解析 f (-x )=π-x -πx 2=-f (x ),g (-x )=πx +π-x2=g (x ),所以f (-x )+g (-x )=g (x )-f (x ),A 正确;因为函数f (x )为增函数,所以f (-2)<f (3),B 正确;f (x )-g (x )=πx -π-x2-πx +π-x 2=-2π-x 2=-π-x,C 不正确;f (2x )=π2x -π-2x 2=2·πx -π-x 2·πx +π-x2=2f (x )g (x ),D 正确.11.求值:0.064-13-⎝ ⎛⎭⎪⎫-590+[(-2)3]-43+16-0.75+0.0112=________. 答案 14380解析 原式=0.4-1-1+(-2)-4+2-3+0.1=104-1+116+18+110=14380.12.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.答案 e解析 由题意得,f (x )=⎩⎨⎧e |x |,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e |x |=e x ≥e(当x =1时,取等号);当x <1时,f (x )=e |x -2|=e 2-x >e.故f (x )的最小值为f (1)=e.二、高考小题13.(2022·天津高考)设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案 D解析 因为a =30.7>1,b =⎝ ⎛⎭⎪⎫13-0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1,所以c <1<a <b .故选D.14.(2022·全国Ⅲ卷)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( )A .60B .63C .66D .69 答案 C解析 因为I (t )=K1+e -0.23(t -53),所以I (t *)=K 1+e -0.23(t *-53)=0.95K ,则e0.23(t *-53)=19,所以0.23(t *-53)=ln 19≈3,解得t *≈30.23+53≈66.故选C.15.(2022·北京高考)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A.(-1,1)B .(-∞,-1)∪(1,+∞)C .(0,1)D .(-∞,0)∪(1,+∞) 答案 D解析 因为f (x )=2x -x -1,所以f (x )>0等价于2x >x +1,在同一直角坐标系中作出y =2x 和y =x +1的图象如图:两函数图象的交点坐标为(0,1),(1,2),所以不等式2x >x +1的解集为(-∞,0)∪(1,+∞).所以不等式f (x )>0的解集为(-∞,0)∪(1,+∞).故选D.16.(2022·上海高考)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝ ⎛⎭⎪⎫q ,-15.若2p +q =36pq ,则a =________. 答案 6解析 由已知条件知f (p )=65,f (q )=-15, 所以⎩⎪⎨⎪⎧2p 2p +ap =65,①2q 2q +aq =-15, ②①+②,得2p (2q +aq )+2q (2p +ap )(2p +ap )(2q +aq )=1,整理得2p +q =a 2pq ,又2p +q =36pq , ∴36pq =a 2pq ,又pq ≠0,∴a 2=36,∴a =6或a =-6,又a >0,∴a =6. 三、模拟小题17.(2022·云南曲靖陆良县联办高级中学模拟)函数y = 1-⎝ ⎛⎭⎪⎫12x的定义域是( )A .(0,+∞)B .(-∞,0)C .[0,+∞)D .(-∞,0] 答案 C解析 要使函数有意义,需满足1-⎝ ⎛⎭⎪⎫12x ≥0,即⎝ ⎛⎭⎪⎫12x ≤1=⎝ ⎛⎭⎪⎫120,解得x ≥0,因此,函数y =1-⎝ ⎛⎭⎪⎫12x的定义域为[0,+∞).故选C. 18.(2022·湖北武汉高三开学考试)对于函数f (x ),若在定义域内存在实数x 0满足f (-x 0)=-f (x 0),则称函数f (x )为“倒戈函数”.设f (x )=3x +m -1(m ∈R ,m ≠0)是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-23,0B .⎣⎢⎡⎦⎥⎤-23,-13C .⎣⎢⎡⎦⎥⎤-23,0 D .(-∞,0)答案 A解析 ∵f (x )=3x +m -1是定义在[-1,1]上的“倒戈函数”,存在x 0∈[-1,1]满足f (-x 0)=-f (x 0),∴3-x 0+m -1=-3 x 0-m +1,∴2m =-3-x 0-3 x 0+2,构造函数y =-3-x 0-3 x 0+2,x 0∈[-1,1],令t =3x 0,t ∈⎣⎢⎡⎦⎥⎤13,3,y =-1t -t +2=2-⎝ ⎛⎭⎪⎫t +1t 在⎣⎢⎡⎦⎥⎤13,1上单调递增,在(1,3]上单调递减,∴t =1取得最大值0,t =13或t =3取得最小值-43,y ∈⎣⎢⎡⎦⎥⎤-43,0,∴-43≤2m <0,∴-23≤m <0.故选A. 19.(多选)(2022·山东日照二模)若实数m ,n 满足5m -4n =5n -4m ,则下列关系式中可能成立的是( )A .m =nB .1<m <nC .0<m <n <1D .n <m <0 答案 ACD解析 由题意,实数m ,n 满足5m -4n =5n -4m ,可化为4m +5m =5n +4n ,设y =f (x )=4x +5x ,y =g (x )=5x +4x ,由初等函数的性质,可得f (x ),g (x )都是单调递增函数,画出函数f (x ),g (x )的图象,如图所示,作直线y =t 0,当t 0<1时,n <m <0成立;当t 0=1或t 0=9时,m =n 成立;当1<t 0<9时,0<m <n <1成立;当t 0>9时,1<n <m 成立.综上,可知可能成立的为A ,C ,D.20.(多选)(2022·江苏淮安高三第一学期五校联考)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如:[-3.5]=-4,[2.1]=2.已知函数f (x )=e x 1+e x -12,则关于函数g (x )=[f (x )]的叙述中正确的是( )A .g (x )是偶函数B .f (x )是奇函数C .f (x )在R 上是增函数D .g (x )的值域是{-1,0,1} 答案 BC解析 ∵g (1)=[f (1)]=⎣⎢⎡⎦⎥⎤e1+e -12=0,g (-1)=[f (-1)]=⎣⎢⎡⎦⎥⎤1e1+1e -12=⎣⎢⎡⎦⎥⎤1e +1-12=-1,∴g (1)≠g (-1),则g (x )不是偶函数,故A 错误;∵f (x )=e x 1+e x -12的定义域为R ,f (-x )+f (x )=e -x1+e -x -12+e x 1+e x -12=1e x1+1e x+e x 1+e x -1=11+e x +e x1+e x -1=0,∴f (x )为奇函数,故B 正确;∵f (x )=e x 1+e x -12=1+e x-11+e x -12=12-11+e x ,又e x在R 上单调递增,∴f (x )=12-11+e x 在R 上是增函数,故C 正确;∵e x >0,∴1+e x >1,则0<11+e x<1,可得-12<12-11+e x <12,即-12<f (x )<12.∴g (x )=[f (x )]∈{-1,0},故D 错误.故选BC. 21.(2022·南阳模拟)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则a =________,实数m 的最小值为________.答案 1 1解析 因为f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称,所以a =1.函数f (x )=2|x -1|的图象如图所示.因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.22.(2022·福建漳州高三阶段考试)函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a x (a >1).若对任意的x ∈[0,2t +1],均有f (x +t )≥[f (x )]3,则实数t 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤-12,-49解析 ∵f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a x (a >1),∴f (x )=a |x |(a >1),则[f (x )]3=(a |x |)3=a |3x |=f (3x ),则f (x +t )≥[f (x )]3等价于f (x +t )≥f (3x ),当x ≥0时f (x )为增函数,则|x +t |≥|3x |,即8x 2-2tx -t 2≤0对任意x ∈[0,2t +1]恒成立,设g (x )=8x 2-2tx -t 2,则⎩⎨⎧g (0)≤0g (2t +1)≤0⇔⎩⎨⎧-t 2≤0,27t 2+30t +8≤0,解得-23≤t ≤-49,又2t +1>0,∴-12<t ≤-49.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·黑龙江鹤岗一中期末)函数f(x)=2x-a2x是奇函数.(1)求f(x)的解析式;(2)当x∈(0,+∞)时,f(x)>m·2-x+4恒成立,求m的取值范围.解(1)∵函数f(x)=2x-a2x是奇函数,∴f(-x)=2-x-a2-x =-a·2x+12x=-2x+a2x=-f(x),故a=1,故f(x)=2x-12x.(2)当x∈(0,+∞)时,f(x)>m·2-x+4恒成立,即m+1<(2x)2-4·2x在x∈(0,+∞)上恒成立,令t=2x,t>1,h(t)=t2-4t=(t-2)2-4(t>1),显然h(t)在(1,+∞)上的最小值是h(2)=-4,故m +1<-4, 解得m <-5.故m 的取值范围为(-∞,-5).2.(2022·湖北襄阳高三阶段考试)已知函数f (x )=a |x +b |(a >0,a ≠1,b ∈R ). (1)若f (x )为偶函数,求实数b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求实数a ,b 应满足的条件. 解 (1)因为f (x )为偶函数,所以对任意的x ∈R ,都有f (-x )=f (x ), 即a |x +b |=a |-x +b |,|x +b |=|-x +b |, 解得实数b =0.(2)记h (x )=|x +b |=⎩⎨⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是增函数, 所以-b ≤2,即b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数,故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.所以f (x )在区间[2,+∞)上是增函数时,实数a ,b 应满足的条件为a >1且b ≥-2. 3.(2022·宁夏银川一中期末)已知定义在R 上的奇函数f (x ),在x ∈(0,1)时,f (x )=2x4x +1且f (-1)=f (1).(1)求f (x )在x ∈[-1,1]上的解析式; (2)证明:当x ∈(0,1)时,f (x )<12;(3)若x ∈(0,1),常数λ∈⎝ ⎛⎭⎪⎫2,52,解关于x 的不等式f (x )>1λ.解 (1)∵f (x )是R 上的奇函数且x ∈(0,1)时,f (x )=2x4x +1,∴f (0)=0,当x ∈(-1,0)时,f (x )=-f (-x )=-2-x 4-x +1=-2x4x +1,又f (-1)=-f (1),f (-1)=f (1), ∴f (-1)=f (1)=0.综上所述,当x ∈[-1,1]时,f (x )=⎩⎪⎨⎪⎧-2x 4x +1,x ∈(-1,0),2x 4x+1,x ∈(0,1),0,x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x 4x +1=⎝ ⎛⎭⎪⎫2x +12x -1,又2x +12x ≥22x ·12x =2,当且仅当2x =12x ,即x =0时取等号.∵x ∈(0,1),∴2x +12x >2,∴f (x )<12. (3)当λ∈⎝ ⎛⎭⎪⎫2,52时,1λ∈⎝ ⎛⎭⎪⎫25,12,f (x )>1λ,即4x -λ·2x +1<0,设t =2x ∈(1,2),不等式变为t 2-λt +1<0,∵λ∈⎝ ⎛⎭⎪⎫2,52,∴Δ=λ2-4>0, ∴λ-λ2-42<t <λ+λ2-42.令g (λ)=λ-λ2-42,λ∈⎝ ⎛⎭⎪⎫2,52,g ′(λ)=λ2-4-λ2λ2-4, 又λ2-4<λ,∴g ′(λ)<0, ∴g (λ)在⎝ ⎛⎭⎪⎫2,52上单调递减,∴g ⎝ ⎛⎭⎪⎫52<g (λ)<g (2),即12<λ-λ2-42<1.令h (λ)=λ+λ2-42,h (λ)在⎝ ⎛⎭⎪⎫2,52上单调递增, ∴h (2)<h (λ)<h ⎝ ⎛⎭⎪⎫52,即1<λ+λ2-42<2,∴1<t <λ+λ2-42,即0<x <log 2λ+λ2-42.综上可知,不等式f (x )>1λ的解集是⎝ ⎛⎭⎪⎫0,log 2λ+λ2-42. 4.(2022·山东枣庄高三模拟)已知函数f (x )=e x +a e -x ,x ∈R . (1)当a =1时,证明:f (x )为偶函数;(2)若f (x )在[0,+∞)上单调递增,求实数a 的取值范围;(3)若a =1,求实数m 的取值范围,使m [f (2x )+2]≥f (x )+1在R 上恒成立. 解 (1)证明:当a =1时,f (x )=e x +e -x ,定义域(-∞,+∞)关于原点对称,而f (-x )=e -x +e x =f (x ),所以f (x )为偶函数.(2)设x 1,x 2∈[0,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=e x 1+a e -x 1-(e x 2+a e -x 2) =(e x 1-e x 2)(e x 1+x 2-a )e x 1+x 2.因为x 1<x 2,函数y =e x 为增函数, 所以e x 1<e x 2,则e x 1-e x 2<0,又因为f (x )在[0,+∞)上单调递增, 所以f (x 1)<f (x 2),故f (x 1)-f (x 2)<0, 所以e x 1+x 2-a >0恒成立,即a <e x 1+x 2对任意的0≤x 1<x 2恒成立, 所以a ≤1.故实数a 的取值范围为(-∞,1].(3)由(1)(2)知,函数f (x )=e x +e -x 在(-∞,0]上单调递减,在[0,+∞)上单调递增,所以其最小值为f (0)=2,且f (2x )=e 2x +e -2x =(e x +e -x )2-2,设t =e x+e -x,则t ∈[2,+∞),1t ∈⎝ ⎛⎦⎥⎤0,12, 则不等式m [f (2x )+2]≥f (x )+1恒成立, 等价于m ·t 2≥t +1,即m ≥t +1t 2恒成立, 而t +1t 2=1t 2+1t =⎝ ⎛⎭⎪⎫1t +122-14,当且仅当1t =12,即t =2时t +1t 2取得最大值34,故m ≥34.因此实数m 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。
2020年高考理科数学一轮总复习:《指数与指数函数》

2020年高考理科数学一轮总复习:《指数与指数函数》[基础题组练]1.函数f (x )=1-e |x |的图象大致是( )解析:选A.将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是 (-∞,0],只有A 满足上述两个性质.2.设2x =8y +1,9y =3x -9,则x +y 的值为( )A .18B .21C .24D .27解析:选D.因为2x =8y +1=23(y+1),所以x =3y +3,因为9y =3x -9=32y ,所以x -9=2y , 解得x =21,y =6,所以x +y =27. 3.已知a =(2)43,b =225,c =913,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A.a =(2)43=212×43=223,b =225,c =913=323,由2<3得a <c ,由23>25,得a >b ,故c >a >b .故选A. 4.设x >0,且1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b解析:选C.因为1<b x ,所以b 0<b x , 因为x >0,所以b >1, 因为b x<a x,所以⎝⎛⎭⎫a b x >1,因为x >0,所以ab >1,所以a >b ,所以1<b <a .故选C.5.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析:选C.易知f (0)=0,当x >0时,f (x )=1-2-x ,-f (x )=2-x -1,此时-x <0,则f (-x )=2-x -1=-f (x );当x <0时,f (x )=2x -1,-f (x )=1-2x ,此时-x >0,则f (-x )=1-2-(-x )=1-2x =-f (x ).即函数f (x )是奇函数,且单调递增,故选C. 6.已知实数a ,b 满足等式⎝⎛⎭⎫12a=⎝⎛⎭⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个解析:选B.函数y 1=⎝⎛⎭⎫12x与y 2=⎝⎛⎭⎫13x的图象如图所示.由⎝⎛⎭⎫12a=⎝⎛⎭⎫13b得,a <b <0或0<b <a 或a =b =0. 故①②⑤可能成立,③④不可能成立.7.函数f (x )=a x +b -1(其中0<a <1且0<b <1)的图象一定不经过第________象限. 解析:由0<a <1可得函数y =a x 的图象单调递减,且过第一、二象限, 因为0<b <1,所以-1<b -1<0, 所以0<1-b <1,y =a x 的图象向下平移1-b 个单位即可得到y =a x +b -1的图象,所以y =a x +b -1的图象一定在第一、二、四象限,一定不经过第三象限.答案:三8.若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.解析:由f (1)=19得a 2=19.又a >0, 所以a =13,因此f (x )=⎝⎛⎭⎫13|2x -4|.因为g (x )=|2x -4|在[2,+∞)上单调递增, 所以f (x )的单调递减区间是[2,+∞). 答案:[2,+∞)9.不等式⎝⎛⎭⎫12x 2+ax <⎝⎛⎭⎫122x +a -2恒成立,则a 的取值范围是________. 解析:由题意,y =⎝⎛⎭⎫12x是减函数, 因为⎝⎛⎭⎫12x 2+ax <⎝⎛⎭⎫122x +a -2恒成立, 所以x 2+ax >2x +a -2恒成立, 所以x 2+(a -2)x -a +2>0恒成立, 所以Δ=(a -2)2-4(-a +2)<0, 即(a -2)(a -2+4)<0, 即(a -2)(a +2)<0,故有-2<a <2,即a 的取值范围是(-2,2). 答案:(-2,2)10.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.解析:由题意得,f (x )=⎩⎪⎨⎪⎧e |x |,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e |x |=e x ≥e(当x =1时,取等号); 当x <1时,f (x )=e |x -2|=e 2-x >e.故f (x )的最小值为f (1)=e. 答案:e11.设f (x )=x (1-2x )1+2x .(1)判断函数f (x )的奇偶性;(2)讨论函数f (x )在区间(0,+∞)上的单调性. 解:(1)根据题意,f (x )=x (1-2x )1+2x,则f (-x )=(-x )(1-2-x )1+2-x =(-x )(2x -1)2x +1=x (1-2x )1+2x=f (x ), 所以函数f (x )为偶函数.(2)因为f (x )=x (1-2x )1+2x=-x +2x2x +1, 所以f ′(x )=-1+2(2x +1)-2x (2x ln 2)(2x +1)2=-1+22x +1-2x (2x ln 2)(2x +1)2,因为x >0,所以2x +1>2, 所以22x +1<1,所以-1+22x +1<0,所以f ′(x )<0,故函数f (x )在区间(0,+∞)上单调递减. 12.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. 解:(1)当a =1时,f (x )=2·4x -2x -1 =2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈⎣⎡⎦⎤18,1. 故y =2t 2-t -1=2⎝⎛⎭⎫t -142-98, t ∈⎣⎡⎦⎤18,1, 故值域为⎣⎡⎦⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解, 设2x =m >0,等价于方程2am 2-m -1=0在(0,+∞)上有解, 记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立. 当a >0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正,综上得a >0.[综合题组练]1.(应用型)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <2解析:选D.作出函数f (x )=|2x -1|的图象,如图,因为a <b <c 且f (a )>f (c )>f (b ), 结合图象知,0<f (a )<1,a <0,c >0, 所以0<2a <1.所以f (a )=|2a -1|=1-2a <1, 所以f (c )<1,所以0<c <1.所以1<2c <2,所以f (c )=|2c -1|=2c -1, 又因为f (a )>f (c ), 所以1-2a >2c -1, 所以2a +2c <2,故选D.2.(创新型)设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1解析:选D.根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.3.设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________.解:令t =a x (a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0). ①当0<a <1,x ∈[-1,1]时,t =a x ∈⎣⎡⎦⎤a ,1a , 此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数.所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14.所以⎝⎛⎭⎫1a +12=16,解得a =-15(舍去)或a =13. ②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =13或3.答案:13或34.(应用型)已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 解:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0, 即-1+b2+a=0,解得b =1, 所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13.故k 的取值范围为⎝⎛⎭⎫-∞,-13.。
2025高考数学一轮复习-第10讲-指数与指数函数-专项训练【含答案】

2025高考数学一轮复习-第10讲-指数与指数函数-专项训练1.已知集合M={x|2|x-2|≥4},N={x|x>4或x≤-2},则M∩N=()A.{x|x≥4或x≤0}B.{x|x>4或x≤-2}C.{x|x>4或x<-2}D.{x|x≥-2}2.已知函数y=f(x)是偶函数,当x∈(0,+∞)时,y=a x(0<a<1),则该函数在(-∞,0)上的图象大致是()A BC D3.已知函数f(x)=a x-2+1(a>0,a≠1)的图象恒过一点P,且点P在直线ax+by-1=0(ab>0)上,则1 1 的最小值为()A.4B.6C.7D.82-3 1的单调递减区间为()4.函数A.(1,+∞)B.C.(-∞,1) ∞5.(多选题)已知10a=2,102b=5,则下列结论正确的是()A.a+2b=1B.ab<18C.10a+b>4D.a>b2 4 3,则()6.(多选题)已知函数f(x)A.函数f(x)的定义域为RB.函数f(x)的值域为(0,2]C.函数f(x)在[-2,+∞)上单调递增D.函数f(x)在[-2,+∞)上单调递减2-2 -3>1的解集是.7.8.已知函数f(x)=|3x-3|+3,若f(a)=f(b)(a≠b),则a+b的取值范围是.9.已知函数g(x)=4 - 2 是奇函数,f(x)=lg(10x+1)+bx是偶函数.(1)求a和b的值;(2)设函数h(x)=f(x)+12x,若存在x∈[0,1],使不等式g(x)>h(lg(10m+9))成立,求实数m的取值范围.10.若直线y=3a与函数y=|a x-1|(a>0,且a≠1)的图象有两个公共点,则a的值可以是()A.2B.13C.14D.2311.已知函数f(x)=e-( -1)2.记则()A.b>c>aB.b>a>cC.c>b>aD.c>a>b2 2 3的值域是0则f(x)的单调递增区间是()12.若函数f(x)A.(-∞,-1]B.[1,+∞)C.(-∞,2]D.[2,+∞)13.设f(x)是定义在R上的偶函数,且当x≤0时,f(x)=2-x,若对任意的x∈[m,m+1],不等式f(x)≥[f(x-m)]2恒成立,则正数m的取值范围为()A.m≥1B.m>1C.0<m<1D.0<m≤114.函数-+17的单调递增区间为.15.若e x-e y=e,x,y∈R,则2x-y的最小值为.16.定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有-M≤f(x)≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=4x+a·2x-2.(1)当a=-2时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由﹔(2)若函数f(x)在(-∞,0)上是以2为上界的有界函数,求实数a的取值范围.17.已知函数f(x)=12 2 24 -4+1+1 -1,则不等式f(2x+3)>f(x2)的解集为()A.(-2,1)∪(1,+∞)B.(-1,1)∪(3,+∞)C.-12,1∪(3,+∞)D.(-3,1)∪(3,+∞)参考答案1.B2.B3.D4.D5.ABC6.ABD7.(-1,3)8.(-∞,2)9.解(1)∵函数g(x)=4 - 2 是奇函数,∴g(0)=0,解得a=1,则g(x)=4 -12 ,经检验,g(x)是奇函数.又f(x)=lg(10x+1)+bx是偶函数,∴f(-1)=f(1),解得b=-12,则f(x)=lg(10x+1)-12x,经检验,f(x)是偶函数,∴a=1,b=-12(2)h(x)=lg(10x+1),h(lg(10m+9))=lg[10lg(10m+9)+1]=lg(10m+10),则由已知得,存在x∈(0,1],使不等式g(x)>lg(10m+10)成立,∵g(x)=4 -12 =2x-12 ,易知g(x)在(0,1]上单调递增,∴g(x)max=g(1)=32,∴lg(10m+10)<32=lg1032=lg1010,∴10m+10<1010,∴m<10-1,又10 9>0,10 10>0,解得m>-910,∴-910<m<10-1.故m的取值范围是-910,10-110.C11.A12.A13.A14.[-2,+∞)15.1+2ln216.解(1)当a=-2时,f(x)=4x-2×2x-2=(2x-1)2-3.令2x=t,由x∈(0,+∞),可得t∈(1,+∞).令g(t)=(t-1)2-3,有g(t)>-3,可得函数f(x)的值域为(-3,+∞),故函数f(x)在(-∞,0)上不是有界函数.(2)由题意,当x∈(-∞,0)时,-2≤4x+a·2x-2≤2,可化为0≤4x+a·2x≤4,即0≤2x(2x+a)≤4,必有a+2x≥0且a≤42 -2x.令2x=k,由x∈(-∞,0),可得k∈(0,1).由a+2x≥0恒成立,可得a≥0.令h(k)=4 -k(0<k<1),可知函数h(k)是减函数,有h(k)>4-1=3.由a≤42 -2x恒成立,可得a≤3.故若函数f(x)在(-∞,0)上是以2为上界的有界函数,则实数a的取值范围为[0,3].17.B。
2023年一轮复习《指数函数》提升训练(含解析)

2023年一轮复习《指数函数》提升训练一、单选题(本大题共12小题,共60分)1.(5分)函数f(x)=ln(x−1x)的图象是()A. B.C. D.2.(5分)已知函数f(x)=a x+b(a>0且a≠1)的定义域和值域都是[−1,0],则a+ b=( )A. −12B. −32C. −52D. −12或−523.(5分)已知A={ x|−2<x<1},B={ x|2x>1},则A∩(∁R B)为()A. (−2,1)B. (−∞,1)C. (0,1)D. (−2,0]4.(5分)已知全集U=R,集合A={x||x|⩽1,x∈R},集合B={x|2x⩾1,x∈R},则集合A∪B=()A. (−∞,1]B. [0,1]C. [−1,0]D. [−1,+∞)5.(5分)函数y=ln(5−x)+√2x−8的定义域是()A. [2,3)B. [3,5)C. (−∞,3)D. (2,3)6.(5分)设集合A={ x|e x>1},B={ x||x|>2},则A∩B=()A. (−2,0)B. (1,2)C. (2,+∞)D. (1,+∞)7.(5分)已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5−b,P=(17)c,则M、N、P的大小关系为()A. M>N>PB. P<M<NC. N>P>MD. P>N>M8.(5分)若2x+5y⩽2−y+5−x,则有()A. x+y⩾0B. x+y⩽0C. x−y⩽0D. x−y⩾09.(5分)设集合A ={ x |2x ⩾4),集合B ={ x |−1⩽x ⩽5),则A ∩B =( )A. { x |−1⩽x ⩽2}B. { x |2⩽x ⩽5}C. { x |x ⩾−1}D. { x |x ⩾2}10.(5分)函数y =3|log 3x|的图象是( )A. B. C. D.11.(5分)定义在R 上的奇函数f(x)满足f(x +1)=f(−x),当x ∈(0,12]时,f(x)=log 12(1−x),则f(x)在区间(1,32)内是( )A. 减函数且f(x)>0B. 减函数且f(x)<0C. 增函数且f(x)>0D. 增函数且f(x)<012.(5分)已知a =log 23+log 2√3,b =log 29−log 2√3,c =log 32,则a ,b ,c 的大小关系是( )A. a =b <cB. a =b >cC. a <b <cD. a >b >c二 、填空题(本大题共4小题,共20分)13.(5分)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为______. 14.(5分)已知函数f(x)=ln (√1+x 2−x)+2,则f(≶3)+f(≶13)= ______ .15.(5分)已知存在实数x ,y ∈(0,1),使得不等式1x +11−x <2y 2−y+t 成立,则实数t的取值范围为__________.16.(5分)设f(x)是R 上的偶函数,且在[0,+∞)上递减,若f(12)=0,若f(log 14x)>0,那么x 的取值范围是 ______ .三 、解答题(本大题共6小题,共72分)17.(12分)已知函数f(x)=3x ,且f(a +2)=18,g(x)=3ax −4x 的定义域为[-1,1].(1)求3a 的值及函数g(x)的解析式; (2)试判断函数g(x)的单调性;(3)若方程g(x)=m 有解,求实数m 的取值范围. 18.(12分)设a ∈R ,函数f(x)=2x −a 2x +a.(1)若a >0,判断并证明函数f(x)的单调性;(2)若a ≠0,函数f(x)在区间[m,n ](m <n)上的取值范围是[k2m ,k2n ](k ∈R),求ka 的范围.19.(12分)已知函数f(x)=√−x 2+5x −6的定义域为A ,集合B={x |2⩽2x ⩽16},非空集合C={x |m +1⩽x ⩽2m −1},全集为实数集R. (1)求集合A ∩B 和∁R B;(2)若A ∪C =A ,求实数m 取值的集合.20.(12分)f(x)=a⋅4x−a⋅2x+1+1−b,a>0在区间[−1,2]上最大值9,最小值0.(1)求a,b的值(2)求不等式f(x)⩾1的解集.21.(12分)已知奇函数f(x)=12x−1+a.(1)求f(x)的定义域;(2)求a的值;(3)证明x>0时,f(x)>0.22.(12分)已知函数f(x)=2xa +a2x−1(a>0)是R上的偶函数.(1)求a的值;(2)解方程f(x)=134.答案和解析1.【答案】B;【解析】这道题主要考查了对数函数的定义域和复合函数的单调性,属于基础题.首先根据对数函数的性质,求出函数的定义域,再很据复合函数的单调性求出f(x)的单调性,问题得以解决.解:因为x−1x 1x>0,解得x>1或−1<x<0,所以函数f(x)=ln(x−1x 1x)的定义域为:(−1,0)∪(1,+∞).所以选项A、D不正确.当x∈(−1,0)时,g(x)=x−1x 1x是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x−1x 1x)是增函数.故选B.2.【答案】B;【解析】当a>1时,f(x)单调递增,有f(−1)=1a+b=−1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(−1)=1a+b=0,f(0)=1+b=−1,解得a=12,b=−2,所以a+b=−32.故选B.3.【答案】D;【解析】该题考查了集合的定义与运算问题,是基础题.解不等式得集合B,根据交集与补集的定义写出A∩(∁R B)即可.解:A={ x|−2<x<1},B={ x|2x>1}={ x|x>0},∴∁R B={ x|x⩽0},∴A∩(∁R B)=(−2,0].故选:D .4.【答案】D;【解析】【试题解析】此题主要考查集合的并集及其运算,考查指数不等式的求解,属于基础题. 先分别求出集合A 、B ,再根据集合的并集定义求解即可.解:集合A =\left{ x ||x|⩽1,x ∈R }=\left{ x |−1⩽x ⩽1,x ∈R }, 集合B =\left{ x |2x ⩾1,x ∈R }=\left{ x |x ⩾0,x ∈R }, 所以A ∪B =[−1,+∞). 故选D.5.【答案】B; 【解析】此题主要考查了函数的定义域及其求法,属基础题. 根据对数的真数大于0,和偶次根式被开方非负列式解得.解:由{5−x >02x −8⩾0,解得:3⩽x <5,故选B.6.【答案】C; 【解析】此题主要考查交集的运算,属于基础题. 可求出集合A ,B ,然后进行交集的运算即可.解:A ={ x |x >0},B ={ x |x <−2或x >2}; ∴A ∩B =(2,+∞). 故选C.7.【答案】A;【解析】解:∵0<a <b <c <1, ∴1<2a <2,15<5−b <1,17<(17)c <1, 5−b =(15)b >(15)c >(17)c , 即M >N >P , 故选:A根据幂函数指数函数的性质进行比较即可.这道题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键8.【答案】B;【解析】此题主要考查指数幂的运算性质,函数的单调性,是中档题.由已知构造函数f(x)=2x−5−x,易知f(x)=2x−5−x在R上为增函数,利用单调性即可得解.解:由已知可得2x−5−x⩽2−y−5y,令f(x)=2x−5−x,易知f(x)=2x−5−x在R上为增函数,因为2x−5−x⩽2−y−5y,即2x−5−x⩽−(5y−2−y),所以f(x)⩽f(−y)所以x⩽−y,即x+y⩽0.故选B.9.【答案】B;【解析】此题主要考查集合的交集运算,属于基础题.化简A,由交集运算即可求解.解:由A={ x|2x⩾4}={ x|x⩾2},集合B={ x|−1⩽x⩽5},则A∩B={ x|2⩽x⩽5}.故选:B.10.【答案】B;x|>0,则y>1,【解析】解:当0<x<1,|log3x|⩾0,则y⩾1,当x⩾1时,|log3故选:B根据对数函数和指数函数的图象的性质即可判断.该题考查了函数图象的识别和对数函数和指数函数的性质,属于基础题.11.【答案】B;【解析】解;因为定义在R上的奇函数满足f(x+1)=f(−x),所以f(x+1)=−f(x),即f(x+2)=−f(x+1)=f(x),所以函数的周期是2,则f(x)在(1,32)上图象和在(−1,−12)上的图象相同, 设x ∈(−1,−12),则x +1∈(0,12), 又当x ∈(0,12]时,f(x)=log 12(1−x),所以f(x +1)=log 12(−x),由f(x +1)=f(−x)得,f(−x)=log 12(−x),所以f(x)=−f(−x)=−log 12(−x),由x ∈(−1,−12)得,f(x)=−log 12(−x)在(−1,−12)上是减函数,且f(x)<f(−1)=0,所以则f(x)在区间(1,32)内是减函数且f(x)<0, 故选:B .根据条件推出函数的周期性,利用函数的周期性得:f(x)在(1,32)上图象和在(−1,−12)上的图象相同,利用条件、奇偶性、对数函数单调性之间的关系即可得到结论. 此题主要考查函数奇偶性和单调性的应用,利用条件推出函数的周期性是解决本题的关键,综合考查函数性质的综合应用,考查了转化思想.12.【答案】B;【解析】解:∵a =log 23+log 2√3=log 23√3,b =lo g 29−lo g 2√3=lo g √3=lo g 23√3>1,∴a =b >1,又0<c =log 32<1, ∴a =b >c . 故选:B .利用对数的运算性质可求得a =log 23√3,b =log 23√3>1,而0<c =log 32<1,从而可得答案.该题考查不等式比较大小,掌握对数的运算性质既对数函数的性质是解决问题之关键,属于基础题.13.【答案】1; 【解析】该题考查了基本不等式、对数的运算法则和单调性,属于基础题. 利用基本不等式、对数的运算法则和单调性即可得出.解:∵实数x ,y >0,且x +2y =4,∴4⩾2√2xy ,化为xy ⩽2,当且仅当x =2y =2时取等号. 则log 2x +log 2y =log 2(xy )⩽log 22=1. 因此log 2x +log 2y 的最大值是1.故答案为:1.14.【答案】4;【解析】解:∵f(−x)+f(x)=ln[√1+x2+x][√1+x2−x]+4=ln1+4=4,∴f(≶3)+f(≶13)=f(≶3)+f(−≶3)=4.故答案为:4.利用f(−x)+f(x)=ln[√1+x2+x][√1+x2−x]+4=4,即可得出.该题考查了函数的奇偶性、对数的运算性质,属于基础题.15.【答案】(3,+∞);【解析】此题主要考查基本不等式的运用,不等式恒成立问题,属于中档题.求出1x +11−x的最小值为4,得到t>4−2y2−y,由0<y<1得到4−2y2−y>3,即可得到答案.解:∵1x +11−x=(x+1−x)(1x+11−x)=2+1−xx+x1−x⩾2+2√1−=4,当x=0.5时,显然等号成立,∴1x +11−x的最小值为4,∴只需存在实数y∈(0,1),使得2y2−y+t>4成立即可,即t>4−2y2−y,易知当0<y<1时,y²−y<0,∴4−2y2−y>3,∴t>3,∴实数t的取值范围为(3,+∞).故答案为:(3,+∞).16.【答案】(12,2);【解析】解:∵f(x)是R上的偶函数,∴f(|x|)=f(x),∴f(log14x)=f(|log14x|),又∵f(x)在[0,+∞)上递减,且f(12)=0,∴f(|log14x|)>0=f(12),∴|log14x|<12,∴−12<12log2x<12,∴−1<log2x<1,∴12<x<2,故答案为:(12,2).首先,根据偶函数的性质,得到f(log 14x)=f(|log 14x|),然后,根据函数的单调性得到∴−12<12log 2x <12,从而得到相应的范围.此题主要考查了函数的单调性和奇偶性、函数的单调性的应用,对数的运算等知识,属于中档题,本题解题关键是准确把握偶函数的性质.17.【答案】解:(1)f (a +2)=3a+2=32⋅3a =18,所以3a =2,所以g (x )=(3a )x −4x =2x −4x . (2)g (x )=2x −4x =−(2x )2+2x , 令2x =t ∈[12,2],所以g (x )=μ(t )=−t 2+t =−(t −12)2+14在t ∈[12,2]上单调递减, 又t =2x 为单调递增函数, 所以g (x )在x ∈[−1,1]上单调递减.(3)由(2)知g (x )=μ(t )=−t 2+t =−(t −12)2+14在t ∈[12,2]上单调递减, 所以g (x )∈[−2,14],即m ∈[−2,14].;【解析】(1)将a +2代入函数的解析式,根据指数的运算性质可得3a =2,再代入即可得g (x )的解析式;(2)令2x =t ∈[12,2],所以g (x )=μ(t )=−t 2+t =−(t −12)2+14,根据二次函数的性质可得μ(t )单调递减,t =2x 为单调递增函数,根据复合函数的单调性可得结果; (3)利用二次函数的性质求出g (x )的范围即可.18.【答案】解:(1)当a >0时,因为2x >0,所以2x +a >0 所以函数f(x)=2x −a 2x +a 的定义域为R , 结论:函数f(x)=2x −a 2x +a (a >0)是增函数.证明:设对任意的x 1,x 2∈R ,且x 1<x 2, 则:f(x 1)−f(x 2)=2x 1−a2x 1+a −2x 2−a2x 2+a , =(2x 1−a)(2x 2+a)−(2x 2−a)(2x 1+a)(2x 1+a)(2x 2+a),=2a (2x 1−2x 2)(2x 1+a)(2x 2+a),因为x 1<x 2,所以2x 2>2x 1,即2x 1−2x 2<0,又因为2x 1+a >0,2x 2+a >0,a >0,所以2a (2x 1−2x 2)(2x 1+a)(2x 2+a)<0, 所以f(x 1)<f(x 2),即证.(2)因为m <n , 所以2m <2n ,从而12m >12n . 又由[k 2m,k 2n]知,k2m<k 2n,所以k <0,因为a ≠0,所以a <0或a >0. ①当a >0时,由(1)知,函数f(x)=2x −a 2x +a是增函数.因为函数f(x)在区间[m,n] (m <n)上的取值范围是 [k 2m,k 2n](k ∈R),所以{f(m)=k2m ,f(n)=k 2n ,即: {2m −a2m +a =k2m2n −a 2n+a=k2n, 从而关于x 的方程2x −a 2x +a=k 2x有两个互异实根.令t =2x ,则t >0,所以方程t 2−(a +k)t −ak =0(k <0)有两个互异正根, 所以 \matrixLatexcasesFa+k2>0,a+k)^{2}+4ak>0,\\-ak>0\end{cases}从而:-3+2\sqrt{2}< \frac{k}{a}< 0.<br/>②$当a <0时,函数$f(x)=1-\frac{2a}{2^{x}+a}在区间(-\infty,\log_{2}(-a)),(\log_{2}(-a),+\infty)上均单调递减,<br/>若[m,n]⊆(\log_{2}(-a),+\infty),则f(x)>1,于是\frac{k}{2^{m}}>0$,这与k <0矛盾,故舍去$;<br/>若[m,n]\subseteq(-\infty,\log_{2}(-a)),则f(x)< 1,<br/>于是\left{ \begin{array}{l}f(m)=\frac{k}{{2}^{n}}\\ f(n)=\frac{k}{{2}^{m}}\end{array}\right.,\;\;\;\;\;即:\;\left{ \begin{array}{l}\frac{{2}^{m}-a}{{2}^{m}+a}=\frac{k}{{2}^{n}}\;\;\;\;➀\\ \frac{{2}^{n}-a}{{2}^{n}+a}=\frac{k}{{2}^{m}}\;\;\;\;\;②\end{array}\right.,.<br/>所以\left{ \begin{array}{ll}{2}^{n}({2}^{m}-a)=k({2}^{m}+a)\\ {2}^{m}({2}^{n}-a)=k({2}^{n}+a)\end{array}\right.,两式相减并整理得,(k-a)(2^{n}-2^{m})=0,<br/>又2^{m}< 2^{n},故2^{n}-2^{m}>0,从而k-a=0.$因为a <0,所以$\frac{k}{a}=1.<br/>综上,\frac{k}{a}的范围是(-3+2\sqrt{2},0)∪{ 1}.$;【解析】此题主要考查函数的单调性,函数定义域与值域以及指数函数的性质,属于难题.(1)利用函数单调性的定义求证即可;(2)依题意,函数f(x)在区间[m,n] (m <n)上的取值范围是[k 2m ,k 2n](k ∈R),分别讨论a的范围即可求解.19.【答案】解:(1)∵函数f(x)=√−x 2+5x −6的定义域为A , ∴\mathopA={x |−x 2+5x −6⩾又由2⩽2x ⩽16得B=[1,4].∴ A ∩B =[2,3],∁R B =(−∞,1)∪(4,+∞). (2)∵A ∪C =A. ∴C ⊆A则{&m +1⩾2 2m −1⩽3 ,即1⩽m ⩽2.又要使集合C={ x|m+1⩽x⩽2m−1}为非空集合,则必须m+1⩽2m−1即m⩾2,综上可得m=2,所以实数m的取值集合为{2}.;【解析】此题主要考查集合的运算以及集合中参数的取值范围问题.属于基础题.(1)首先求出集合A与集合B,再求交集、补集;(2)由题意可知C⊆A,因此可建立不等式组,即可解出实数m的取值集合.20.【答案】解:(1)f(x)=a•4x-a•2x+1+1-b,a>0,设t=2x(12≤t≤4),则g(t)=a t2-2at+1-b=a(t-1)2-a-b+1,当t=1时,取得最小值1-a-b,即有1-a-b=0,①又t=4时,取得最大值8a-b+1=9,②由①②解得a=1,b=0;(2)f(x)≥1,即为4x-2x+1+1≥1,即有2x(2x-2)≥0,由于2x>0,则2x≥2,解得x≥1,则解集为{x|x≥1}.;【解析】(1)可令t=2x(12⩽t⩽4),则g(t)=at2−2at+1−b=a(t−1)2−a−b+1,考虑对称轴和区间关系,可得t=1取得最小值,t=4取得最大值,解a,b的方程组,即可得到所求值;(2)由指数不等式的解法,结合指数函数的单调性,即可得到所求范围.该题考查指数函数的性质和运用,考查可化为二次函数的最值的求法,考查换元法的运用,以及不等式的解法,属于中档题.21.【答案】解:(1)∵2x-1≠0,即2x≠1,∴x≠0故f(x)的定义域是(-∞,0)∪(0,+∞)(2)解:∵f(x)是奇函数又∵f(−x)=12−x−1+a=2x1−2x+a∴f(x)+f(−x)=12x−1+a+2x1−2x+a=0∴a=12(3)证明:当x>0时,2x>1,∴2x-1>0∴12x−1+12>0,即x>0时,f(x)>0;【解析】(1)根据2x−1≠0,即2x≠1,求解.(2)根据奇函数的概念,f(x)+f(−x)=12x−1+a+2x1−2x+a=0,求解.(3)根据不等式的性质证明,结合指数函数的单调性.该题考查了函数的概念,性质,属于容易题.22.【答案】解:(1)∵f(x)为偶函数,∴f(−x)=f(x)恒成立,∴2xa +a2x=2−xa+a2−x恒成立,即(1a−a)(2x−2−x)=0恒成立,∴1a−a=0,解得a=±1,∵a>0,∴a=1.(2)由(1)知f(x)=2x+2−x−1=134,∴4⋅(2x)2−17⋅2x+4=0,解得2x=4或14,∴x=±2,所以原方程的解为x=±2.;【解析】【试题解析】此题主要考查了偶函数的定义,一元二次方程的解法,考查了计算能力,属于基础题.(1)根据f(x)为偶函数可得出f(−x)=f(x)恒成立,从而可得出(1a−a)(2x−2−x)=0恒成立,从而可求出a=1;(2)根据(1)即可得出4⋅(2x)2−17⋅2x+4=0,然后解出x的值即可.。
第05讲 指数与指数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第05讲指数与指数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:指数与指数幂的运算高频考点二:指数函数的概念高频考点三:指数函数的图象①判断指数型函数的图象;②根据指数型函数图象求参数③指数型函数图象过定点问题;④指数函数图象应用高频考点四:指数(型)函数定义域高频考点五:指数(型)函数的值域m n上的值域;②指数型复合函数值域①指数函数在区间[,]③根据指数函数值域(最值)求参数高频考点六:指数函数单调性①判断指数函数单调性;②由指数(型)函数单调性求参数③判断指数型复合函数单调性;④比较大小⑤根据指数函数单调性解不等式高频考点七:指数函数的最值①求已知指数型函数的值域②根据指数函数最值求参数③含参指数(型)函数最值第四部分:高考真题感悟第五部分:第05讲指数与指数函数(精练)1、根式的概念及性质(1)概念:叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:①n a =(n N *∈且1n >);②当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩ 2、分数指数幂①正数的正分数指数幂的意义是mna =0a >,,m n N *∈,且1n >);②正数的负分数指数幂的意义是m na-=(0a >,,m n N *∈,且1n >);③0的正分数指数幂等于0;0的负分数指数幂没有意义.3、指数幂的运算性质①(0,,)rsr sa a aa r s +=>∈R ;②()(0,,)r s rsa a a r s =>∈R ; ③()(0,0,)rr rab a b a b r =>>∈R .4、指数函数及其性质(1)指数函数的概念函数()xf x a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,函数的定义域是R .(2)指数函数()xf x a =的图象和性质定义域为R ,值域为(0,)+∞一、判断题1.(2021·江西·贵溪市实验中学高二阶段练习)函数()11x f x a -=+(0a >且1a ≠)的图象必过定点()1,2( )2.(2021·江西·贵溪市实验中学高二阶段练习)11121321a ba( ) 二、单选题1.(2022·宁夏·银川一中高二期末(文))函数()e 1x f x =+在[1,1]-的最大值是( ) A .eB .e 1-+C .e 1+D .e 1-2.(2022·江苏南通·高一期末)已知指数函数()x f x a -=(0a >,且1a ≠),且()()23f f ->-,则a 的取值范围( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0∞-3.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)-B .(1,0)C .(0,0)D .(0,1)-4.(2022·河北廊坊·高一期末)指数函数()()1xf x a =-在R 上单调递减,则实数a 的取值范围是( ) A .()2,1--B .()2,+∞C .(),2-∞-D .()1,25.(2022·北京·高三专题练习)若函数()21x y m m m =--⋅是指数函数,则m 等于( )A .1-或2B .1-C .2D .12高频考点一:指数与指数幂的运算1.(2022·广东肇庆·高一期末)设62m =,63n =,则222m n mn ++=( ) A .12B .1C .2D .32.(2022·上海杨浦·高一期末)设0a >,下列计算中正确的是( ) A .4334a a a ⋅= B .4334a a a ÷= C .4334a a ⎛⎫= ⎪⎝⎭D .4 334a a -⎛⎫= ⎪⎝⎭3.(2022·广东深圳·高一期末)下列根式与分数指数幂的互化正确的是( ) A .()12x -B .)340xx ->C 13y =D .()31420x x ⎤=<4.(2022·全国·高三专题练习)化简2112333324()3a b a b --⋅÷-的结果为( )A .-23ab B .-8a bC .-6a bD .-6ab高频考点二:指数函数的概念1.(2022·浙江·高三专题练习)函数()(0x f x a a =>,且a ≠1)的图象经过点13,27P ⎛⎫⎪⎝⎭,则f (-2)= ( )A .19B C .13D .92.(2022·黑龙江·嫩江市第一中学校高一期末)已知指数函数()2()253xf x a a a =-+在R 上单调递增,则a的值为( ) A .3B .2C .12D .323.(2022·全国·高一课时练习)函数()2xy a a =-是指数函数,则( ) A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠4.(2022·浙江·高三专题练习)若指数函数x y a =在[-1,1]上的最大值与最小值的差是1,则底数a 等于A B CD 高频考点三:指数函数的图象①判断指数型函数的图象1.(2022·上海市复兴高级中学高一阶段练习)函数3x y -=的大致图像是( )A .B .C .D .2.(2022·上海市进才中学高二阶段练习)函数(01)||xxa y a x =<<的图像的大致形状是( ) A . B .C .D .3.(2022·全国·高三专题练习)已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( ).A .B .C .D .4.(2022·全国·高三专题练习(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .②根据指数型函数图象求参数1.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >2.(2022·全国·高三专题练习)函数(0,1)x y a a a =>≠与b y x =的图象如图,则下列不等式一定成立的是( )A .0a b >B .0a b +>C .log 2a b >D .1b a >3.(2021·全国·高一专题练习)函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <4.(2021·全国·高一专题练习)若函数()x f x a b =-的图象如图所示,则( )A .1a >,1b >B .1a >,01b <<C .01a <<,1b >D .01a <<,01b <<③指数型函数图象过定点问题1.(2022·吉林·长春市第二中学高一期末)函数()21(0x f x a a +=->且1)a ≠的图象恒过定点( )A .(-2,0)B .(-1,0)C .(0,-1)D .(-1,-2)2.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+ B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =-3.(2022·河南焦作·高一期末)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-4.(2022·全国·高三专题练习)已知函数5()4x f x a +=+(0a >,1a ≠)恒过定点(,)M m n ,则函数()x g x m n =+的图像不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限④指数函数图象应用1.(2021·重庆市涪陵第二中学校高一阶段练习)函数1()(0,1)x f x a a a a=->≠的图象可能是( )A .B .C .D .2.(2021·全国·高一课时练习)函数()(0x f x a a =>,且1a ≠)与()g x x a =-+的图像大致是A .B .C .D .3.(2021·全国·高一课时练习)若1a >,10b -<<,则函数x y a b =+的图像一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限D .第一、二、四象限高频考点四:指数(型)函数定义域1.(2022·全国·高三专题练习)函数()f x = ) A .[)1,+∞B .1,2⎡⎫+∞⎪⎢⎣⎭C .(),1-∞-D .(),2-∞-2.(2022·全国·高三专题练习)函数()22f x x =-的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞3.(2021·江苏·高一专题练习)函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1D .a ≠14.(2021·广西河池·高一阶段练习)设函数()f x 2x f ⎛⎫ ⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,1高频考点五:指数(型)函数的值域①指数函数在区间[,]m n 上的值域1.(2022·全国·高一)当x ∈[-1,1]时,函数f (x )=3x -2的值域为________2.(2022·全国·高三专题练习)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.3.(2022·全国·高三专题练习)已知函数()2421x x f x a =⋅--.当1a =时,求函数()f x 在[]3,0x ∈-的值域;4.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax x g x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围.②指数型复合函数值域1.(2022·山西·临汾第一中学校高一期末)函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,22.(2022·湖南邵阳·高一期末)函数2212x y -⎛⎫= ⎪⎝⎭的值域为______.3.(2022·全国·高三专题练习)函数1()41(0)2xxf x x -⎛⎫=++≥ ⎪⎝⎭的值域是___________.4.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值.5.(2022·全国·高三专题练习)已知函数()24x x f x =-.(1)求()y f x =在[]1,1-上的值域;③根据指数函数值域(最值)求参数1.(2022·广东湛江·高一期末)已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=( ) A .32-B .1-C .1D .322.(2022·辽宁鞍山·高一期末)若函数()f x =的值域为[0,)+∞,则实数a 的取值范围是( )A .12⎧⎫⎨⎬⎩⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .[0,)+∞3.(2022·全国·高一)已知函数()(0xf x a a =>且1)a ≠在区间[]1,2上的最大值比最小值大2a ,求a 的值.4.(2022·湖南·高一期末)已知函数()245x xf x a a =+-.(1)求()f x 的值域;(2)当[]1,2x ∈-时,()f x 的最大值为7,求a 的值.5.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.高频考点六: 指数函数单调性①判断指数函数单调性1.(2022·广西南宁·高一期末)设函数()122xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在()0,+∞单调递增B .是偶函数,且在()0,+∞单调递减C .是奇函数,且在()0,+∞单调递增D .是奇函数,且在()0,+∞单调递减2.(2022·福建宁德·高一期末)已知()21x b f x a =-+是R 上的奇函数,且()113f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并根据定义证明.3.(2021·贵州·六盘水红桥学校高一阶段练习)若函数()(3)3(1)x f x k a b a =++->是指数函数 (1)求k ,b 的值;(2)求解不等式(27)(43)f x f x ->-4.(2021·全国·高一期末)设函数2()12xx f x a =++,(1)判断()f x 的单调性,并证明你的结论;②由指数(型)函数单调性求参数1.(2022·辽宁朝阳·高一开学考试)若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫ ⎪⎝⎭2.(2022·内蒙古·赤峰二中高一期末(文))若函数()33,0,0xx a x f x a x -+-<⎧=⎨⎩是R 上的减函数,则实数a 的取值范围是___.3.(2022·河北张家口·高一期末)已知函数()()2,1,32,1x a x x f x a x -⎧-<=⎨⋅-≥⎩在R 上单调递减,则实数a 的取值范围是______.4.(2022·湖南·高一课时练习)若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.5.(2022·安徽·歙县教研室高一期末)若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.6.(2022·湖南·高一课时练习)若函数()()28xf x a =-是区间(),-∞+∞上的减函数,求实数a 的取值范围.③判断指数型复合函数单调性1.(2022·安徽省蚌埠第三中学高一开学考试)函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭2.(2022·河南·商丘市第一高级中学高一开学考试)已知函数()24,18,1x x ax x f x a x ⎧-+≤=⎨+>⎩,且对于任意的12,x x ,都有()()()1212120f x f x x x x x ->≠-,则实数a 的取值范围是( )A .(]1,2B .(]1,3C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭3.(2022·宁夏·吴忠中学高一期末)已知函数2251()2x x f x -+⎛⎫= ⎪⎝⎭在(),a +∞上单调递减,则实数a 的取值范围是______.4.(2022·河南·林州一中高一开学考试)已知函数2()21x x af x +=+是奇函数.(1)求a 的值;(2)判断并证明函数()f x 的单调性.④比较大小1.(2022·广东汕尾·高一期末)若1312a ⎛⎫= ⎪⎝⎭,1314b ⎛⎫= ⎪⎝⎭,1412c ⎛⎫= ⎪⎝⎭,则( )A .c a b >>B .c b a >>C .b c a >>D .a b c >>2.(2022·陕西·略阳县天津高级中学高三阶段练习(文))设233a =,1413b ⎛⎫= ⎪⎝⎭,133c =,则a ,b ,c 的大小关系是( ) A .b c a >>B .a b c >>C .c a b >>D .a c b >>3.(2022·福建三明·高一期末)已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<4.(2022·海南·模拟预测)设0.22e a -=,0.2e b =, 1.2c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c b a <<⑤根据指数函数单调性解不等式1.(2022·全国·高一)若1()273x >,则x 的取值范围是______.2.(2022·海南鑫源高级中学高一期末)已知不等式124x ->的解集是__________.3.(2022·福建·莆田一中高一开学考试)已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数a 满足()(212a f f ->,则a 的取值范围是______.4.(2022·福建福州·高一期末)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()23x f x =+.(1)求()f x 的解析式; (2)解不等式()()22f x f x ≥.高频考点七:指数函数的最值①求已知指数型函数的值域1.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞2.(2022·北京·高三学业考试)已知函数()2x f x =,[0,)x ∈+∞,则()f x ( ) A .有最大值,有最小值 B .有最大值,无最小值 C .无最大值,有最小值D .无最大值,无最小值3.(2022·全国·高三专题练习(文))设函数1()422x x f x +=-+,则(1)f =________;函数()f x 在区间[1,2]-的最大值为_________.4.(2022·贵州贵阳·高一期末)已知函数2()35,()2x f x x x g x a =-++=+,若12[0,2],[2,3]x x ∀∈∃∈,使得()()12f x g x <,则实数a 的取值范围是___________.5.(2022·甘肃·兰州一中高一期末)已知02x ≤≤,则函数124325x x y -=-⨯+的最大值为__________.②根据指数函数最值求参数1.(2022·辽宁·渤海大学附属高级中学高一期末)若函数()213ax a f x +⎛⎫= ⎪⎝⎭在[)1,+∞上有最大值19,则实数a的值为( ) A .1B .2-C .1或2-D .1或1-2.(多选)(2022·江苏常州·高一期末)若函数()xf x a =(0a >且1a ≠)在区间[]22-,上的最大值和最小值的和为103,则a 的值可能是( )A .13B CD .33.(2022·上海虹口·高一期末)已知函数x y a =(0a >且1a ≠)在[]1,2的最大值与最小值之差等于2a,则实数a 的值为______.4.(2022·青海·海南藏族自治州高级中学高一期末)已知指数函数()x f x a =(0a >且1a ≠)在区间[]2,3上的最大值是最小值的2倍,则=a ______.5.(2022·全国·高三专题练习)若函数()0,1xy a a a =>≠在区间[]1,2上的最大值和最小值之和为6,则实数=a ______.6.(2022·湖南·高一课时练习)若函数()22x x f x a a =+-(0a >且1a ≠)在区间[]1,0-上的最小值为54-,求a 的值.③含参指数(型)函数最值1.(2022·全国·高三专题练习)如果函数y =a 2x +2ax -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.2.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知函数()1423x x f x a +=⋅--.(1)当1a =时,求函数()f x 的零点;(2)若0a >,求()f x 在区间[]1,2上的最大值()g a .3.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+. (1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值; (2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.4.(2022·全国·高一课时练习)求函数2()2x x f x e e =-的最值.1.(2020·山东·高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .2.(2021·湖南·高考真题)已知函数()2,0282,24x x f x x x ⎧≤≤=⎨-<≤⎩(1)画出函数()f x 的图象; (2)若()2f m ≥,求m 的取值范围.一、单选题1.(2022·江苏江苏·一模)设全集U =R ,集合{}21A x x =-≤,{}240x B x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,22.(2022·河南·模拟预测(文))已知58a =,45b =,则ab =( ) A .2B .32C .43D .13.(2022·辽宁朝阳·高二开学考试)已知函数()x x f x ππ-=-,若32(2)2a fb fc f ===,则a ,b ,c 的大小关系为( ) A .a b c >>B .a b c >>C .c b a >>D .b c a >>4.(2022·四川宜宾·二模(文))物理学家和数学家牛顿(IssacNewton )提出了物体在常温下温度变化的冷却模型:设物体的初始温度是1T (单位:℃),环境温度是0T (单位:℃),且经过一定时间t (单位:min )后物体的温度T (单位:℃)满足10e kt T T T T -=-(k 为正常数).现有一杯100℃热水,环境温度20℃,冷却到40℃需要16min ,那么这杯热水要从40℃继续冷却到30℃,还需要的时间为( ) A .6minB .7minC .8minD .9min5.(2022·湖北·石首市第一中学高一阶段练习)已知函数211()3x f x -⎛⎫= ⎪⎝⎭,则不等式()f x ≥( ) A .1,6⎡⎫+∞⎪⎢⎣⎭B .1,6∞⎛⎤- ⎥⎝⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞- ⎥⎝⎦6.(2022·河南·模拟预测(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞7.(2022·云南玉溪·高一期末)函数||()2x f x =,4()g x x =,则函数()()y f x g x =+的图象大致是( )A .B .C .D .8.(2022·全国·高三专题练习)已知432a =,254b =,1325c =,则( ) A .b a c << B .a b c << C .b c a << D .c a b <<二、填空题9.(2022·江苏连云港·二模)函数()1293x x f x -=+的最小值是___________.10.(2022·全国·高一)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是________. (填序号)①()12f x x =;②()3f x x =;③()12xf x ⎛⎫= ⎪⎝⎭;④f (x )=3x11.(2022·江西宜春·高三期末(文))高斯是德国著名的数学家,近代数学莫基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设R x ∈,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74 2.32-=-=,.已知()112x x e f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域为_________.12.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x的取值范围是________ 三、解答题13.(2022·湖南·高一课时练习)已知1x >,且13x x -+=,求下列各式的值: (1)1122x x -+; (2)1122x x --; (3)3322x x -+.14.(2022·贵州·凯里一中高一开学考试)已知函数()f x 是定义在[2,2]-上的奇函数,且(]0,2x ∈时,()21x f x =-,()22g x x x m =-+.(1)求()f x 在区间[)2,0-上的解析式;(2)若对[]12,2x ∀∈-,则[]22,2x ∃∈-,使得()()12f x g x =成立,求m 的取值范围.15.(2022·河南·高一阶段练习)已知函数()24x m x f x +=-.(1)当0m =时,求关于x 的不等式()2f x >-的解集;(2)若对[]0,1x ∀∈,不等式()22xf x m >-⋅恒成立,求实数m 的取值范围.16.(2022·辽宁丹东·高一期末)已知函数()22x x af x a-=+是奇函数.(1)求实数a 的值; (2)求()f x 的值域.。
高三数学一轮复习《指数函数、对数函数和幂函数》练习题(含答案)

高三数学一轮复习《指数函数、对数函数和幂函数》练习题(含答案)一、单选题1.已知0.33a =,0.413b -⎛⎫= ⎪⎝⎭,4log 0.3c =,则( )A .b a c >>B .a c b >>C .c b a >>D .c a b >>2.设3log 2a =,ln 2b =,125c -=,则a ,b ,c 的大小关系为( ). A .a b c <<B .c<a<bC .b a c <<D .c b a <<3.已知函数()2222()1m m f x m m x --=--是幂函数,且为偶函数,则实数m =( )A .2或1-B .1-C .4D .24.已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为( )A .10,2⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭5.已知函数()241,012,02x x x x f x x ⎧+-≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩,若方程()()2230f x af x ++=⎡⎤⎣⎦有5个不同的实数解,则实数a 的取值范围为( ) A.(,-∞B .714,45⎡⎫⎪⎢⎣⎭C.)2D .7,24⎡⎫⎪⎢⎣⎭6.若3log 2a =,53b =,7log 4c =,则a ,b ,c 的大小关系( ) A .a b c << B .b a c << C .c b a <<D .b<c<a7.设0.74a =,0.814b -⎛⎫= ⎪⎝⎭,0.70.8c =,则a ,b ,c 的大小关系为( )A .b<c<aB .c<a<bC .a b c <<D .c b a <<8.“1n =”是“幂函数()()22333nnf x n n x-=-+⋅在()0,∞+上是减函数”的一个( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要9.已知函数(),0()23,0x a x f x a x a x ⎧<⎪=⎨-+≥⎪⎩,满足对任意x 1≠x 2,都有()()1212f x f x x x -<-0成立,则a 的取值范围是( ) A .a ∈(0,1)B .a ∈[34,1)C .a ∈(0,13]D .a ∈[34,2)10.已知函数()f x 的图像如图所示,则该函数的解析式为( )A .3()e ex x x f x -=+B .3e e ()x xf x x -+=C .2()e e x x x f x -=-D .3e e ()x xf x x --=11.若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为( )A .a b c <<B .b<c<aC .b a c <<D .a c b <<12.为践行"绿水青山就是金山银山”的发展理念,全国各地对生态环境的保护意识持续增强,某化工企业在生产中产生的废气需要通过过滤使废气中的污染物含量减少到不高于最初的20%才达到排放标准.已知在过滤过程中,废气中污染物含量y (单位:mg/L ,)与时间t (单位:h )的关系式为0e kty y -=(0y ,k 为正常数,0y 表示污染物的初始含量),实验发现废气经过5h 的过滤,其中的污染物被消除了40%.则该企业生产中产生的废气要达标排放需要经过的过滤时间至少约为( )(结果四舍五入保留整数,参考数据ln 3 1.1,ln 5 1.6≈≈) A .12h B .16h C .26h D .33h二、填空题13.已知幂函数()233my m m x =--在()0,∞+上单调递增,则m =______.14.写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.15.已知函数()()212log 1,1,3,1,x x x f x x -⎧+-<=⎨≥⎩则()()31log 12f f -+=______.16.若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.三、解答题17.已知函数1()x xf x a a =-(0a >且1a ≠). (1)判断函数()f x 的奇偶性,并证明;(2)若()10f >,不等式2()(4)0f x bx f x ++->在x R ∈上恒成立,求实数b 的取值范围;(3)若()312f =且221()2()xxh x a mf x a =+-在[)1,x ∞∈+上最小值为2-,求m 的值.18.已知函数4()12x f x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.19.已知函数()()()22log 2log 2f x x x =+--. (1)求函数()f x 的定义域,并判断函数()f x 的奇偶性; (2)解关于x 的不等式()()2log 1f x x ≥-.20.已知函数()xf x a =(0a >且1a ≠)的图象经过点12⎛- ⎝⎭.(1)求a 的值;(2)设()()()F x f x f x =--, ①求不等式()83F x <的解集; ②若()23xF x k ≥-恒成立,求实数k 的取值范围.21.已知()y f x =是定义在R 上的奇函数...,当0x ≥时,()()R 3xf x a a =+∈. (1)求函数()f x 在R 上的解析式;(2)若R x ∀∈,()()240f x x f mx -+->恒成立,求实数m 的取值范围.22.已知函数()()24f x x x a x =-+∈R .(1)若(1,3)x ∈时,不等式2log ()1f x ≤恒成立,求实数a 的取值范围;(2)若关于x 的方程(21)(2)|21|80x x f a +++-+=有三个不同的实数解,求实数a 的取值范围.23.已知函数2()21x x af x -=+为定义在R 上的奇函数.(1)求a 的值;(2)判断函数()f x 的单调性,并用单调性定义证明;(3)若关于x 的不等式(())()0f f x f t +<有解,求t 的取值范围。
2023年新高考数学一轮复习3-5 指数与指数函数(真题测试)含详解

专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+=D .1()()3f x f x --=3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .25.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞)B .(-2, +∞)C .(0, +∞)D .(-1,+∞)7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c <<B .a cb << C .b ac <<D .b c a <<8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .11.(2022·山东潍坊·高三期末)已知函数x x x xe ef xe e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( ) A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________.16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围.18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值;(2)求()f x 的值域.19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x x f x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-【答案】B 【解析】 【分析】利用指数函数的单调性化简集合N ,然后利用交集的定义运算即得. 【详解】函数2x y =是增函数,则不等式11242x +<<,即112222x -+<< ∴112,x -<+<即21x -<<,所以{}{}|21,Z 1,0N x x x =-<<∈=-,又{}1,1M =-, ∴{}1.M N ⋂=- 故选:B.2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+= D .1()()3f x f x --=【答案】C 【解析】 【分析】直接代入计算,注意通分不要计算错误. 【详解】()()1121112121212x x x x xf x f x --+=+=+=++++,故A 错误,C 正确;()()11212121121212122121x x x x x x x xf x f x ----=-=-==-++++++,不是常数,故BD 错误; 故选:C .3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A . B .C .D .【答案】C 【解析】 【分析】对a 进行分类讨论,结合指数函数的单调性以及函数图像平移变换,即可得出答案. 【详解】①当1a >时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于1a >,则A 错误; 又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故B 错误;②当01a <<时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于01a <<,则D 错误;又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故C 正确; 故选:C4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .2【答案】A 【解析】 【分析】先求出(1)f -的值,再求((1))f f -的值,然后列方程可求得答案【详解】解:由题意得(1)(1)22f ---==,所以2((1))(2)241f f f a a -==⋅==,解得a =14.故选:A5.(2018·全国·高考真题(文))函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞) B .(-2, +∞)C .(0, +∞)D .(-1,+∞)【答案】D 【解析】由题意知,存在正数x ,使12xa x >-,所以,而函数12xy x =-在(0,)+∞上是增函数,所以(0)1y y >=-,所以1a >-,故选D.7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c << B . a c b << C .b a c << D .b c a <<【答案】C 【解析】 【详解】由0.6x y =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C . 8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【详解】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3xf x =是定义在R 上增函数,所以B 正确;C 选项:由()()23f x y x y +=+,()()f x f y 2233x y =⋅23()xy =,得()()()f x y f x f y +≠,所以C 错误;D 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是定义在R 上减函数,所以D 错误;故选B.二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 【答案】BC 【解析】对A ,D 可取反例;对B ,C 可利用函数的单调性判断; 【详解】对A ,取1,2a b ==-,则||||a b >不成立,故A 错误; 对B ,11a b a b >⇒->-,∴1133a b -->,故B 成立;对C ,33a b a b >⇒>,故C 成立; 对D ,取1,1a b ==-,11a b<不成立; 故选:BC10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC 【解析】【分析】依题意可得a 、b 两个数一个大于1,一个大于0且小于1,再分类讨论,结合指数函数的性质判断即可; 【详解】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC11.(2022·山东潍坊·高三期末)已知函数x x x xe ef x e e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值 【答案】BD 【解析】 【分析】求解0x x e e --≠,可判断A ;利用函数奇偶性的定义可判断B ;比较(1),(1)f f -可判断C ;分离常数得到2211x f x e ,分析单调性及函数值域可判断D【详解】选项A ,0x x e e --≠,解得0x ≠,故()f x 的定义域为{|0}x x ≠,选项A 错误;选项B ,函数定义域关于原点对称,且()()x x x x e ef x f x e e --+-==--,故()f x 是奇函数,选项B 正确;选项C ,()121212121110,(1)011e e e e e ef f e e e e e e ----++++-==<==>----,故(1)(1)f f -<,即()f x 在定义域上不是减函数,选项C 不正确;选项D ,()22212111x x x x x x x e e e f x e e e e --++===+---,令20x t e =>,211y t =+-,由于2x t e =在R 上单调递增,211y t =+-在(0,1),(1,)+∞分别单调递减,故函数()f x 在(,0),(0,)-∞+∞分别单调递减,且x →-∞时,()1f x →-,0x -→时,()f x →-∞,0x +→时,()f x →+∞,x →+∞时,()1f x →,故函数()f x 的值域为(,1)(1,-∞-⋃+∞),无最小值,无最大值,选项D 正确故选:BD12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( )A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 【答案】ABD 【解析】 【分析】分段函数奇偶性判断需要分段判断,分段函数的单调性需要列两段分别单调,衔接处单调即可. 【详解】当0x <时,0x ->,()2,()2(2)()x x x f x a f x a a f x ---=-+-=-=--+=-;当0x >时,0x -<,()2,()2()x x f x a f x a f x =--=-+=-.则函数()f x 为奇函数,故A 正确;若()f x 在定义域上是增函数,则0022a a --+≤-,即1a ≤,故B 正确;当0x <时,()2xf x a -=-+在区间(,0)-∞上单调递增,此时值域为(,1)a -∞-;当0x >时,()2x f x a =-在区间()0,∞+上单调递增,此时值域为(1,)a -+∞.要使得()f x 的值域为R ,则11a a ->-,即1a >,故C 错误;当1a ≤时,由于0022a a --+≤-,则函数()f x 在定义域上是增函数,由()(34)0f x f x ++>,得()(34)f x f x >--,则034034x x x x ≠⎧⎪--≠⎨⎪>--⎩解得(1,0)(0,)x ∈-+∞,故D 正确.故选:ABD. 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.【答案】[)()0,11,+∞【解析】【分析】结合分式型,二次根号型函数的定义即可求解. 【详解】由题知,021********x xx x x x x ⎧⎧≥-≥≥⎧⎪⎪⇒⇒⎨⎨⎨≠-≠-≠≠⎪⎪⎩⎩⎩且,所以()f x 的定义域为[)()0,11,+∞,故答案为:[)()0,11,+∞.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.【答案】14【解析】 【详解】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x = 不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________. 【答案】32-【解析】 【详解】若1a > ,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+= ,此方程组无解; 若01a << ,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=- ,解得1{22a b ==- ,所以32a b +=-. 16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______. 【答案】[1,2]【解析】 【分析】由1x >,求得()f x 的范围,再求得||()2x a f x -=的单调性,讨论1a <,1a 时函数()f x 在1x 的最大值,即可得到所求范围. 【详解】解:因为()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,当1x >时()112f x x =-+函数单调递减且()12f x <,当1x ≤时()122x ax af x ---⎛⎫== ⎪⎝⎭,可得在x a >时函数单调递减,在x a <单调递增,若1a <,1x ,则()f x 在x a =处取得最大值,不符题意; 若1a ,1x ,则()f x 在1x =处取得最大值,且11122a -⎛⎫≥⎪⎝⎭,解得12a , 综上可得a 的范围是[]1,2. 故答案为:[]1,2 四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围. 【答案】[4,8). 【解析】 【分析】根据分段函数的单调性的判定方法,列出不等式组,即可求解. 【详解】由题意,函数(1)()42(1)2xa x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则满足114024122a a a a⎧⎪>⎪⎪->⎨⎪⎪⎛⎫-⨯+≤ ⎪⎪⎝⎭⎩,解得48a ≤<, 所以实数a 的取值范围[4,8).18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值; (2)求()f x 的值域. 【答案】(1)-2 (2)11-(,) 【解析】【分析】(1)因为()f x 为奇函数,且在0x =处有意义,所以()00f =,便可求出m 的值;(2)在(1)的前提下,对于复合函数分解成若干基本初等函数,然后逐个求其值域,从而求出()f x 的值域. (1)因为()f x 为奇函数,所以()00f =,即2022m +=,解得2m =-. 经检验:当2m =-时,()f x 为奇函数; (2)由(1)知()2121xf x -=-+,因为211x -+∈+∞(,), 所以20221x -∈+(,),于是()11f x ∈-(,),因此()f x 的值域为11-(,). 19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;【答案】(1)()13xf x ⎛⎫= ⎪⎝⎭(2)()1,1- 【解析】 【分析】(1)将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,解之即可得出答案;(2)根据指数函数的单调性即可得出答案. (1)解:将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,得:219a =,解得13a =,所以()13xf x ⎛⎫= ⎪⎝⎭;(2)因为1013<<,所以函数()13xf x ⎛⎫= ⎪⎝⎭为减函数,由()()1f x f >,得1x <,解得11x -<<, 所以()()1f x f >的解为()1,1-.20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-. 【答案】(1)2k =-,3b = (2)答案见解析 【解析】 【分析】(1)根据指数函数的定义列出方程,即可得解;(2)分1a >和01a <<两种情况讨论,结合指数函数的单调性即可得解. (1)解:因为()()33x f x k a b =++-(0a >,且1a ≠)是指数函数, 所以31k +=,30b -=, 所以2k =-,3b =; (2)解:由(1)得()xf x a =(0a >,且1a ≠),①当1a >时,()xf x a =在R 上单调递增,则由()()2743f x f x ->-, 可得2743x x ->-,解得2x <-;②当01a <<时,()xf x a =在R 上单调递减,则由()()2743f x f x ->-, 可得2743x x -<-,解得2x >-,综上可知,当1a >时,原不等式的解集为(),2-∞-; 当01a <<时,原不等式的解集为()2,-+∞.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x xf x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.【答案】(1)奇函数,证明见解析; (2)[]1,2- 【解析】 【分析】(1)利用函数奇偶性的定义判断证明即可;(2)根据指数函数单调性以及函数单调性的性质判断()y f x =的单调性,再由单调性去掉f 转化为解一元二次不等式即可求解. (1)()e e x x f x -=-是R 上的奇函数,证明如下:()e e x x f x -=-的定义域为R 关于原点对称,()()()e e e e x x x x f x f x ---=-=--=-,所以()e e x xf x -=-是R 上的奇函数.(2)因为e x y =为R 上的增函数,1ee xxy -==为R 上的减函数, 所以()e e x xf x -=-为R 上的增函数,若()()22f x f x -≤,则22x x -≤即220x x --≤,可得()()210x x -+≤,解得:12x -≤≤,所以不等式()()22f x f x -≤的解集为:[]1,2-.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围. 【答案】(1)证明见解析(2)[]4,4- 【解析】 【分析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令33x x t -=-,根据x 的范围,可得t 的范围,原式等价为()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,只需()min 4h t ≥-即可,分别讨论823m -≤-、88323m -<-<和823m -≥三种情况,根据二次函数的性质,计算求值,分析即可得答案. (1)由已知可得()f x 的定义域为R , 任取12,x x ∈R ,且12x x <,则()()12f x f x -()()1122121121333331313x x x x x x x x x ---+⎛⎫=---=-+ ⎪⎝⎭,因为130x >,121103x x ++>,21130x x --<,所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数. (2)()()()()223333x x x xf x mf x m --⎡⎤+=-+-⎣⎦,令33x x t -=-,则当[]1,1x ∈-时,88,33t ⎡⎤∈-⎢⎥⎣⎦,所以()()22f x mf x t mt ⎡⎤+=+⎣⎦.令()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,则只需()min 4h t ≥-. 当823m -≤-,即163m ≥时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递增, 所以()min 86484393h t h m ⎛⎫=-=-≥- ⎪⎝⎭,解得256m ≤,与163m ≥矛盾,舍去;当88323m -<-<,即161633m -<<时,()h t 在8,32m ⎡⎤--⎢⎥⎣⎦上单调递减,在8,23m ⎡⎤-⎢⎥⎣⎦上单调递增,所以()2min424m m h t h ⎛⎫=-=-≥- ⎪⎝⎭,解得44m -≤≤;当823m -≥即163m ≤-时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递减, 所以()min 86484393h t h m ⎛⎫==+≥- ⎪⎝⎭,解得256m ≥-,与163m ≤-矛盾,舍去. 综上,实数m 的取值范围是[]4,4-.。
高考数学一轮复习考点指数与指数函数必刷题含解析

考点08 指数与指数函数1、不等式(13)x 2-8>3-2x 的解集是________. 【答案】{x |-2<x <4}【解析】原不等式为(13)x 2-8>(13)2x , ∴x 2-8<2x ,解之得-2<x <4.2、设a =40.9,b =80.48,c =(12)-1.5,则a 、b 、c 从大到小排列的顺序为________. 【答案】a >c >b【解析】∵a =40.9=21.8,b =80.48=21.44,c =(12)-1.5=21.5, ∴21.8>21.5>21.44,即a >c >b .3、已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于________.【答案】7【解析】由f (a )=3得2a +2-a =3,∴(2a +2-a )2=9,即22a +2-2a +2=9. 所以22a +2-2a =7,故f (2a )=22a +2-2a =7. 4、若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.【答案】-2【解析】∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a-2b +2=8,∴a 2b +a -2b =6, ∴(a b -a -b )2=a 2b +a-2b -2=4,∴a b -a -b =-2. 5、若f (x )=a -x 与g (x )=ax -a (a >0且a ≠1)的图象关于直线x =1对称,则a =________.【答案】2 【解析】函数f (x )=a -x 上任意一点(x 0,y 0)关于直线x =1对称的点为(2-x 0,y 0),即有g (2-x 0)=a 2-x 0-a =f (x 0)=a -x 0,故a =2.6、若直线ax -by +2=0(a >0,b >0)和函数f (x )=ax +1+1(a >0且a ≠1)的图象恒过同一个定点,则当1a +1b 取最小值时,函数f (x )的解析式是________.【答案】(22-2)x +1+1【解析】函数f (x )=a x +1+1(a >0且a ≠1)的图象恒过点(-1,2),故12a +b =1,1a +1b =(12a +b )(1a +1b )=32+b a +a 2b ≥32+2,当且仅当b =22a 时等号成立,将b =22a 代入12a +b =1,得a =22-2,故f (x )=(22-2)x +1+1.7、给出下列结论:①当a <0时,=a 3;②n a n =|a |(n >1,n ∈N *,n 为偶数);③函数f (x )=(x -2)12-(3x -7)0的定义域是{x |x ≥2且x ≠73}; ④若2x =16,3y =127,则x +y =7. 其中正确结论的序号有________.【答案】②③【解析】∵a <0时,>0,a 3<0,∴①错; ②显然正确;解⎩⎪⎨⎪⎧ x -2≥03x -7≠0,得x ≥2且x ≠73,∴③正确; ∵2x =16,∴x =4,∵3y =127=3-3,∴y =-3, ∴x +y =4+(-3)=1,∴④错.故②③正确.8、若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围为____.【答案】[-1,1]【解析】分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围. 曲线|y|=2x +1与直线y =b 的图象如图所示,由图象可得:若|y|=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].9、若函数y =a 2x +2a x-1(a>0且a≠1)在区间[-1,1]上的最大值是14,求实数a 的值.【答案】3或13. 【解析】设t =a x ,则y =f(t)=t 2+2t -1=(t +1)2-2.①当a>1时,t ∈[a -1,a],所以y max =a 2+2a -1=14,解得a =3或a =-5(舍去);②当0<a<1时,t ∈[a ,a -1],所以y max =(a -1)2+2a -1-1=14,解得a =13或a =-15(舍去). 故所求a 的值为3或13. 10、函数f (x )= 2-x x -1的定义域为集合A ,关于x 的不等式22ax <2a +x (a ∈R)的解集为B ,求使A ∩B =A 的实数a 的取值范围.【答案】(-∞,23) 【解析】由2-x x -1≥0,得1<x ≤2, 即A ={x |1<x ≤2}. ∵y =2x 是R 上的增函数,∴由22ax <2a +x ,得2ax <a +x ,∴(2a -1)x <a .(1)当2a -1>0,即a >12时,x <a 2a -1. 又A ⊆B ,∴a 2a -1>2,得12<a <23. (2)当2a -1=0,即a =12时,x ∈R ,满足A ∩B =A . (3)当2a -1<0,则a <12时,x >a 2a -1. ∵A ⊆B ,∴a 2a -1≤1,得a <12或a ≥1,故a <12. 由(1),(2),(3)得a ∈(-∞,23). 11、已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1].(1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.【答案】(1) log 32 (2) λ≤2【解析】(1)由已知得3a +2=18⇒3a =2⇒a =log 32. (2)此时g (x )=λ·2x -4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0 恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2.12、已知函数f(x)=⎝ ⎛⎭⎪⎫12x -1+12x 3. (1) 求f(x)的定义域;(2) 证明:f(-x)=f(x);(3) 证明:f(x)>0.【答案】(1) (-∞,0)∪(0,+∞) (2) 见解析 (3) 见解析【解析】(1) 由2x-1≠0得x≠0,所以定义域为(-∞,0)∪(0,+∞).(2) f(x)=⎝ ⎛⎭⎪⎫12x -1+12x 3可化为f(x)=2x +12(2x -1)·x 3, 则f(-x)=2-x +12(2-x -1)(-x)3=2x +12(2x -1)x 3=f(x),所以f(-x)=f(x). (3) 当x>0时,2x >1,x 3>0,所以f(x)=(12x -1+12)x 3>0. 因为f(-x)=f(x),所以当x<0时,f(x)=f(-x)>0.综上所述,f(x)>0. 13、已知函数y =⎝ ⎛⎭⎪⎫13|x +1|.(1) 作出函数的图象(简图);(2) 由图象指出其单调区间;(3) 由图象指出当x 取什么值时函数y =⎝ ⎛⎭⎪⎫13|x +1|有最值,并求出最值.【答案】(1) 见图 (2) 单调增区间为(-∞,-1),单调减区间为(-1,+∞) (3) (-∞,-1]【解析】(1) 方法一:由函数解析式可得y =⎝ ⎛⎭⎪⎫13|x +1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x +1,x≥-1,3x +1, x<-1.其图象由两部分组成: 一部分是:y =⎝ ⎛⎭⎪⎫13x (x≥0)――→向左平移1个单位长度y =⎝ ⎛⎭⎪⎫13x +1(x≥-1); 另一部分是:y =3x (x<0)――→向左平移1个单位长度y =3x +1(x<-1).如图所示.方法二:①由y =⎝ ⎛⎭⎪⎫13|x|可知函数是偶函数,其图象关于y 轴对称,故先作出y =⎝ ⎛⎭⎪⎫13x 的图象,保留x≥0的部分,当x<0时,其图象是将y =⎝ ⎛⎭⎪⎫13x (x≥0)图象关于y 轴对折,从而得出y =⎝ ⎛⎭⎪⎫13|x|的图象. ②将y =⎝ ⎛⎭⎪⎫13|x|的图象向左平移1个单位长度,即可得y =⎝ ⎛⎭⎪⎫13|x +1|的图象,如图所示.(2) 由图象知函数的单调增区间为(-∞,-1),单调减区间为(-1,+∞).(3) 由图象知当x =-1时,有最大值1,无最小值.14、已知函数f(x)=a a 2-1(a x -a -x )(a>0且a≠1). (1) 判断函数f(x)的奇偶性;(2) 讨论函数f(x)的单调性;(3) 若当x ∈[-1,1]时,f(x)≥b 恒成立,求实数b 的取值范围.【答案】(1) 奇函数 (2) 单调递增 (3) (-∞,-1]【解析】(1) 因为函数定义域为R ,关于原点对称,又因为f (-x )=a a 2-1(a -x -a x)=-f (x ), 所以函数f (x )为奇函数.(2) 当a >1时,a 2-1>0,因为y =a x 为增函数,y =a -x 为减函数,从而y =a x -a -x 为增函数,所以函数f (x )为增函数.当0<a <1时,a 2-1<0,因为y =a x 为减函数,y =a -x为增函数,从而y =a x -a -x 为减函数,所以函数f (x )为增函数.故当a >0,且a ≠1时,函数f (x )在定义域内单调递增.(3) 由(2)知f (x )在R 上是增函数,所以在区间[-1,1]上为增函数,所以f (-1)≤f (x )≤f (1),所以f (x )min =f (-1)=aa 2-1(a -1-a )=aa 2-1·1-a 2a =-1,所以要使f (x )≥b 在[-1,1]上恒成立,则只需b ≤-1,故b 的取值范围是(-∞,-1].15、已知函数f (x )=(13)x ,x ∈[-1,1],函数g (x )=[f (x )]2-2af (x )+3的最小值为h (a ). (1)求h (a );(2)是否存在实数m 、n 同时满足下列条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]?若存在,求出m 、n 的值;若不存在,说明理由. 【答案】(1) h (a )=⎩⎪⎨⎪⎧ 289-2a 3 a <13,3-a 2 13≤a ,12-6a a >3 (2) 不存在【解析】(1)∵x ∈[-1,1], ∴(13)x ∈[13,3]. 设t =(13)x ,t ∈[13,3], 则φ(t )=t 2-2at +3=(t -a )2+3-a 2.当a <13时,y min =h (a )=φ(13)=289-2a 3; 当13≤a ≤3时,y min =h (a )=φ(a )=3-a 2; 当a >3时,y min =h (a )=φ(3)=12-6a . ∴h (a )==⎩⎪⎨⎪⎧ 289-2a 3 a <13,3-a 2 13≤a ,12-6a a(2)假设满足题意的m 、n 存在,∵m >n >3,∴h (a )=12-6a 在(3,+∞)上是减函数.∵h (a )的定义域为[n ,m ],值域为[n 2,m 2], ∴⎩⎪⎨⎪⎧ 12-6m =n 2, ①12-6n =m 2, ②②-①得6(m -n )=(m -n )(m +n ), ∵m >n >3,∴m +n =6,但这与“m >n >3”矛盾, ∴满足题意的m 、n 不存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业8 指数与指数函数一、选择题1.化简4a 23 ·b -13 ÷⎝ ⎛⎭⎪⎪⎫-23a - 13 b23 的结果为( C ) A .-2a3bB .-8a bC .-6a bD .-6ab2.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( C )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析:当a <0时,不等式f (a )<1为⎝ ⎛⎭⎪⎫12a-7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1. 故a 的取值范围是(-3,1),故选C.3.(2019·湖南永州模拟)下列函数中,与函数y =2x -2-x的定义域、单调性与奇偶性均一致的是( B )A .y =sin xB .y =x 3C .y =⎝ ⎛⎭⎪⎫12xD .y =log 2x解析:y =2x-2-x是定义域为R 的单调递增函数,且是奇函数.而y =sin x 不是单调递增函数,不符合题意;y =⎝ ⎛⎭⎪⎫12x是非奇非偶函数,不符合题意;y =log 2x 的定义域是(0,+∞),不符合题意;y =x 3是定义域为R 的单调递增函数,且是奇函数符合题意.故选B.4.二次函数y =-x 2-4x (x >-2)与指数函数y =⎝ ⎛⎭⎪⎫12x 的图象的交点个数是( C )A .3B .2C .1D .0解析:因为函数y =-x 2-4x =-(x +2)2+4(x >-2),且当x =-2时,y =-x 2-4x =4,y =⎝ ⎛⎭⎪⎫12x =4,则在同一直角坐标系中画出y =-x 2-4x (x >-2)与y =⎝ ⎛⎭⎪⎫12x 的图象如图所示,由图象可得,两个函数图象的交点个数是1,故选C.5.(2019·福建厦门一模)已知a =⎝ ⎛⎭⎪⎫120.3,b =log 120.3,c =a b,则a ,b ,c 的大小关系是( B )A .a <b <cB .c <a <bC .a <c <bD .b <c <a解析:b =log 12 0.3>log 12 12=1>a =⎝ ⎛⎭⎪⎫120.3,c =a b<a .∴c <a <b .故选B.6.已知a ,b ∈(0,1)∪(1,+∞),当x >0时,1<b x<a x,则( C ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b解析:∵当x >0时,1<b x,∴b >1. ∵当x >0时,b x<a x, ∴当x >0时,⎝ ⎛⎭⎪⎫a bx >1. ∴a b>1,∴a >b .∴1<b <a ,故选C.7.如图,在面积为8的平行四边形OABC 中,AC ⊥CO ,AC 与BO 交于点E .若指数函数y =a x(a >0,且a ≠1)经过点E ,B ,则a 的值为( A )A. 2B. 3 C .2D .3解析:设点E (t ,a t),则点B 的坐标为(2t,2a t).因为2a t=a 2t,所以a t=2.因为平行四边形OABC 的面积=OC ×AC =a t×2t =4t ,又平行四边形OABC 的面积为8,所以4t =8,t =2,所以a 2=2,a = 2.故选A.二、填空题8.不等式2x 2-x <4的解集为{x |-1<x <2}. 解析:∵2x 2-x <4,∴2x 2-x <22, ∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.9.若直线y 1=2a 与函数y 2=|a x-1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是⎝ ⎛⎭⎪⎫0,12. 解析:(数形结合法)当0<a <1时,作出函数y 2=|a x-1|的图象,由图象可知0<2a <1,∴0<a <12;同理,当a >1时,解得0<a <12,与a >1矛盾.综上,a 的取值范围是⎝ ⎛⎭⎪⎫0,12. 10.已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f x ,x ≥0,f -x ,x <0,则函数g (x )的最小值是0.解析:当x ≥0时,g (x )=f (x )=2x-12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0. 11.(2019·湖南益阳调研)已知函数f (x )=2x 1+a ·2x (a ∈R )的图象关于点⎝ ⎛⎭⎪⎫0,12对称,则a =1.解析:由已知,得f (x )+f (-x )=1, 即2x 1+a ·2x +2-x1+a ·2-x =1, 整理得(a -1)[22x+(a -1)·2x+1]=0,所以当a -1=0,即a =1时,等式成立. 三、解答题12.设a >0,且a ≠1,函数y =a 2x+2a x-1在[-1,1]上的最大值是14,求实数a 的值. 解:令t =a x(a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x ∈⎣⎢⎡⎦⎥⎤a ,1a ,此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,解得a =-15(舍去)或a =13.②当a >1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤1a,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3或a =-5(舍去).综上得a =13或3.13.(2019·河南八市第一次测评)设函数f (x )=x2-a与g (x )=a x(a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =⎝ ⎛⎭⎪⎫1a0.1的大小关系是( D )A .M =NB .M ≤NC .M <ND .M >N解析:因为f (x )=x2-a与g (x )=a x(a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,所以a >2,所以M =(a -1)0.2>1,N =⎝ ⎛⎭⎪⎫1a0.1<1,所以M >N ,故选D.14.已知函数f (x )=1-42a x+a(a >0,a ≠1)且f (0)=0. (1)求a 的值;(2)若函数g (x )=(2x+1)·f (x )+k 有零点,求实数k 的取值范围; (3)当x ∈(0,1)时,f (x )>m ·2x-2恒成立,求实数m 的取值范围. 解:(1)对于函数f (x )=1-42a x +a (a >0,a ≠1),由f (0)=1-42+a=0,得a =2. (2)由(1)知f (x )=1-42·2x+2=1-22x +1. 因为函数g (x )=(2x+1)·f (x )+k =2x+1-2+k =2x-1+k 有零点,所以函数y =2x的图象和直线y =1-k 有交点,∴1-k >0,即k <1.(3)∵当x ∈(0,1)时,f (x )>m ·2x-2恒成立,即1-22x +1>m ·2x-2恒成立,亦即m <32x-22x2x+1恒成立, 令t =2x,则t ∈(1,2),且m <3t -2tt +1=3t +1t t +1=1t +2t +1. 由于y =1t +2t +1在t ∈(1,2)上单调递减,∴1t +2t +1>12+22+1=76,∴m ≤76. 尖子生小题库——供重点班学生使用,普通班学生慎用 15.已知实数a ,b 满足12>⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b >14,则( B )A .b <2b -aB .b >2b -aC .a <b -aD .a >b -a解析:由12>⎝ ⎛⎭⎪⎫12a ,得a >1,由⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b,得⎝ ⎛⎭⎪⎫222a >⎝ ⎛⎭⎪⎫22b ,故2a <b ,由⎝ ⎛⎭⎪⎫22b >14,得⎝ ⎛⎭⎪⎫22b>⎝⎛⎭⎪⎫224,得b <4.由2a <b ,得b >2a >2,a <b 2<2, ∴1<a <2,2<b <4.对于选项A ,B ,由于b 2-4(b -a )=(b -2)2+4(a -1)>0恒成立,故A 错误,B 正确;对于选项C ,D ,a 2-(b -a )=a +122-⎝ ⎛⎭⎪⎫b +14,由于1<a <2,2<b <4,故该式的符号不确定,故C ,D 错误.故选B.16.已知max(a ,b )表示a ,b 两数中的最大值.若f (x )=max(e |x |,e |x -2|),则f (x )的最小值为e.解析:由题意得,f (x )=⎩⎪⎨⎪⎧e x,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e x≥e(当x =1时取等号), 当x <1时,f (x )=e |x -2|=e2-x>e ,因此x =1时,f (x )有最小值f (1)=e.。