差分方法的稳定性

合集下载

第五部分收敛性和稳定性

第五部分收敛性和稳定性
种方法是稳定的。
内江师范学院数学与信息科学院 吴开腾 制作
2、条件稳定和绝对稳定
如果一个算法的稳定是在一定条件下才成立,则称这种稳定 是条件稳定。譬如,步长的选取以保证格式收敛的稳定性。 如果一个算法的稳定是任何条件下都成立,则称这种稳定是 绝对稳定。 3、稳定的意义 稳定性是判别一个算法可用与否的重要条件,在此基础上构 造快捷(收敛速度快!)的方法才是追求的目标。详细分析 在此省略。
第五部分 收敛性和稳定性
引子
微分方程在离散为差分方程来求解,当步长 h 0 时,
存在着差分方程的解 yn能否收敛到微分方程的准确解 y(xn )
的问题,这就是差分方法的收敛性问题。以及在差分方程的求 解过程中,存在着各种计算误差,这些误差如舍入误差等引起 的扰动,在误差传播过程中,可能会大量积累,以至于“淹没” 了差分方程的真解,这就是差分方法的稳定性问题。
即:对 0, 0 ,如果h 0 ,有
en y(xn ) yn
2、欧拉格式的收敛性分析 定理 如果初始条件是准确的,则欧拉格式是收敛的。
3、收敛的意义
收敛性是保证一个算法有效性的重要特征。量化就是 收敛速度(阶)或局部截断误差。
内江师范学院数学与信息科学院 吴开腾 制作
二、稳定性
1、定义
内江师范学院数学与信息科学院 吴开腾 制作
例如 初值问题
y ' 30 y(0) 1
y
,
x
[0,1.5]
的准确解为 y e30x
如果用欧拉格式、Runge-Kutt似解如下表所列
欧拉格式 Runge-Kuatta Adams
内江师范学院数学与信息科学院 吴开腾 制作
精确解
-3.27675104 1.8719102 2.41115106 2.8625210-20

对流方程差分格式稳定性判定

对流方程差分格式稳定性判定

对流方程差分格式稳定性判定李五明【摘要】The paper decided the stability of different difference schemes of the one dimension convection equation using Fourier stability analysis. The fundamental idea of Fourier stability analysis is to extend periodically the error of solution for the linear differential equation and express it using Fourier series, then check the enlargement and decay of every component of the Fourier series. According to Fourier series for each component change over time, we judged the stability of difference schemes by the magnification factor. Using the method, the paper decided the stability of different difference schemes for the given equation.%用傅里叶稳定性分析法判断一维对流方程不同差分格式的稳定性.傅里叶稳定性分析法的基本思想是:对于线性微分方程,将解的误差做周期延拓并用傅里叶级数表示出来,然后考察每一个傅里叶级数分量的增大和衰减情况;根据傅里叶级数每一个分量随时间的变化情况,由放大因子判断差分格式的稳定性.用该方法对给定方程不同差分格式的稳定性进行了判断.【期刊名称】《河南理工大学学报(自然科学版)》【年(卷),期】2012(031)003【总页数】4页(P369-372)【关键词】对流方程;差分格式;稳定性【作者】李五明【作者单位】河南理工大学数学与信息科学学院,河南焦作454000【正文语种】中文【中图分类】O175.210 引言用有限差分法数值求解偏微分方程是计算数学中的一个重要课题.在有限差分法中,差商代替了微商,差分方程代替了微分方程.然而,并不是任何情况下,差分方程都可以逼近原微分方程.因为,方程形式的逼近是一回事,方程解的逼近又是一回事.因此,在基本理论上必须解决数值计算中可能出现的诸如稳定性、精度等问题.采用有限差分法求解由偏微分方程所描述的具体问题时,在确定差分离散格式是否可用之前必须解决3个问题:当差分网格的时间与空间步长都趋近于零时,差分方程是否充分逼近原微分方程;差分格式的真解是否充分逼近原微分方程的精确解;差分格式的近似解与真解之间的误差是否有界.这3个问题在有限差分理论中分别称为相容性、收敛性和稳定性.差分格式的相容、收敛和稳定并不是孤立的,而是互有联系.根据LAX等价定理,若线性微分方程的初值问题适定、差分格式相容,则稳定性是收敛性的必要和充分条件.因此,常常通过判定一个差分格式的稳定性来判定其收敛性.因为,直接证明一个差分格式的收敛性是比较困难的,但对稳定性的证明却容易得多,且现有的方法也比较有效.本文介绍其中最常用的一种分析差分格式稳定性的方法:傅里叶稳定性分析法.傅里叶稳定性分析法的基本思想是将解的误差做周期延拓并用傅里叶级数表示出来,然后考察每一个傅里叶级数分量的增大和衰减情况.如果每一个分量的强度(或振幅)是随时间的推移而增大的,则所讨论的差分格式是不稳定的;反之,若每一个分量的振幅是随时间的推移而衰减或保持不变的,则格式是稳定的.为了进行这种分析,可以把某一分量的表达式代入到误差传播方程中,以得出相邻两时间层该分量的振幅比(通常称为放大因子).稳定性的条件要求放大因子的绝对值(或模)小于或等于1.当放大因子等于1时,称为中性稳定.在这种情况下,任何时刻引进的误差都不会衰减或放大.本文主要针对一维对流方程,利用傅里叶稳定性分析方法讨论其不同差分格式的稳定性.1 傅里叶稳定性分析法针对一个具体的方程来考察傅里叶稳定性分析法,然后再将该方法推广到其他差分格式.一维对流方程的初值问题如下:,(1)问题的定解域为x-t的上平面(图1),分别引入平行于x轴和平行于t轴的两族直线,把求解域划分为矩形网格.网格线的交点称为节点,x方向上网格线之间的距离Δx称为空间步长,t方向上网格线之间的距离Δx称为时间步长.这样,两族网格可记为x=xi=iΔx,(i=0,±1,±2,…),t=tn=nΔt,(n=0,1,2,…).网格划定后,就可针对其中的任一节点,如图1中的节点(xi,tn).将函数u在该点记为,tn)=u(iΔx,nΔt).(2)方程(1)的FTCS(Forward Time Central Space)格式为α.(3)将式(3)改写为易于递推计算的差分格式,有,式中:λ为网格比.相应于上式的误差传播方程为,(4)式中:ε为各节点上的误差.如果对ε在正负方向上作周期延拓,即把ε看作是以某一定值为周期的周期函数,则εn,εn+1可以展开为以下的傅里叶级数[5-6]:.于是,,(5),(6)式中:将式(5)和(6)代入式(4)得.(7)式(7)相当于将零展开成傅里叶级数,式中{ }内相当于傅里叶系数,它对于所有的k都等于零,即,(8)令,(9)则式(8)成为(不失一般性,支掉式中的下标记号k)Cn+1=GCn,(10)表示误差从第n层传播到第n+1层时,以傅里叶级数表示的每一误差分量的振幅放大或衰减了G倍.所以,称G为放大因子.傅里叶稳定性分析法就集中在对G 的分析上,如果|G|>1,则误差的振幅随n的增大而增大,差分格式不稳定;如果|G|≤1,则误差的振幅随n的增大而减小或不变,差分格式稳定.应用欧拉公式e±iz=cos z±isin z,将式(9)改写为G=1-iαλsin kΔx,得|G|2=1+α2λ2sin2kΔx.当sin2kΔx≠0时,选取网格比λ总有|G|>1.因此,差分格式(3)是不稳定的.从上例的分析注意到,以傅里叶稳定性分析法判断差分格式稳定性时,是从误差传播方程出发,将计算节点的误差延拓为傅里叶级数,并通过分析式(7)中傅里叶级数任一系数来确定放大因子G,进而确定差分格式的稳定性.对于齐次线性微分方程,由于误差传播方程与其相应的差分方程形式相同,在傅里叶稳定性分析中,只要令,(11)并将它们代入相应的差分格式中,同样可以得到与上例相同的放大因子G的表达式.为方便起见,在以后的傅里叶稳定性分析讨论中将采用式(11)的方式.2 应用举例例1 试讨论一维对流方程(1)的FTCS隐式差分格式的稳定性.解:方程(1)的FTCS隐式差分格式为α,(12)或写为,λ,将式(11)代入上式,有Cn+1eik(xi-Δx)]=Cneikxi,约去公因子eikxi后,得,即,由此得放大因子为,即≤1,所以,式(12)是无条件稳定的.例2 试讨论一维对流方程(1)的格式的稳定性.解:方程(1)的格式为,(13)或,λ,将式(11)代入上式,有,约掉公因子eikxi,得,由此得放大因子为,有|G|2=1.所以,差分格式(13)是无条件稳定的.3 结论(1)本文利用傅里叶稳定性分析法仅讨论一维对流方程不同差分格式稳定性的判断,实际上,该方法对二维对流方程、一(二)维扩散方程、一维对流-扩散方程也是适用的.(2)本文没有给出一维对流方程迎风格式稳定性的判定,主要是因为需要考虑CFL(Courant-Friedrichs-Lewy)条件,并且要对α的正负进行讨论.限于篇幅,略去.(3)傅里叶稳定性分析法只适用于线性微分方程,对于非线性方程差分格式稳定性的判定,目前还没有严格的一般性理论处理.通常的做法是,从非线性方程对应的线性化模型得出的稳定性判定准则出发,对非线性方程差分格式的稳定性进行大致估计,然后在实际计算中采用试算方法将其扩展到非线性问题中去.参考文献:[1] 张国强,吴家鸣.流体力学[M].北京:机械工业出版社,2005.[2] 顾丽珍.求解对流扩散方程的一些高阶差分格式[J].清华大学学报:自然科学版,1996,36(2):9-14.[3] 管秋琴.一类对流扩散方程组的差分格式与稳定性[J].上海电力学院学报,2009,25(2):192-195.[4] 余德浩,汤华中.微分方程数值解法[M].北京:科学出版社,2003.[5] 范德辉,陈辉,王秀凤,等.对流扩散方程差分格式稳定性分析[J].暨南大学学报:自然科学与医学版,2006,27(1):24-29.[6] 阴继翔,李国君,李卫华,等.对流扩散方程不同格式的数值稳定性分析[J].太原理工大学学报:自然科学版,2004,35(2):121-124,133.[7] 马荣,石建省,张翼龙,等.对流-弥散方程显式差分法稳定性分析方法的初探[J].水资源与水工程学报,2010,21(1):132-134.[8] 陆金甫,关治.偏微分方程数值解解法[M].北京:清华大学出版社,2004.[9] 王静,王艳.RICCATI方程有理展开法及其在非线性反应扩散方程中的应用[J].河南理工大学学报:自然科学版,2010,29(5):689-694.[10] 王同科,马明书.二维对流扩散方程的二阶精度特征差分格式[J].工程数学学报,2004,21(5):727-731.。

一类非线性发展方程差分法的稳定性

一类非线性发展方程差分法的稳定性

Vo . 5 No. 13 5
S p. 0 7 e 2 0

类 非 线 性 发 展 方 程 差 分 法 的 稳 定 性
胡 庆 云
( 河海大学理学 院 , 江苏 南京 209 ) 108
摘 要 : 究 了用差分 法 求解 自治 的发展 方程 时稳 定性 和 收敛性 这 两个基 本概 念之 间的联 系 , 用计 研 利
收 稿 日期 :06 1 —3 20 — 0 1
> , o o , lu 一 < 时 , 0 Vu , ∈S 当 l o ol l 对
作者简介 : 胡庆云(98 )男 , 15 一 , 江苏南京人 , 副教授 , 士, 硕 主要从事计算数学研究
维普资讯
中 图分类号 : 2 18 0 4 .2
文献标 识码 : A
文章 编 号 :00 18 (07 0— 6 9 0 10 —9 0 20 )5 0 0 — 4
本 文研 究一 类非线 性发 展方 程差 分法 的稳定 性 , 该方程 为


( 0 ≤) ≤
( 1 )
() 2
维普资讯
第 3 卷第 5 5 期
2 I 年 9月 (' K/
河 海 大 学 学 报 (自 然 科 学 版 )
Junl f oa U i rt( a r c ne) ora o H hi nv sy N t a Si cs ei ul e
u0 ( )= u ( )
(券)空 [( ] 某 集 的 线 算 ,显 时 因 ,其 自 的 线 发 是 间 2 子 上 非 性 子不 含 间 ,此称 是 治 非 性 展 , ) 的
方程l2. 1j _
假定 用差 分法 离散 方程 () , 到步 进式 计算 格式 1时 得

差分方程及其稳定性分析

差分方程及其稳定性分析

差分方程及其稳定性分析随着科技的不断发展和应用,数学作为一门基础学科,得到了越来越广泛的应用。

其中,差分方程作为一种离散化的微积分,被广泛地运用于电子、天文、生物、经济等领域中的模型计算和分析。

本文将介绍差分方程的基本概念和常见类型,以及如何对其进行稳定性分析。

一、差分方程的基本概念差分方程是指在内插点上的函数值之间的关系方程,其通常形式为:$$x_{n+1} = f(x_n)$$其中,$x_{n}$ 表示第 $n$ 个内插点的函数值,$f$ 是描述$x$ 的随时间变化关系的任意函数。

当然,差分方程还可以有更多的变量和函数,形式也可以更加复杂。

二、差分方程的类型根据差分方程的形式和特征,可将其分为以下几种类型:1、线性差分方程线性差分方程的一般形式为:$$x_{n+1} = ax_n+b$$其中,$a,b$ 为常数,$x_n$ 为第 $n$ 个内插点的函数值。

线性差分方程的求解可以采用常数变易法、特征方程法、生成函数法等多种方法。

2、非线性差分方程非线性差分方程是指其中的关系函数 $f$ 不是线性函数。

一般来说,非线性差分方程更难于求解。

3、线性递推方程线性递推方程是指卷积和形式的一类差分方程。

其形式为:$$x_{n+k} = a_1x_{n+k-1} + a_2x_{n+k-2} + \cdots + a_kx_n$$其中,$a_1,a_2,\cdots,a_k$ 为常数。

三、稳定性分析差分方程作为一种离散化的微积分,常常代表系统的动态演化过程。

因此,判断差分方程的解在过程中是否保持稳定性非常重要。

下面将介绍两种常见的差分方程稳定性分析方法。

1、线性稳定性分析法线性稳定性分析法是指对线性差分方程的解进行稳定性分析。

对于一般型的线性差分方程:$$\Delta x_{n+1} = a\Delta x_n$$其中,$\Delta x_n = x_{n+1} - x_n$,$a$ 为常数。

通过求解特征方程 $r-1=ar$,求得 $a$ 的值,便可判断差分方程解的稳定性。

差分方法的稳定性

差分方法的稳定性

差分方法的稳定性1.实验内容对于一阶线性双曲线型方程:[][]()()00,0,1,0,,0u u x t T t x u x u x ∂∂+=∈∈∂∂= 其中初值 ()01,00,0x u x x ≤⎧=⎨>⎩取空间长度h=0.01,对于不同的差分格式(迎风格式,Lax-Friedrichs 格式,Lax-Wendroff 格式,Beam-Warming 格式以及蛙跳格式)及不同的网格比(时间长度与空间长度比hτλ=)进行迭代计算。

通过将计算结果与精确解进行比较,来讨论和分析差分格式的稳定性。

2.算法思想与步骤2.1迎风格式这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特征线方向一侧的单边差商来代替,格式如下:110,0n n n nj jj j u u u u a a hτ+---+=> 110,0n n n n j jj ju u u u aa hτ++--+=<运算格式: ()1111(1),01,0n n nj j j n n n j j j u a u a u a u a u a u a λλλλ+-++=-+>=+-<2.2 Lax-Friedrichs 格式()111111202n nn n n jj j j j u u u u u a hτ++-+--+-+=运算格式: ()()111111122n nn jj j ua u a u λλ++-=-++2.3 Lax-Wendroff 格式这种格式构造采用Taylor 级数展开和微分方程本身得到 运算格式:()()()()111111122n n n n jj j j a a ua u a a u a u λλλλλλ++-=-++-++2.4 Bean-Warming 格式(二阶迎风格式)借助于双曲型方程的解在特征线上为常数这一事实,可以构造出多种差分格式。

设在n t t =时间层上网格点A,B,C 和D 上u 的值已给定,要计算出在1n t t +=时间层上网格点P 上的u 的值。

差分方程模型的稳定性分析

差分方程模型的稳定性分析
Key words:Difference equation;Difference equation model ; Balance point; Stability
摘要I
AbstractII
目录III
引言1
1、差分方程的定义及其分类1
(1)差分算子:1
2.差分方程的求解与稳定性判断方法:2
(1)差分方程的求解:2
摘 要
微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。
(2)差分方程:
定义2:含有未知函数及未知函数差分的等式,我们称为差分方程,它的一般表达形式为:
由(1)与(2)的关系,可以将阶数为 的差分方程写为
或者
我们称 不显含 时的方程为自治差分方程。形如 表示一阶差分方程; 表示n阶差分方程。
(2)差分方程的分类:
差分方程可以分为两大类:其一为线性差分方程,它是指当 是 的线性函数时,称 为线性差分方程;也就是说 的次数都为 ,其二为非线性差分方程,它是指当 是 的非线性函数时,称 为非线性差分方程。显而易见,非线性差分方程求解比线性差分方程求解复杂,因此它的解的性态也比较难分析,本文我们只研究线性差分方程解的性态。

非定常流体力学中间差分格式稳定性分析研究

非定常流体力学中间差分格式稳定性分析研究

非定常流体力学中间差分格式稳定性分析研究随着计算机技术的发展,数值模拟已经成为研究非定常流体力学的重要手段。

其中差分法是最常用的一种计算方法。

而中心差分法是差分法中最为常用的方法之一。

在数值计算中,稳定性是非常重要的一个问题。

本文将从非定常流体力学的角度出发,分析中心差分格式的稳定性问题。

一、中心差分法中心差分法是一种最为常用的差分法,其具体计算过程是将计算点的函数值表示为它自身与周围计算点值的线性组合,其中,每个计算点的函数值均采用相同的线性组合模式。

这个模式就是中心差分法的核心。

中心差分法可以用于求解一些常见的偏微分方程,例如泊松方程、热传导方程、对流扩散方程,以及非定常流体力学中的纳维-斯托克斯方程等。

二、非定常流体力学的求解非定常流体力学是流体运动学和动力学的研究,其中:研究的是在时间和空间上变化的流场。

在非定常流体力学中,求解纳维-斯托克斯方程是相当难的。

要解决这一问题,可以采用数值模拟的方法。

由于非定常流体力学的求解过程涉及到高维空间和复杂的数学模型,因此需要具有高性能的计算机和优秀的数值方法。

中心差分法作为一种常见的数值方法,可以用于求解非定常流体力学。

不过,如果不考虑其稳定性问题,这种方法也是会出现一些问题的。

三、中心差分格式的稳定问题在数值计算中,稳定性问题是非常重要的一个问题。

稳定性是指对精度的要求。

一种数值计算方法,如果该方法对初始误差非常敏感,或者计算过程中误差放大得太快,那么这种方法就是不稳定的。

因此,中心差分格式的稳定性问题需要引起我们的关注。

中心差分格式的稳定性取决于流场的不稳定性,并且与形式构成的方程相关。

由于中心差分格式本身是一种稳定的方法,但它的稳定性却取决于数值格式和解的一些特性,如模型方程、网格尺寸等因素。

为了解决中心差分格式的稳定性问题,我们可以采用标量稳定性分析和矩阵稳定性分析两种方法。

通过这两种方法的研究和分析,我们可以更好地了解中心差分格式的稳定性问题,并实现更为精准的求解。

差分分方程稳定性

差分分方程稳定性

若 lim x k x ,
* k
则称平衡点 x 是稳定的(渐进稳定);否则称
*
x 是不稳定的(不渐进稳定)。
*
(1)的平衡点的稳定性可转化为
x k 1 a x k 0, k 0,1, (2)
(2)的平衡点 ( x * = 0 ) 的稳定性问题。
方程(2)的解为
xk ( a ) x0 ,
A的 特 征 根 i ( i 1, 2, , n ) 均 有
(6 )
即均在复平面的单位圆内。这个结果可将A转化为对角阵得到。
机动
目录
上页
下页
返回
结束
二阶线性常系数差分方程的平衡点及稳定性
考察
x k 2 a1 x k 1 a 2 x k 0,
*
k 0,1,
(7 )
* f ( x ) 1
(1 3)
时,对于非线性方程(11) x * 是稳定的。当
* f ( x ) 1
(1 4 )
*
时,对于非线性方程(11) x 是不稳定的。
机动
目录
上页
下页
返回
结束
1 1, 2 1,
ห้องสมุดไป่ตู้
(9 )
(7)的平衡点才是稳定性的。
与一阶线性方程一样,非齐次方程
x k 2 a1 x k 1 a 2 x k b , k 0,1, (1 0 )
的平衡点的稳定性与(7)相同。
机动 目录 上页 下页 返回 结束
n阶线性方程稳定性的相关结论可由二阶方程的上述结 果推广得到: n阶线性方程稳定平衡点的条件是特征根 (n次代数方程的根) i ( i 1, 2, n ) 均 有 i 1。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差分方法的稳定性
1.实验内容
对于一阶线性双曲线型方程:
其中初值
取空间长度h=0.01,对于不同的差分格式(迎风格式,Lax-Friedrichs 格式,Lax-Wendroff 格式,Beam-Warming 格式以及蛙跳格式)及不同的网格比(时间来讨论和分析差分格式的稳定性。

2.算法思想与步骤
2.1迎风格式
这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特
征线方向一侧的单边差商来代替,格式如下:
运算格式:
2.2 Lax-Friedrichs 格式
运算格式:
2.3 Lax-Wendroff格式
这种格式构造采用Taylor级数展开和微分方程本身得到
运算格式:
2.4 Bean-Warming格式(二阶迎风格式)
借助于双曲型方程的解在特征线上为常数这一事实,可以构造出多种差分格式。

A,B,C和D
层上网格点P
假定C.F.L条件成立,过P点特征线与BC交于点Q,
①用B,C两点值进行线性插值,得到的是迎风格式;
②用B,D两点值进行线性插值,得到的是Lax-Friedrichs格式;
③用B,C和D三点值进行抛物型插值,得到的是Lax-Wendroff格式。

如果我们采用A,BC三点来进行抛物型插值,可以得到
这就是Beam-Warming格式。

2.5 蛙跳格式
运算格式:
保持精度的阶数相同,一般我们用Lax-Wendroff格式或Beam-Warming格式。

2.6 目标点范围跟踪格式(迎风格式的改进)
下面的分析将会得到这是一个无条件稳定结构。

3.数据分析与作图
3.1迎风格式
稳定性分析:
记,则,得
3.2 Lax-Friedrichs格式
稳定性分析:
3.3 Lax-Wendroff格式
稳定性分析:
3.4 Beam-Warming格式
稳定性分析:
3.5 蛙跳格式
稳定性分析:
3.6 目标点范围跟踪格式
稳定性分析:
,其中,
故无条件稳定。

相关文档
最新文档