2020-2021学年湖北省咸宁市咸安区九年级上学期期末考试数学试卷及答案解析

合集下载

2020-2021年九年级上册期末数学试题(含答案)

2020-2021年九年级上册期末数学试题(含答案)

2020-2021年九年级上册期末数学试题(含答案)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .3 D .10103.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y << B .123y y <<C .213y y <<D .213y y <<4.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25° 6.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=07.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <19.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .410.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+311.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7512.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .13.一组数据0、-1、3、2、1的极差是( ) A .4 B .3 C .2 D .1 14.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10015.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,45) C .(203,45) D .(163,43) 二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .17.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.18.数据2,3,5,5,4的众数是____.19.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.22.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .23.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .24.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.25.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 26.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.28.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.29.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)30.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.三、解答题31.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒32.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.33.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 335.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A 、B 各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y =x 2﹣5x +6的图象上的概率.四、压轴题36.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.37.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan2CDE∠=,记AD x=,ABC∆面积和DBC∆面积的差为y,直接写出y关于x的函数关系式.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.A解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, CD=2,AD=22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.4.C解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.5.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.7.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.8.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.B解析:B 【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下, ∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.11.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴22,34∵CD=DB,∴AD=DC=DB=5,2∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.12.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.13.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.14.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=3O'F 2⋅=,∴.在Rt △O′FB 中,由勾股定理可求83=,∴OF=820433+=.∴O′的坐标为(20,33). 故选C .【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题16.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.解析:53π 【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 17.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.()【解析】设它的宽为xcm .由题意得 .∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10510)【解析】设它的宽为x cm .由题意得51:20x -=. ∴10510x = .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.23.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.24.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长. 【详解】 过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则. 【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 25.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.26.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 27.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.28.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙; 故答案为:乙. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.30.7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】 解:∵, ∴, ∴, ∴, ∴;故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】解:∵2430x x +-=, ∴243x x +=, ∴2447x x ++=, ∴2(2)7x +=, ∴7n =; 故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.三、解答题31.(1)x 1=-1,x 2=4;(2)原式=12【解析】 【分析】(1)按十字相乘的一般步骤,求方程的解即可; (2)把函数值直接代入,求出结果 【详解】解:(1)234x x -= (x+1)(x-4)=0 ∴x 1=-1,x 2=4;(2)原式2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值. 32.(1)14;(2)14. 【解析】 【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解. 【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.33.(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b ;③当n<-3或n>-1时,a<b【解析】【分析】(1)方法一:当y=0时,(x-m)(x-m-4)=0,解得x1=m,x2=-m-4,即可得到结论;方法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+4x-m2-4m.令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论. 34.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】∵x 高=()110+6+7+8+9=85⨯(℃),x 低 =()11+01+0+3=0.65⨯-(℃),2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2)∴2S 高>2S 低∴这5天的日最高气温波动大. 【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.35.(1)见解析;(2)19【解析】 【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y =x 2﹣5x +6的图象上的结果数,再根据概率公式计算即可解答. 【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y =x 2﹣5x +6的图象上, 所以P (这些点落在二次函数y =x 2﹣5x +6的图象上)=218=19. 【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.四、压轴题36.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD≌△BCF,得到∠CAD=∠CBF即可得到∠AEF=∠BCF=90°即可;②根据已知条件画图即可;(2)取AB的中点M,根据直角三角形斜边上的中线等于斜边的一半可得到点A,B,C,E四点在同一个圆M上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB︒=∠=,CD CF=∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,。

湖北省咸宁市咸安区九年级上学期期末考试数学试卷及答案解析

湖北省咸宁市咸安区九年级上学期期末考试数学试卷及答案解析

第 1 页 共 28 页
2019-2020学年湖北省咸宁市咸安区九年级上学期期末考试
数学试卷
一、精心选一选(本大题共8小题,每小题3分,共24分,每小题给出的4个选项中只有一个符合题意,请将所选项的字母代号写在题后的括号里)
1.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
2.下列说法错误的是( )
A .必然事件发生的概率是1
B .通过大量重复试验,可以用频率估计概率
C .概率很小的事件不可能发生
D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得
3.对于二次函数y =(x ﹣1)2+2的图象,下列说法正确的是( )
A .开口向下
B .对称轴是直线x =﹣1
C .顶点坐标是(﹣1,2)
D .与x 轴没有交点
4.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组
其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )
A .x (x +1)=210
B .x (x ﹣1)=210
C .2x (x ﹣1)=210
D .12x (x ﹣1)=210 5.已知⊙O 半径为3,M 为直线AB 上一点,若MO =3,则直线AB 与⊙O 的位置关系为( )
A .相切
B .相交
C .相切或相离
D .相切或相交
6.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的
延长线上,则∠CDE 的度数为( )。

2020-2021上学期年九年级数学上学期期末测试卷01(人教版湖北专用)(解析版)

2020-2021上学期年九年级数学上学期期末测试卷01(人教版湖北专用)(解析版)

2020-2021学年九年级数学上学期期末测试卷01一、选择题(每小题3分,共30分)1. (2020营口)一元二次方程2560x x -+=的解为( ) A .122,3x x ==- B .122,3x x =-= C .122,3x x =-=- D .122,3x x == 【答案】C【解析】(x-2)(x-3)=0, x-2=0或x-3=0, ∴x 1=-2, x 2=3, 故选D .2.(2020广州)下列图形中既是轴对称图形,也是中心对称图形的是( )A. B. C. D.【答案】B【解析】A 图既不是轴对称也不是中心对称;C 图为轴对称,但不是中心对称;D 图为中心对称,但不是轴对称,故选B.3.6月15日“父亲节”,小明送给父亲一个礼盒(如图),该礼盒的俯视图是( )A. B. C . D .【答案】C【解析】从上面往下面看,是四个矩形,故选C .4.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tanA =( )A .53 B .54 C .43 D .34 【答案】D【解析】在直角△ABC 中,∵∠ABC=90°,∴tanA=34=AB BC .故选D . 5.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹 【答案】B【解析】A 、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B 、早晨的太阳从东方升起,是必然事件,故本选项正确;C 、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D 、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B . 6.在同一平面直角坐标系中,函数y =mx +m 与y =xπ(m ≠0)的图象可能是( ) A. B. C. D.【答案】A【解析】A 、由函数y =mx +m 的图象可知m >0,由函数y =xπ的图象可知m >0,故本选项正确;B 、由函数y =mx +m 的图象可知m <0,由函数y =xπ的图象可知m >0,相矛盾,故本选项错误;C 、由函数y =mx +m 的图象y 随x 的增大而减小,则m <0,而该直线与y 轴交于正半轴,则m >0,相矛盾,故本选项错误;D 、由函数y =mx +m 的图象y 随x 的增大而增大,则m >0,而该直线与y 轴交于负半轴,则m <0,相矛盾,故本选项错误;故选A .7.如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( )A .4B .5C .6D .7 【答案】B【解析】360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况,故选B .8.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,CD ⊥AB .若∠DAB =65°,则∠BOC =( )A .25°B .50°C .130°D .155° 【答案】C【解析】∵CD ⊥AB .∠DAB=65°,∴∠ADC=90°﹣∠DAB=25°,∴∠AOC=2∠ADC=50°,∴∠BOC=180°﹣∠AOC=130°.故C .9.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( )A .2100cm π B .2400cm 3π C .2800cm 3π D .2800cm π 【答案】C【解析】)(3800360201203603012022cm s πππ=⨯-⨯=10. 若A (– 4,y 1),B (– 3,y 2),C (1,y 3)为二次函数y =x 2+4x –5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .312y y y <<B .y 1<y 2<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 【答案】A【解析】二次函数542-+=x x y 可变形为:9)2(2-+=x y ,由此可知,抛物线的顶点坐标为:)9,2(--,对称轴为2-=x ,又因为01>=a ,所以当2-<x 时,y 随x 的增大而减少,又234-<-<-,因此21y y >;由抛物线的轴对称性可知,3y 的值等于二次函数在5-=x 处的函数值,因为当2-<x 时,y 随x 的增大而减少,2345-<-<-<-,所以312y y y <<.二、填空题(每小题3分,共24分)11.写一个你喜欢的实数m 的值 ,使关于x 的一元二次方程x 2–x +m =0有两个不相等的实数根. 【答案】0【解析】根据题意得:△=1- 4m >0,解得:m <41,则m 可以为0. 12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是______. 【答案】31 【解析】如图所示:取出的两个数字都是奇数的概率是:3162=. 13. 已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是 . 【答案】相交【解析】设圆的半径为r ,点O 到直线l 的距离为d ,∵d=5,r=6,∴d <r ,∴直线l 与圆相交.14.(2020广州)如图,已知四边形ABCD ,AC 与BD 相交于点O ,∠ABC =∠DAC =90°= .【答案】328【解析】过B 点作BE//AD 交AC 于点E ,则BE ⊥AD ,△ADO ∽△EBO ,∴CE=2BE=4AE ,∴15.(2020怀化)如图是一个几何体的三视图,根据图中所示数据求得个几何体的侧面积是______.(结果保留π)【答案】24π【解析】由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱体的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π, ∴这个圆柱的侧面积是4π×6=24π. 故答案为:24π.16.规定:sin (–x )= –sin x ,cos (–x )= cos x ,sin (x +y )=sinx ·cosy +cosx ·siny ,据此判断下列等式成立的是 (写出所有正确的序号).①cos (– 60°)= – 12;② sin 75°= 6+24;③sin 2x =2sinx ·cosx ;④sin (x –y )=sinx ·cosy –cosx ·siny .【答案】②③④.【解析】①cos (–60°)=cos60°=21,命题错误;②sin75°=sin (30°+45°)=sin30°•cos45°+cos30°•sin45°=21×22+23×22=42+46=426 ,命题正确;③sin2x=sinx•cosx+cosx•sinx═2sinx•cosx ,故命题正确;④sin (x –y )=sinx•cos (–y )+cosx•sin (–y )=sinx•cosy–cosx•siny ,命题正确.故答案是:②③④. 17.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm .【答案】4.【解析】∵把一个半径为12cm 的圆形硬纸片等分成三个扇形,∴扇形的弧长为:13×2πr=8π,∵扇形的弧长等于圆锥的底面周长,∴2πr=8π,解得:r=4cm ,故答案为:4.18.如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y =xk(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD .若△OCD ∽△ACO ,则直线OA 的解析式为 .【答案】y =2x .【解析】设OC =a ,∵点D 在y =k x 上,∴CD =k a, ∵△OCD ∽△ACO ,∴OC AC CD OC =,∴AC =2OC CD =3a k ,∴点A (a ,3a k ), ∵点B 是OA 的中点,∴点B 的坐标为(2a,32a k ),∵点B 在反比例函数图象上,∴2k a =32a k ,解得,a 2=2k ,∴点B 的坐标为(2a ,a ), 设直线OA 的解析式为y =mx ,则m •2a=a ,解得m =2,所以,直线OA 的解析式为y =2x . 故答案为:y =2x . 三、解答题(共66分)19.(8分)(1)解方程:.0)10553(|4|222=--+--y x y x(2)如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东40°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,求海岛C 到航线AB 的距离CD 是多少海里.【答案】(1),;(2) 【解析】(1)解:∵, ∴x 2﹣y 2﹣4=0,, ∴由,得,代入x 2﹣y 2﹣4=0得: 整理得:,解得:,,(2)解:根据题意可知∠CAD=30°,∠CBD=60°, ∵∠CBD=∠CAD+∠ACB , ∴∠CAD=30°=∠ACB , ∴AB=BC=20海里,在Rt △CBD 中,∠BDC=90°,∠DBC=60°,sin ∠DBC=CDBC, ∴sin60°=CDBC, ∴CD=12×sin60° 20.(6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将△ABC 向下平移4个单位,得到△A ′B ′C ′,再把△A ′B ′C ′绕点C ′顺时针旋转90°,得到△A ′′B ′′C ′′,请你画出△A ′B ′C ′和△A ′′B ′′C ′′(不要求写画法).51=x 522=x 0)10553(|4|222=--+--y x y x 010553=--y x 010553=--y x 2553-=x y 04)2553(22=---x x 010532=+-x x 51=x 522=x【答案】见解析.【解析】如图所示.21.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(−1,2),B(−3,4),C (−2,6),(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.【答案】(1)见解析;(2)见解析.【解析】如图:(1)△A1B1C1即为所求;(2)△A 2B 2C 2 即为所求.22.(8分)如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC .(1)求证:AB =AC ; (2)若AD =4,cos ∠ABF =54,求DE 的长. 【答案】(1)见解析;(2)DE=74.【解析】(1)证明:∵BF 是⊙O 的切线,∴∠3=∠C , ∵∠ABF=∠ABC ,即∠3=∠2,∴∠2=∠C , ∴AB=AC ;(2)如图,连接BD ,在Rt △ADB 中,∠BAD=90°, ∵cos ∠ADB=AD BD ,∴BD=cos cos AD AD ADB ABF =∠∠ = =445=5,∴AB=3.在Rt △ABE 中,∠BAE=90°, ∵cos ∠ABE=AB BE ,∴BE=cos AB ABE ∠=345=154, ∴94,∴DE=AD ﹣AE=4﹣94=74.23.(8分)(2020随州)如图,某楼房AB 顶部有一根天线BE ,为了测量天线的高度,在地面上取同一条直线上的三点C ,D ,A ,在点C 处测得天线顶端E 的仰角为60︒,从点C 走到点D ,测得5CD =米,从点D 测得天线底端B 的仰角为45︒,已知A ,B ,E 在同一条垂直于地面的直线上,25AB =米.(1)求A 与C 之间的距离;(2)求天线BE 的高度.1.73≈,结果保留整数) 【答案】(1),A C 之间的距离为30米;(2)天线BE 的高度约为27米. 【解析】(1)依题意可得,在Rt ABD 中,45ADB ∠=︒ ,25AD AB ∴==米,5CD =米,25530AC AD CD ∴=+=+=米.即,A C 之间的距离为30米.(2)在Rt ACE 中,60ACE ∠=︒,30AC =米,30tan60AE ∴=⋅︒=, 25AB =米,25)(BE AE AB ∴=-=-米.173≈..并精确到整数可得27BE ≈米. 即天线BE 的高度约为27米.24.(8分)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果; (2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少? 【答案】(1)画树状图见解析;(2)P=61. 【解析】(1)画树状图如下:(2)∵一共有6种等可能的结果,当两个转盘的指针所指字母都相同时的结果有一个, ∴P=61. 25.(10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数y =﹣200x 2+400x 刻画;1.5小时后(包括1.5小时)y 与x 可近似地用反比例函数y =(k >0)刻画(如图所示). (1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x =5时,y =45,求k 的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)①喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②k= 225;(2)第二天早上7:00不能驾车去上班.理由见解析.【解析】(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=225x,则y=22511>20,∴第二天早上7:00不能驾车去上班.26. (10分)(2020广州)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(-3,0)和B(1,0),与y 轴交于点C,顶点为D.(1)求解抛物线解析式;(2)连接AD,CD,BC,将△OBC沿着x轴以每秒1个单位长度的速度向左平移,点O、B、C,,,设平移时间为t与点A重合时停止移动。

2020-2021学年度第一学期九年级数学期末考试试卷及答案

2020-2021学年度第一学期九年级数学期末考试试卷及答案

2020-2021学年度第⼀学期九年级数学期末考试试卷及答案2020-2021学年度第⼀学期期末考试试卷九年级数学⼀、选择题:本⼤题共10⼩题,每⼩题3分,共30分,每⼩题只有⼀个正确选项,将此选项的字母填在题后括号内.1.下列图形中既是轴对称图形⼜是中⼼对称图形的是( )2.⼀元⼆次⽅程xx=-232化成⼀般形式后,⼆次项系数为3,它的⼀次项系数和常数项分别是( )A.1、2B.-1、-2C.3、2D.0、-23.⊙O的半径r=10cm,圆⼼到直线的距离OA=8cm,则直线与圆的位置关系是( )A.相交B.相切C.相离D.不确定4.有下列四个说法,其中正确说法的个数是( )①图形旋转时,位置保持不变的点只有旋转中⼼;②图形旋转时,图形上的每⼀个点都绕着旋转中⼼旋转了相同的⾓度;③图形旋转时,对应点与旋转中⼼的距离相等;④图形旋转时,对应线段相等,对应⾓相等,图形的形状和⼤⼩都没有发⽣变化A.1个B.2个C.3个D.4个5.对于抛物线3)1(2y2+--=x,下列判断正确的是( )A.抛物线的开⼝向上B.抛物线的顶点坐标为(-1,3)C.对称轴为直线x=1D.当x>1时,y随x的增⼤⽽增⼤6.如图,点A,B,C三点均在⊙O上,若∠A=30°,则∠BOC的度数是( )A.30°7.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )A.80°B.60°C.50°D.40°8.某超市⼀⽉份的营业额为100万元,第⼀季度的营业额共800万元,如果平均每⽉增长率为x,则所列⽅程应为( )A.100(1+x)2=800B.100+100×2x=800C.100+100×3x=800D.100[1+(1+x)+(1+x)2]=8009.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上⼀点,∠BMO=120°,则⊙C的直径为( )A.6B.5C.3D.2310.⼆次函数)0(2≠++=acbxaxy的顶点坐标为(﹣1,n),其部分图象如图所⽰.以下结论错误的是( )A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的⽅程12+=++ncbxax⽆实数根.⼆、填空题:本⼤题共8⼩题,每⼩题3分,共24分.11.中国汉字有许多具有⼏何图形的特性,观察“⽺,⼠,⽥,旦”这4个汉字有⼀个共同特性都是________图形,其中_______字可看成中⼼对称图形.12.点P(-1,2)关于原点的对称点坐标为.13.抛物线23xy=先向右平移2个单位,再向上平移5个单位,所得抛物线的解析式为___ __.14.如图,△ABC为等边三⾓形,D为△ABC内⼀点,△ABD逆时针旋转后到达△ACP 的位置,则(1)旋转中⼼是____;(2)旋转⾓度是______;(3)△ADP是______三⾓形.15.如图所⽰,图中五⾓星绕着中⼼O最⼩旋转度能与⾃⾝重合.16.若⽅程有两个相等的实数根,则k= _________.17.如图,⊙O是等边三⾓形ABC的外接圆,点D是⊙O上⼀点,则∠BDC= _________.题号⼀⼆三四总分得分第15题图第14题图第17题图第18题图第6题图第10题图第7题图第9题图第1页(共4页)。

咸宁市2020版九年级上学期数学期末考试试卷(II)卷

咸宁市2020版九年级上学期数学期末考试试卷(II)卷

咸宁市2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·宁波模拟) 掷一枚质地均匀的硬币10次,下列说法正确的是()A . 必有5次正面朝上B . 可能有5次正面朝上C . 至少有1次正面朝上D . 不可能有10次正面朝上2. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2020·和平模拟) 下列说法正确的是()A . “三角形任意两边之差小于第三边”是必然事件B . 在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定C . 某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%D . 检测某品牌笔芯的使用寿命,适宜用普查4. (2分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A . 50°B . 20°C . 60°D . 70°5. (2分) (2019八下·西湖期末) 为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A . 18(1+2x)=33B . 18(1+x2)=33C . 18(1+x)2=33D . 18(1+x)+18(1+x)2=336. (2分)(2018·青海) 关于一元二次方程根的情况,下列说法正确的是()A . 有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根7. (2分)已知二次函数y=﹣3(x﹣h)2+5,当x>﹣2时,y随x的增大而减小,则有()A . h≥﹣2B . h≤﹣2C . h>﹣2D . h<﹣28. (2分) (2016八上·六盘水期末) 点(4,﹣3)关于X轴对称的点的坐标是()A . (﹣4,3)B . (4,-3)C . (﹣4,-3)D . (4,3)9. (2分) (2020九上·海曙期末) 如图,在平面直角坐标系中,A点坐标为(1,6),B点坐标为(5,2),点C为线段AB的中点,点C绕原点O顺时针旋转90°,那么点C的对应点坐标及旋转经过的路径长为()A . (-4,3),B . (-4,3),C . (4,-3),D . (4,-3),10. (2分)割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=的图象与两坐标轴所围成的图形最接近的面积是()A . 5B .C . 4D . 17﹣4π二、填空题 (共7题;共7分)11. (1分) (2017七下·泰兴期末) 已知,且,那么的值为________.12. (1分) (2018九下·鄞州月考) 一个不透明的袋子中有2个红球、3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红色球的概率为________ .13. (1分)(2017·娄底模拟) 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为________米.14. (1分)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为________.15. (1分)如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2 ,那么设小道进出口的宽度为x米,列方程是________;16. (1分) (2018九上·清江浦期中) 已知一个圆锥的底面半径为2cm,母线长为8cm,则这个圆锥的侧面积为________cm2.17. (1分)(2018·福建模拟) 如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是________.三、解答题 (共9题;共78分)18. (5分)如图,有一拱桥呈圆弧形,它的跨度(所对弦长AB)为60m,拱高18m,当水面涨至其跨度只有30m时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m,问:是否要采取紧急措施?并说明理由.19. (10分)(2018·重庆) 某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.20. (5分)已知:如图,在⊙O中,弦AB和CD相交,连接AC、BD,且AC=BD.求证:AB=CD.21. (12分)问题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.(1)【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG的位置,从而发现EF=BE+FD,请你利用图①证明上述结论.(2)【类比引申】如图②,在四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E,F分别在边BC,CD上,则当∠EAF与∠BAD 满足________关系时,仍有EF=BE+FD.请说明理由.________(3)【探究应用】如图③,在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80 m,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC,CD上分别有景点E,F,且AE⊥AD,DF=40( -1)m,现要在E,F之间修一条笔直的道路,求这条道路EF的长(结果精确到1 m,参考数据: ≈1.41, ≈1.73).22. (5分)某校八年级(1)班同学在积极倡导和实践“低碳生活”活动中,通过调查随机抽取某城市30天的空气状况并绘制成如下统计表:空气污染指数(W)406090110120天数(t)339105其中W≤50时,空气质量为优;50<W≤100时空气质量为良;100<W≤150时,空气质量为轻微污染.(1)求这个样本中空气污染指数的众数和中位数;(2)在这个样本中空气质量为优或良的共有几天?若一年以366天计算该城市空气质量为优或良的估计约为多少天?23. (15分)(2020·北京模拟) 在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m的值;(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.24. (5分) (2019八下·端州期中) 如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF .求证:四边形ABEF为菱形;25. (10分)(2017·长沙模拟) 某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)26. (11分) (2017九上·萝北期中) 如图(1),在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC 的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1 ,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)求证:BD1=CE1;(2)当∠CPD1=2∠CAD1时,求CE1的长;(3)连接PA,△PAB面积的最大值为________.(直接填写结果)参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共78分)18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-3、24-1、25-1、25-2、26-2、26-3、。

湖北省咸宁市2020年九年级上学期数学期末考试试卷(II)卷

湖北省咸宁市2020年九年级上学期数学期末考试试卷(II)卷

湖北省咸宁市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)方程的解是()A .B .C .D .2. (2分)下列关于二次函数的说法错误的是()A . 抛物线y=﹣2x2+3x+1的对称轴是直线 ,B . 抛物线y=x2﹣2x﹣3,点A(3,0)不在它的图象上C . 二次函数y=(x+2)2﹣2的顶点坐标是(﹣2,﹣2)D . 函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)3. (2分) (2018九上·椒江月考) 平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A . (2,3)B . (2,-3)C . (-2,3)D . (-2,-3)4. (2分) (2018七上·襄州期末) 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A . 2个B . 3个C . 4个D . 5个5. (2分)如图中,轴对称图形的个数是()A . 1个B . 2个C . 3个D . 4个6. (2分)如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,设∠ABC=α,则下列结论错误的是()A . BC=B . CD=AD•tanαC . BD=ABcosαD . AC=ADcosα7. (2分) (2017九上·陆丰月考) 若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A . x2+3x-2=0B . x2-3x+2=0C . x2-2x+3=0D . x2+3x+2=08. (2分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,分别标上1、2、3和6、7、8这6个数字,如果同时转动这两个转盘各一次(指针落在等分线上重转),转盘停止后,指针指向字数之和为偶数的是()A .B .C .D .9. (2分)(2018·长春) 如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x>0)的图象上,若AB=2,则k的值为()A . 4B . 2C . 2D .10. (2分) (2017九上·鄞州月考) 如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()A . 1个B . 2个C . 3个D . 4个11. (2分)在反比例函数的图象的每一条曲线上,y都随着x的增大而增大,则m的值可以是()A . -1B . 0C . 1D . 212. (2分)(2017·润州模拟) 已知二次函数y=ax2+bx+c,函数y与自变量x的部分对应值如下表:x…﹣4﹣3﹣2﹣10…y…3﹣2﹣5﹣6﹣5…则下列判断中正确的是()A . 抛物线开口向下B . 抛物线与y轴交于正半轴C . 方程ax2+bx+c=0的正根在1与2之间D . 当x=﹣3时的函数值比x=1.5时的函数值大二、填空题 (共5题;共9分)13. (1分)(2019·宜宾) 将抛物线的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为________.14. (1分)如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________ 米.15. (1分)七年级(2)班的男女比例为3:2,则男生占全班人数的________ %.16. (5分)(2017·安顺模拟) 如图,A、B是双曲线y= 上的点,分别过A、B两点作x轴、y轴的垂线段.S1 , S2 , S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k=________.17. (1分)(2018·信阳模拟) 如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________(结果保留π).三、解答题 (共9题;共101分)18. (5分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1140 m2 ,求小路的宽.19. (10分) (2019八下·桐乡期中) 用适当的方法解方程:(1)(x+1)(x﹣2)=x+1;(2)(2x﹣5)2﹣(x﹣2)2=0.20. (10分)(2017·响水模拟) 在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣的图象上的概率.21. (10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=15千米,CD=3 千米,AD=12 千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)22. (10分)(2017·吉安模拟) 关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.23. (15分) (2019八下·博乐月考) 如图,每个小方格的边长都是1,求:(1)求△ABC的周长;(2)①画出BC边上的高,并求△ABC的面积;②画出AB边上的高,并求出高.24. (15分) (2019九下·宜昌期中) 如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D.设点B的坐标为(m,n).(1)直接写出点E的坐标,并求出点D的坐标;(用含m,n的代数式表示)(2)若梯形ODBC的面积为,求双曲线的函数解析式.25. (11分)如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:16=52﹣32 , 16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:小明的方法是一个一个找出来的:0=02﹣02 , 1=12﹣02 , 3=22﹣12 ,4=22﹣02 , 5=32﹣22 , 7=42﹣32 ,8=32﹣22 , 9=52﹣42 , 11=62﹣52 ,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是智慧数.问题:(1)根据上述方法,自然数中第12个智慧数是________;(2)他们发现0,4,8是智慧数,由此猜测4k(k≥3且k为正整数)都是智慧数,请你参考小王的办法证明4k(k≥3且k为正整数)都是智慧数.(3)他们还发现2,6,10都不是智慧数,由此猜测4k+2(k为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.26. (15分)(2018·浦东模拟) 如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.(1)求证:△EFG∽△AEG;(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共9分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共101分)18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-3、。

湖北省咸宁市九年级上学期数学期末考试试卷

湖北省咸宁市九年级上学期数学期末考试试卷

湖北省咸宁市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共27分)1. (3分) (2019八上·诸暨期末) 已知,则直线一定经过的象限是()A . 第一、三、四象限B . 第一、二、四象限C . 第一、四象限D . 第二、三象限2. (3分) (2020九上·镇平期末) 下列事件中,不确定事件是()A . 在空气中,汽油遇上火就燃烧B . 用力向上抛石头,石头落地C . 下星期六是晴天D . 任何数和零相乘,结果仍为零3. (2分)已知扇形的半径为2,圆心角为60°,则扇形的弧长为()A .B .C .D .4. (3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=3,AC=4,则sin∠DCB的值为()A .B .C .D .5. (2分) (2016九上·扬州期末) 如图,一个半径为r(r<1)的圆形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A . πr2B .C . r2D . r26. (3分)把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A . y=﹣(x+1)2+2B . y=﹣(x+1)2﹣2C . y=(x+1)2﹣2D . y=﹣(x﹣1)2+27. (2分) (2016九上·滁州期中) 如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长是()A . 3B . 4C . 4D . 28. (3分) (2017九上·西湖期中) 下列正确的是().A . 三个点确定一个圆B . 同弧或等弧所对的圆周角相等C . 平分弦的直径垂直于弦,并且平分弦所对的弧D . 圆内接平行四边形一定是正方形9. (3分)(2017·杭州) 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A . x﹣y2=3B . 2x﹣y2=9C . 3x﹣y2=15D . 4x﹣y2=2110. (3分)把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A .B .C .D .二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=________ .12. (4分)若a:b:c=1:3:2,且a+b+c=24,则a+b﹣c=________ .13. (4分)(2017·贵阳) 袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有________个.14. (4分) (2017九上·台州月考) 如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为________.15. (4分)(2017·黑龙江模拟) 如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.16. (4分) (2020九上·海曙期末) 如图抛物线y=-x2-2x+3与x轴交于A,B,与y轴交于点C,点P为顶点,线段PA上有一动点D,以CD为底边向下作等腰三角形△CDE,且∠DEC=90°,则AE的最小值为________ 。

咸宁市九年级上学期数学期末考试试卷

咸宁市九年级上学期数学期末考试试卷

咸宁市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九上·琼中期中) 若二次函数y=ax2+b的图象开口向下,则()A . b>0B . b<0C . a<0D . a>02. (2分)平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0)、B(0,2)、C(3,0)、D(0,-2),四边形ABCD是().A . 矩形B . 菱形C . 正方形D . 梯形3. (2分) (2017九上·深圳期中) 下列命题正确的是()A . 方程x2-4x+2=0无实数根;B . 两条对角线互相垂直且相等的四边形是正方形C . 甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是D . 若是反比例函数,则k的值为2或-1。

4. (2分) (2020九上·大丰期末) 在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是()A .B .C .D .5. (2分) (2020九上·大丰期末) 如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A . 30°B . 35°C . 40°D . 50°6. (2分) (2020九上·大丰期末) 方程的两根之和是()A .B .C .D .7. (2分) (2020九上·大丰期末) 若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A . 5B . 10C . 20D . 408. (2分) (2020九上·大丰期末) 二次函数在下列()范围内,y随着x的增大而增大.A .B .C .D .二、填空题 (共8题;共17分)9. (1分)(2020·九江模拟) 一元二次方程x2-5x+3=0的两个根为x1、x2 ,则3x1x2+x12-5x1的值为________.10. (1分) (2016八上·江阴期末) 已知点A(a-1,2+a)在第二象限,那么a的取值范围是________.11. (1分)(2019·泰兴模拟) 平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是________.12. (2分)(2017·徐州) 如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.13. (1分) (2020九上·大丰期末) 一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是________.14. (1分) (2020九上·大丰期末) 某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为________.15. (5分) (2020九上·大丰期末) 如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为________.16. (5分) (2020九上·大丰期末) 如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是________.三、解答题 (共11题;共116分)17. (10分)解方程:.18. (5分) (2019九上·宜兴期末) 已知关于x的一元二次方程有两个不相等的实数根,求m的取值范围.19. (10分) (2020九上·大丰期末) 现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.20. (10分) (2020九上·大丰期末) 九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.21. (15分) (2020九上·大丰期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围.22. (10分) (2020九上·大丰期末) 如图,是的直径,是圆心,是圆上一点,且,是延长线上一点,与圆交于另一点,且.(1)求证:;(2)求的度数.23. (10分) (2020九上·大丰期末) 如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.24. (10分) (2020九上·大丰期末) 如图所示,分别切的三边、、于点、、,若,,.(1)求的长;(2)求的半径长.25. (6分) (2020九上·大丰期末) 某网店以每件80元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件的售价每降低2元,其销售量可增加10件.(1)该网店销售该商品原来一天可获利润________元.(2)设后来该商品每件售价降价元,网店一天可获利润元.①若此网店为了尽可能增加该商品的销售量,且一天仍能获利1080元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.26. (15分) (2020九上·大丰期末) 某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?27. (15分) (2020九上·大丰期末) 如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共17分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共116分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 30 页
2020-2021学年湖北省咸宁市咸安区九年级上学期期末考试数学
试卷
一.选择题(共8小题,满分24分)
1.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
2.(3分)以下说法合理的是( )
A .小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是12
B .某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖
C .某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12
D .小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 3.(3分)若点M 在抛物线y =(x +3)2﹣4的对称轴上,则点M 的坐标可能是( )
A .(3,﹣4)
B .(﹣3,0)
C .(3,0)
D .(0,﹣4)
4.(3分)要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),
计划安排30场比赛,设邀请x 个球队参加比赛,根据题意可列方程为( )
A .x (x ﹣1)=30
B .x (x +1)=30
C .x(x−1)2=30
D .x(x+1)2=30
5.(3分)已知⊙O 的直径为12cm ,圆心到直线L 的距离5cm ,则直线L 与⊙O 的公共点
的个数为( )
A .2
B .1
C .0
D .不确定
6.(3分)Rt △ABC 中,∠C =90°,AB =5,内切圆半径为1,则三角形的周长为( )
A .12
B .13
C .14
D .15
7.(3分)已知等腰三角形的三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2
﹣12x +m +2=0的两根,则m 的值是( )
A .34
B .30
C .30或34
D .30或36
8.(3分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示:关于x 的方程ax 2+bx +c =m。

相关文档
最新文档