自由基与疾病4

合集下载

自由基与心脑血管疾病

自由基与心脑血管疾病

自由基与心脑血管疾病
氧自由基引起脂质过氧化,导致动脉粥样硬化,这是导致心血管疾病的主要原因。

动脉粥状硬化也就是我们通称的动脉硬化,当人体内的胆固醇碰上自由基,就是动脉硬化的开始。

胆固醇可以分成好的胆固醇和坏的胆固醇,其中坏的胆固醇称为低密度脂蛋白,简称LDL。

LDL很容易被自由基氧化,被氧化的LDL经过一连串的变化,就会形成泡沫细胞,这些泡沫细胞就像我们吃的粥一样,会附着在我们的血管壁上,就像水管里的污垢。

经过日积月累,这层粥状的污垢越积越多,体积也越来越大;当这些粥状物累积到一个程度,就会像山崩一样,破裂成碎片与血管脱离,跌进血液里,当血液碰到这些碎片,会凝聚、堆积、阻碍血液的流动,形成血栓。

血栓会将血管阻塞,如果发生在供应心脏血管的冠状动脉,就是冠心病;如果发生在脑部,就会造成中风。

换句话说,真正形成动脉粥状硬化的是“被自由基氧化的低密度脂蛋白( LDL)”。

细胞膜被氧自由基氧化引起血小板凝集,这是脑血栓、心肌梗死形成的第一步。

自由基在人类疾病中的应用研究

自由基在人类疾病中的应用研究

自由基在人类疾病中的应用研究自由基是一种非常复杂的分子,它与人类疾病的联系备受关注。

自由基会导致DNA、蛋白质、脂肪酸等重要生物分子的氧化损伤,从而导致各种疾病的发生。

此外,自由基还在细胞信号传导、免疫反应等重要生理功能中发挥作用。

因此,对自由基在人类疾病中的应用研究具有重要意义。

自由基与癌症癌症是一种主要由突变引起的疾病,而自由基的氧化作用可以引起DNA的突变和损伤。

因此,研究自由基与癌症的关系,有助于人们更好地理解癌症的病理机制,提高癌症治疗的效果。

一些研究表明,自由基可以诱导癌症干细胞的增殖和侵袭能力,并且还可以影响基因表达和细胞周期的调控。

此外,自由基可以破坏免疫系统的正常功能,使人类更加容易受到癌症的侵袭。

因此,研究自由基与癌症的关系,可以为癌症的预防和治疗提供新的思路和方法。

自由基与心血管疾病心血管疾病是一类由心脏和血管病变引起的心脏病和脑血管病。

自由基在血管内皮细胞、平滑肌细胞和心肌细胞中都具有重要作用,可以导致心肌细胞的损伤和死亡,破坏血管内皮细胞的屏障功能,促进血栓的形成。

一些研究认为,体内自由基产生过剩,缺少清除自由基的酶,会导致心血管疾病的发生。

此外,一些抗氧化剂,如维生素E和维生素C等,可以通过清除自由基来预防心血管疾病。

因此,研究自由基的作用机制和动态变化,对于开发新的治疗方案和预防措施具有重要意义。

自由基与神经系统疾病神经系统疾病是一类由于神经元损伤引起的疾病,如老年痴呆症、帕金森病、类风湿性关节炎等。

自由基的氧化作用对神经元的生存和功能发挥有重要影响。

一些研究表明,自由基的氧化作用可以导致神经元的死亡和炎症反应的发生。

此外,自由基还会影响神经元膜的动态变化和突触传递的效率。

因此,研究自由基与神经系统疾病的关系,有望为这些疾病的预防和治疗提供新的方法和手段。

总结自由基是一类非常重要的分子,它与人类疾病的联系备受关注。

自由基的氧化作用可以引起DNA、蛋白质和脂肪酸等重要生物分子的损伤,从而导致各种疾病的发生。

自由基与血液系统疾病

自由基与血液系统疾病

自由基与血液系统疾病造血系统的疾病一般分为5类:1、红细胞系统疾病。

包括缺血性贫血、感染性贫血、肾性贫血、恶性肿瘤所致的贫血、恶性贫血、营养性巨幼红细胞性贫血、肝病贫血、真性红细胞增多症和继发性红细胞增多症。

2、白细胞系统疾病。

包括急性白血病、慢性白血病、多发性骨髓瘤和原发性巨球蛋白血症3、血小板异常。

包括血小板增多、血小板减少和血小板功能缺陷。

4、出血性疾病。

包括紫癜、遗传性出血性毛细血管扩张症、恶性肿瘤患者的止血凝血异常和获得性凝血因子抑制物。

5、纤维蛋白溶解系统疾病血液系统的三大肿瘤是:白血病、多发性骨髓瘤、淋巴瘤。

其中我国的白血病发病率为276/10万。

在小儿时期,白血病是最常见的恶性肿瘤。

15岁以下儿丿童白血病的发病率为410万左右,约占该时期所有恶性肿瘤的35%,我国每年约有15万例15岁以下的儿童罹患白血病。

引起造血系统疾病的原因,可能是感染性的、化学性的、物理性的、变态发应性的、肿瘤性的、代谢性的、失血性的或原因不明的所谓原发性再生障碍性贫血或血小板减少性紫癜)等。

以上的疾病有其发生的直接原因和诱因,但与自由基的生成及损害有密切的关系;其发生与发展也同自由基有干丝万缕的联系。

机体内的自由基活力大部分来自氧自由基。

在氧分子还原成水的过程中,需要接受4个电子,如果这4个电子能一次获得就不具有任何毒性。

一旦出现氧的单电子还原,就会形成一系列的中间产物,包括超氧化物阴离子自由基、过氧化氢、羟自由基等。

这些自由基在体内产生过量时,对机体的组织和细胞产生损害,造成多种疾病。

但体内的内源性抗氧化剂及外源性抗氧化剂的含量和活性较强时,可以抑制自由基的产生或清除自由基,从而避免疾病的发生与发展。

一些外源性的化合物(包括芳香族化合物)可对红细胞造成氧化损伤,它们加强氧化还原作用,与血红蛋白作用而产生自由基;自由基则引起中药的蛋白如血红蛋白、硫醇依赖性酶、红细胞膜组分的变性,再者,导致细胞膜的脂质过氧化,影响红细胞的变形性与渗透性。

自由基与疾病的关系

自由基与疾病的关系

西医发展史上的第二次革命——论自由基与疾病关系无论是国内还是国外,SOD都受到科学家和普通百姓越来越多的关注,大量的私人和国家资本源源不断地投入到SOD及自由基的研发中。

SOD的作用其实很简单,只有一个——高效清除自由基。

那么,什么是自由基呢?人们为什么非要除之而后快呢?自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团,它总是试图从其他物质那里夺取的一个电子,使自己形成稳定的物质,因而其化学性质极为活泼,极具攻击性,是机体氧化反应中产生的有害化合物,具有强氧化性,可损害机体的组织和细胞,进而引起慢性疾病及衰老效应。

所有引发自由基的综合因素、尤其是越来越多的外源途径,导致自由基的瞬时增多、过量堆积,而大量自由基就像“高能连锁炸弹”一样,在人体内产生恶性连锁氧化反应,损伤机体的生物大分子和各种细胞成份,降低细胞活性,并使细胞结构和功能遭到破坏,甚至变性变异。

我们了解了自由基在微观分子及细胞水平上的危害,当细胞损伤程度微弱或损伤数量不足时,它往往以我们认为可以忽略不计的轻微不适或查无病因的亚健康状态展示出来,而损伤的积累则会诱发种种疾病。

具体来说,自由基与人体炎症、自身免疫性疾病、辐射损伤、衰老、皮肤疾病、白内障、心脑血管疾病(冠心病、动脉硬化、高血压)、老年痴呆症、脂肪肝、前列腺病、肾病、糖尿病、癌症等密切相关。

下面我们来看看自由基造成损伤的积累后果——各类疾病的具体成因:1、自由基与心脑血管疾病心脏和大脑的动脉血管发生粥样硬化是引发心脑血管疾病的常见原因。

动脉粥样硬化的成因则是:自由基攻击血管壁的“低密度脂蛋白”LDL,使其丢失电子变成“氧化低密度脂蛋白”即坏胆固醇,这时作为人体重要免疫细胞的巨噬细胞就会将这种“坏胆固醇”作为异物吞噬掉,进而形成粥样硬化的斑块。

由于动脉粥样硬化,导致血管腔狭窄,血流受阻,心肌细胞和脑细胞供血不足,容易引发缺血性组织坏死。

缺血所引发的组织损伤是致死性疾病的主要原因,诸如冠动脉硬化与中风。

从分子层面认识自由基的生物学功能

从分子层面认识自由基的生物学功能

从分子层面认识自由基的生物学功能随着科学技术的不断发展,人们更加深入地了解到自由基在生物学过程中发挥的重要作用。

自由基是指具有不成对电子的分子或原子,其特性是高度反活性和自由度,因此容易与周围分子或细胞产生相互作用。

在某些情况下,自由基可以发挥正面作用,促进正常生理功能的正常进行,而在另一些情况下,它们可以导致细胞损伤和疾病的发生。

因此,从分子层面认识自由基的生物学功能至关重要。

一、自由基的基本生物学功能自由基可以从外部环境或内部细胞代谢过程中产生,并在生物学过程中发挥重要作用。

它们可以调节细胞信号传导和基因表达,维持正常的代谢和免疫反应,还可以促进细胞增殖。

同时,自由基也可以引起DNA、蛋白质和脂质的氧化损伤,进而导致细胞衰老、死亡和疾病的发生。

二、自由基的来源和产生途径细胞内自由基的产生主要来自于线粒体、内质网、细胞质和细胞核等细胞器。

线粒体是细胞内的主要自由基来源,其内部呼吸链中的细胞色素c氧化酶复合物可以产生超氧化物自由基。

内质网是蛋白质合成和修饰的重要场所,也是自由基的产生途径之一。

细胞质内的核糖体和各种氧化酶也会产生自由基。

此外,一些毒性物质和辐射也能够产生自由基,从而引起DNA的氧化损伤。

三、抗氧化剂的作用及机制抗氧化剂是可以中和自由基并保护细胞的化学物质。

它们通过捕获和中和自由基来减少自由基危害的程度。

抗氧化剂可以分为内源性和外源性抗氧化物质。

内源性抗氧化物质包括超氧化物歧化酶、谷胱甘肽过氧化物酶等,这些酶能够有效中和自由基并保护细胞不受氧化损伤。

外源性抗氧化物质包括维生素C、维生素E、类胡萝卜素等,这些物质可以帮助中和细胞外的自由基。

四、自由基与疾病的关系自由基与多种疾病密切相关,其中包括心血管疾病、阿尔茨海默病、癌症、糖尿病等。

自由基对脂质、蛋白质和DNA的氧化损伤是多种疾病的共同机制。

例如,心血管疾病是由于血管内壁的脂肪被氧化产生的物质沉积在血管壁上,导致血管狭窄和阻塞。

类似地,糖尿病患者的高血糖状态会导致蛋白质和脂质氧化损伤,从而导致眼、肾和神经的损伤。

《分子药理学》第二章 自由基与疾病

《分子药理学》第二章 自由基与疾病

二、自由基对蛋白的损伤
1. 蛋白质活性部位的修饰 2. 蛋白质结构的破坏
休克时中性粒细胞被激活,此过程中出现呼吸爆发 (respiratory burst),在细胞膜NADPH氧化酶催化 下,O2从NADPH获得电子,产生超氧阴离子 。在上 述反应中,NADPH氧化酶的激活起重要作用。正常状 态下,该酶处于静止状态,休克时多种体液因子如补 体、细菌、内毒素、PAF、LT等均可起激活作用。呼 吸爆发产生 后,又可经一系列反应生成H2O2、 OH• 等多种氧代谢产物,但它们的半衰期很短,在细胞外 参与邻近靶分子的反应。因此细胞膜被认为是主要的 损伤部位,而H2O2还能通过靶细胞膜上的阴离子通道, 扩散进入靶细胞,参与细胞内的分子反应,引起细胞 损伤。
2. 脂自由基对蛋白质分子的进攻
在自由基的作用下,胞浆与膜蛋白以及某些酶的分子 可发生交联、聚合或肽腱断裂,使蛋白质和酶结构破 坏、活性丧失。前面已述及,膜的脂质微环境改变, 也影响膜蛋白和酶的功能,如Na+ -K+-ATP酶失活, 使Na+ 内流增多;Na+-Ca2+ 交换增强,使细胞内钙 超负荷。近年来特别注意到,在缺血/再灌注使微粒体 及质膜上的脂加氧酶(lipooxygenase)及环加氧酶 (cyclooxygenase)激活,催化花生四烯酸代谢, 在增加自由基产生及脂质过氧化的同时,还形成具有 高度活性的物质,如前列腺素、血栓素、白三烯等。 许多实验证明,缺血特别是再灌注时血栓素形成增加, 前列环素形成减少,从而产生微循环障碍,与无复流 现象有关。
(3)破坏核酸和染色体 自由基可以导致碱基改变、DNA断裂和染色体畸变,
这些改变80%由OH•引起。OH•易与脱氧核糖及碱基 起反应并使其改变。

自由基与人类疾病

自由基与人类疾病

自由基与人类疾病
陈新民
【期刊名称】《福建医药杂志》
【年(卷),期】1990(12)5
【摘要】自由基生物学是近年来发展起来的一门新兴边缘学科。

自由基在生物体系中的作用已成为许多学科感兴趣的研究课题,现就自由基生物学、自由基与疾病以及自由基清除剂作一简要介绍。

一、自由基生物学自由基(free radical)又称游离基,具有未配对电子的原子或原子团,故未配对电子的离子、分子也是自由基。

就氧自由基而论,人体氧代谢过程中会产生一些氧自由基,也称活性氧,包括超氧阴离子自由基(O_之^-)、羟自由基(·OH)、过氧化氢(H_2O_2)和单线态氧(·O_2)4种。

首先形成的是O_之^-,
【总页数】2页(P49-50)
【作者】陈新民
【作者单位】无
【正文语种】中文
【中图分类】R363
【相关文献】
1.自由基的基础与临床专辑(二)肝、胆、胰疾病与自由基 [J], 魏文汉
2.自由基的基础与临床专辑(二)肾脏疾病与自由基 [J], 魏文汉
3.自由基的基础与临床专辑(二)皮肤疾病与自由基 [J], 林洁
4.自由基的基础与临床专辑(二)抗氧化维生素对自由基诱发疾病的治疗 [J], 曾美麟
5.自由基的基础与临床专辑(二)自由基所致疾病的一般性预防 [J], 潘福堂因版权原因,仅展示原文概要,查看原文内容请购买。

自由基与疾病

自由基与疾病

自由基与疾病
自由基产生:1、体内新陈代谢——氧化反应产生的物质;
2、食物脂肪过多——脂质过氧化;
3、工业废气;
4、吸烟、酗酒;
5、福射、紫外线。

破坏蛋白质——破坏体内酶—炎症、衰老
疾病:自由基进入体内——破坏正常细胞破坏脂肪——脂质过氧化—A粥样硬化
破坏碳水化合物—使透明质酸降解—关节炎
破坏细胞内DNA—细胞裂变—癌症
(DNA为脱氧核糖核酸—遣传基因)
压力与疾病
压力产生因素:性格因素、环境因素、情绪因素、化学因素、生理因素。

疾病:压力致肾上腺衰竭、血糖不稳定、剥弱免疫系统、心血管疾病、加速人体老化、影响消化系统、身体易敏感、引起精神问题
细菌、病毒入侵致疾病:炎症、感染性疾病。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 自由基与疾病
余涓
第一节 生物体中的主要 自由基及其生理学意义
一、生物体中的主要自由基
(一) 氧中心自由基
1. 超氧阴离子(superoxide radical)
(1) 细胞色素P450(CytP450) (2) 线粒体 (3) 吞噬细胞的呼吸爆发 (4) 黄嘌呤氧化酶(xanthine oxidase)
2. 过氧化氢(hydrogen peroxide H2O2)
(1) O2的歧化反应 (2) 酶促反应 (3) 羟自由基(hydroxyl radical,OH·) (4) 单线态氧O2(singlet oxygen)
(二) 氮中心自由基
1. 一氧化氮(nitric oxide NO) 2. 过氧亚硝基阴离子(peroxynitrite ONOO-)
第四节 机体的抗氧化防御机制
一、活性氧和自由基的清除酶系统
1. 超氧化物歧化酶 2. 过氧化氢酶 3. 谷胱甘肽过氧化物酶(glutathione
peroxidase,GSH-PX) 4. 谷胱甘肽转硫酶(glutathione S-
transferase GST) 5. 铜蓝蛋白(ceruloplasmin)
第三节 自由基与疾病
一、自由基与放射损伤
1. 高能射线的直接损伤作用 2. 高能射线的间接操作作用 3. 放射损伤的继发效应
二、自由基与缺血-再灌注损伤
1. 毛细血管内皮细胞的黄嘌呤氧化酶 2. 线粒体 3. 白细胞 4. 儿茶酚胺的氧化
三、自由基与动脉粥样硬化
1. 泡沫细胞的形成 2. oxLDL的致动脉粥样硬化特性
protein kinase,MAPK)介导的AP-1的激活和FOS、JUN基 因的表达
(2) 对核转录因子KappaB(NF-kB)的调控
3. 氮自由基NO的生理功能
(1) 内皮依赖的血管松弛因子 (2) 神经信使分子 (3) 免疫效应分子
4. 免疫保护效应中的自由基机制
第二节 自由基损伤
一、自由基对核酸的损伤
1. DNA骨架损伤 2. 碱基修饰 3. DNA-DNA、DNA-蛋白交联(cross-
links)
二、自由基对蛋白的损伤
1. 蛋白质活性部位的修饰 2. 蛋白质分子的聚合、断裂
三、自由基对脂质的损伤
1. 膜结构的破坏 2. 脂自由基对蛋白质分子的进攻 3. 过氧化脂质羰基产物对蛋白质分子
的交联作用
(三) 半醌类自由基(semiquinone radical)
二、自由基的生理学意义
1. 蛋白质活性的调控
(1)氧张力感受 (2)黄嘌呤脱作为信号分子对基因转录的调控
(1) 转录因子AP-1的激活
1) FOX/JUN蛋白可逆氧化-还原态的转化调控AP-1的活性 2) Ca2+依赖的AP-1蛋白的转录诱导 3) 通过花生四烯酸代谢介导的AP-1的表达 4) 经丝裂原激活的蛋白激酶(mitogen activated
相关文档
最新文档