三角形五心性质概念超全
三角形的五心一次看个够

三角形的五心一次看个够三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在这里分别给予介绍.一、三角形外心的性质a外心定理的证明:例如图,设ab、bc的中垂线处设点o,则存有oa=ob=oc,故o也在a的中垂线上,因为o到三顶点的距离相等,故点o是δabc外接圆的圆心.因而称为外心.o设sabc的外接圆为g(r),角a、b、c的对边分别为a、b、c,bcp=(a+b+c)/2.1:(1)锐角三角形的外心在三角形内;(2)直角三角形的外心在斜边上,与斜边中点重合;(3)钝角三角形的外心在三角形外.2:∠bgc=2∠a,(或∠bgc=2(180°-∠a).3:点g就是平面abc上一点,那么点g就是sabc外心的充要条件就是:点g是?abc的外心?ga?gb?gc(或ga2=gb2=gc2)(点g到三顶点距离相等)(ga+gb)ab=(gb+gc)bc=(gc+ga)ca=0(g为三边垂直平分线的交点)4:点g是平面abc上一点,点p是平面abc上任意一点,那么点g是sabc外心的充要条件是:pg=((tanb+tanc)pa+(tan c+tana)pb+(tana+tanb)pc)/2(tana+tanb+tanc).或pg=(cosa/2sinbsinc)pa+(cosb/2sincsina)pb+(cosc/2sinasinb)pc.5:r=abc/4ssabc.正弦定理:2r=a/sina=b/sinb=c/sinc。
6.外心坐标:取值a(x1,y1),b(x2,y2),c(x3,y3)谋外接圆心座标o(x,y)①.首先,外接圆的圆心是三角形三条边的垂直平分线的交点,我们根据圆心到顶点的距离相等,可以列出以下方程:(x1?x)2?(y1?y)2?(x2?x)2?(y2?y)2(x3?x)2?(y3?y)2?(x2?x)2?(y2?y)2②.化简得到:222(x2?x1)x?2(y2?y1)y?x2?y2?x12?y1222222(x2?x3)x?2(y2?y3)y?x2?y2?x3?y3令a122?2(x2?x1);b1?2(y2?y1);c1?x2?y2?x12?y122222a2?2(x2?x3);b2?2(y2?y3);c2?x2?y2?x3?y3即③.最后根据克拉默法则:x?a1x?b1y?c1;a2x?b2y?c2;c1b2?c2b1ac?a2c1,y?12a1b2?a2b1a1b2?a2b1因此,x,y为最终结果;7.若o是△abc的外心,则s△boc:s△a oc:s△aob=sin∠boc:sin∠aoc:sin∠aob=sin∠2a:sin∠2b:sin∠2c故sin∠2aoa+sin∠2bob+sin∠2coc=0证明:设o点在?abc内部,由向量基本定理,存有moa?nob?roc?0m,n,r?r?,则s?boc:s?coa:saob?m:n:r设:moa?od,nob?oe,roc?of,则点o为△def的重心,又s?boc?111s?eof,s?aoc?s?dof,s?aob?s?doe,∴nrmrmn??s?boc:s?coa:saob?m:n:r若o就是△abc的外心,则s△boc:s△aoc:s△aob=sin∠boc:sin∠aoc:sin∠aob=sin∠2a:sin∠2b:sin∠2c故sin∠2aoa+sin∠2bob+sin∠2coc=0二、三角形的内心内心定理的证明:如图,设∠a、∠c的平分线相交于i、过i作id⊥bc,ie⊥ac,if⊥ab则有ie=if=id.因此i也在∠c的平分线上,即三角形三a内角平分线交于一点.上述定理的证法完全适用于旁心定理,请同学们自己完成.m设△abc的内切圆为o(半径r),角a、b、c的对边分别为a、b、c,p=(a+b+c)/2。
三角形五心性质概念整理超全资料全

重心1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离平方的和最小。
证明方法:设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y)则该点到三顶点距离平方和为:(x1-x)2+(y1-y)2+(x2-x)2+(y2-y)2+(x3-x)2+(y3-y)2=3x2-2x(x1+x2+x3)+3y2-2y(y1+y2+y3)+x12+x22+x32+y12+y22+y32=3[x-1/3*(x1+x2+x3)]2+3[y-1/3*(y1+y2+y3)]2+x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时上式取得最小值x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2最终得出结论。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3];空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/35、三角形到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)心设△ABC的切圆为☉I(r),∠A、∠B、∠C的对边分别为a、b、c,p=(a+b+c)/2.1、三角形的心到三边的距离相等,都等于切圆半径r.2、∠BIC=90°+∠BAC/2.3、在RtΔABC中,∠A=90°,三角形切圆切BC于D,则S△ABC=BD×CD4、点O是平面ABC上任意一点,点I是△ABC心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).5、在△ABC中,若三个顶点分别是A(x1,y1),B(x2,y2),C(x3,y3),那么△ABC心I的坐标是:(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)).6、(欧拉定理)△ABC中,R和r分别为外接圆为和切圆的半径,O和I分别为其外心和心,则OI2=R2-2Rr.7、△ABC中:a,b,c分别为三边,S为三角形面积,则切圆半径r=2S/(a+b+c)8、双曲线上任一支上一点与两交点组成的三角形的心在实轴的射影为对应支的顶点。
三角形五心性质总汇

三角形的五心1.内心:三角形三条内角平分线的交点,也是三角形内切圆的圆心。
角平分线性质:到角两边距离相等. 内心性质:到三角形三边距离相等。
2.重心:三角形三条中线交点中线性质:将三角形面积等分成两部分.重心性质:分三角形的中线两段长比例为2:1(长:短)3.外心:三角形三边垂直平分线的交点,三角形外接圆圆心。
垂直平分线性质:到线段两端点距离相等。
外心性质:到三角形三个顶点距离相等。
4.旁心:三角形一个内角平分线与另外两个外角的平分线的交点。
旁心性质:三角形的四心(内心、重心、垂心、外心)只有一个, 但旁心有三个,旁心到三角形三边所在直线距离相等。
三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍.三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心.1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径.锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp .特别的,在直角三角形中,有 r =12(a +b -c ). 3、三角形的重心 三角形的三条中线交于一点,这点称为三角形的重心. 上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2.4、三角形的垂心 三角形的三条高交于一点,这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”. A B COABCDE F GAB CD E F I aIKHE F D A BCM5、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).每个三角形都有三个旁切圆.重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。
三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的外心、内心、重心、垂心、旁心(五心定理)
4
三
角
形的
垂心
三角形的三条高交于一点,这点称
为三角形的垂心 1,三角形任一顶点到垂心的距离,等于外
心到对边的距离的2倍;锐角三角形的垂
心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍;
2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的
垂心在三角形外 ;
5
三角形的旁心
三角形的一条内角平分线与另两
个外角平分线交
于一点,称为三角形的旁心(旁切圆圆心)
1, 每个三角形都有三个旁心;
2, 旁心到三边的距离相等
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
A
B
C
D
E F
I a
A B
C D
E
F O。
三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]
![三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]](https://img.taocdn.com/s3/m/bff5d6ed6037ee06eff9aef8941ea76e59fa4a74.png)
三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]
三角形的重心:是指三角形内任意一点,它到三条边上三个顶点连线的质心,即三角形的外心和所有顶点的重心。
外心:指三角形的外接圆心,也就是三条边的质心,即三角形的重心。
垂心:指三角形的垂心,也就是三角形所有内角的质心,即三角形的重心。
内心:指三角形内角平分线的交点,也就是三角形各内角的质心,即三角形的重心。
旁心:指三角形的垂直平分线的交点,也就是三角形各边的质心,即三角形的重心。
初中几何三角形五心及定理性质

初中几何三角形五心及定理性质.初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证实,特别简单。
〔重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因此得名〕重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为〔〔X1+X2+X3〕/3,〔Y1+Y2+Y3〕/3〕。
5.以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A〔∠A为锐角或直角〕或∠BOC=360°-2∠A〔∠A为钝角〕。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等垂心定理图1图2三角形的三条高〔所在直线〕交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点能够得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
〔此直线称为三角形的欧拉线〔Eulerline〕〕3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:1.若D、E、F分别是△ABC三边的高的垂足,则∠1=∠2。
初中的几何三角形五心及定理性质

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。
五心数学定义

五心数学定义
五心数学定义主要涉及到三角形的五种特殊点,即重心、外心、内心、垂心和旁心。
以下是关于这些点的详细定义:
1. 重心:三角形的三条中线相交于一点,这点称为三角形的重心。
重心的坐标是顶点坐标的算术平均数,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
此外,重心有一个重要的性质,即重心将中线分为2:1的两部分,也就是说,从顶点到重心的距离是从重心到对边中点的距离的两倍。
2. 外心:三角形三边的垂直平分线相交于一点,这个点称为三角形的外心。
外心到三角形的三个顶点的距离相等,也就是说,外心是三角形外接圆的圆心。
3. 内心:三角形的三条内角平分线相交于一点,这个点称为三角形的内心。
内心到三角形的三边的距离相等,也就是说,内心是三角形内切圆的圆心。
4. 垂心:三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
5. 旁心:与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。
旁心是一个三角形有三个旁心,而且一定在三角形外。
这五个点各自具有独特的性质,并在几何学中发挥着重要的作用。
对于理解和解决与三角形相关的问题,这些定义和性质都是非常有价值的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形五心性质概念超全 The document was prepared on January 2, 2021
重心
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离的和最小。
证明方法:
设三角形三个顶点为(x 1,y 1),(x 2,y 2),(x 3,y 3) 平面上任意一点为(x ,y ) 则该点到三顶点距离平方和为:
(x 1-x)2+(y 1-y)2+(x 2-x)2+(y 2-y)2+(x 3-x)2+(y 3-y)2 =3x 2-2x(x 1+x 2+x 3)+3y 2-2y(y 1+y 2+y 3)+x 12+x 22+x 32+y 12+y 22+y 32
=3[x-1/3*(x 1+x 2+x 3)]2+3[y-1/3*(y 1+y 2+y 3)]2+x 12+x 22+x 32+y 12+y 22+y 32-1/3(x 1+x 2+x 3)2-1/3(y 1+y 2+y 3)2
显然当x=(x 1+x 2+x 3)/3,y=(y 1+y 2+y 3)/3()时
上式取得最小值x 12+x 22+x 32+y 12+y 22+y 32-1/3(x 1+x 2+x 3)2-1/3(y 1+y 2+y 3)2 最终得出结论。
4、在中,重心的坐标是的,
即其坐标为[(X 1+X 2+X 3)/3,(Y 1+Y 2+Y 3)/3];
空间——:(X
1+X
2
+X
3
)/3,:(Y
1
+Y
2
+Y
3
)/3,:(Z
1
+Z
2
+Z
3
)/3
5、三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则OG=1/3(向量OA+向量OB+向量OC)
内心
设△ABC的内切圆为☉I(r),∠A、∠B、∠C的对边分别为a、b、c,
p=(a+b+c)/2.
1、三角形的内心到三边的距离相等,都等于内切圆半径r.
2、∠BIC=90°+∠BAC/2.
3、在RtΔABC中,∠A=90°,三角形内切圆切BC于D,则S△ABC=BD×CD
4、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:
向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).
5、在△ABC中,若三个顶点分别是A(x1,y1),B(x2,y2),C(x3,y3),
那么△ABC内心I的坐标是:
(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),
ay1/(a+b+c)+by2/(a
+b+c)+cy3/(a+b+c))
.
6、(定理)△ABC中,R和r分别为外接圆为和内切圆的半
径,O和I分别为其外心和内心,则OI2=R2-2Rr.
7、△ABC中:a,b,c分别为三边,S为三角形面积,则内切圆半径
r=2S/(a+b+c)
8、双曲线上任一支上一点与两交点组成的三角形的内心在实轴的射影为对应支的顶点。
9、△ABC中,内切圆分别与AB,BC,CA相切于P,Q,R,
则AP=AR=(b+c-a)/2, BP =BQ =(a+c-b)/2,
CR =CQ =(b+a-c)/2,
r=[(b+c-a)tan(A/2)]/2。
10、三角形:
△ABC中,I为内心,∠BAC 、∠ABC、∠ACB的内角平分线分别交BC、AC、AB于Q、R、P,则BQ/QC=c/b,BP/PA=a/b, CR/RA=a/c。
的
(1)在RtΔABC中,∠C=90°,r=(a+b-c)/2.
(2)在RtΔABC中,∠C=90°,r=ab/(a+b+c)
(3)任意△ABC中r=(2*S△ABC)/C△ABC (C为周长)
外心
设⊿ABC的外接圆为☉G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.
性质1:(1)锐角三角形的外心在三角形内;
(2)直角三角形的外心在斜边上,与斜边中点重合;
(3)钝角三角形的外心在三角形外.
(4)等边三角形外心与内心为同一点。
性质2:∠BGC=2∠A,(或∠BGC=2(180°-∠A)).
性质3:∠GAC+∠B=90°
证明:如图所示延长AG与圆交与P(B、C下面的那个点)
∵A、C、B、P四点共圆
∴∠P=∠B
∵∠P+∠GAC=90°
∴∠GAC+∠B=90°
性质4:点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:
(1)向量PG=(tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC).
或(2)向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量
PB+(cosC/2sinAsinB)向量PC.
性质5:三角形三条边的交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。
性质6:点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件(GA+向量GB)·向量AB= (向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=0.
三角形外接圆半径:
R=abc/(4S△ABC)
垂心
1、的垂心在三角形内;的垂心在直角顶点上;的垂心在
三角形外.
2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;
3、垂心H关于三边的对称点,均在△ABC的外接圆上。
4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。
7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则
AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。
8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
9、设O,H分别为△ABC的外心和垂心,则
∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
12、
西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
13、设锐角⊿ABC内有一点P,那么P是垂心的是
PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。
向量PA*向量PB=向量PB*向量PC=向量PC*向量PA
(ABC为三角形三个顶点,P为垂心)
旁心
性质1 :三角形的一条内与其他两个角的外角平分线交于一点,该点即为三角形的。
性质2:旁心到三角形三边的距离相等。
性质3:三角形有三个,三个旁心。
旁心一定在三角形外。
性质4:斜边上的旁切圆的半径等于三角形周长的一半。