七年级数学相交线与平行线综合检测题

合集下载

北师大版七年级下册第二单元相交线与平行线单元综合卷(含答案)

北师大版七年级下册第二单元相交线与平行线单元综合卷(含答案)

第2章相交线与平行线(单元测试·综合卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下面的图形中1∠和2∠是对顶角的是()A .B .C .D .2.如图所示,下列选项中是一组同位角的是()A .∠1和∠3B .∠2和∠5C .∠3和∠4D .∠3和∠53.如图中的条件,能判断互相平行的直线为()A .//a bB .//m nC .//a b 且//m nD .以上均不正确4.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分∠AEF ,如果∠1=32°,那么∠2的度数是()A .64°B .68°C .58°D .60°5.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A .30°,30°B .42°,138°C .10°,10°或42°,138°D .30°,30°或42°,138°6.已知:01180︒∠<<︒,02180︒<∠<︒,且1∠的补角等于2∠的余角,则下列结论一定正确的是()A .1∠是锐角B .2∠是钝角C .1290∠-∠=︒D .12180∠+∠=︒7.直线1l 、2l 、3l 的位置关系如图,下列说法错误的是()A .2∠与1∠互为邻补角,若111154'∠=︒,则268.1∠=︒B .1∠与3∠互为对顶角,若1111.9∠=︒,则3111.9∠=︒C .若23l l ⊥,则1290∠=∠=︒;若190∠=︒,则23l l ⊥D .若34180∠+∠=︒或46180∠+∠=︒,则12l l ∥8.如图,AD 是ABC 的高,若DE AB ∥交AC 于点E ,则1∠与2∠的数量关系是()A .12∠=∠B .1290∠+∠<︒C .1290∠+∠=︒D .1290∠+∠>︒9.五线谱是一种记谱法,通过五根等距离的平行线上标以不同的音符构成旋律,如图,AB 和CD 是五线谱上的两条线段,点E 在AB ,CD 之间的一条平行线上,若1120∠=︒,230∠=︒,则BEC ∠的度数是()A .90︒B .100︒C .120︒D .110︒10.如图,直线AB CD ∥,点P 位于AC 的右侧,BAP α∠=,DCP β∠=,则下列命题错误的是()A .若CP ,AP 分别平分ACD ∠,BAC ∠,则90P ∠=︒∠=+ B.若点P是直线AB,CD之间的点,则Pαβ∠=-C.若点P是直线CD上方的点,则Pβα∠=-D.若点P是直线AB下方的点,则Pβα二、填空题(本大题共8小题,每小题4分,共32分)13.如图,已知AD∥BE,点C是直线FGDAC=22°,则∠EBC的度数为.15.如图(1)纸片ABCD(AD∥BC),将折叠至16.一束光线沿AO 射向平静透明的水面BC ,这束光线有一部分经过水面反射(平静的水面可以看成平面镜)形成光线OD ,还有一部分光线折射到水中形成光线OE .当入射角α和折射角OE ⊥,此时入射光线与水面的夹角AOB ∠的度数为.17.如图,点O 为直线AB 度绕点O 按逆时针方向匀速旋转,首次平分另外两条射线组成的角的时刻为18.如图,a b ,∴(写出一个结论)三、解答题(本大题共6小题,共58分)19.(8分)如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒.(1)求EOB ∠的度数;(2)若OF OE ⊥,OF 是否平分COB ∠?20.(8分)如图,已知AB CD ∥,点E 在AB 的上方,则B ∠、D ∠、BED ∠之间存在怎样的等量关系?说明理由.解:过点E 作EF AB ∥,B ∴∠=∠______(两直线平行,内错角相等),AB CD ∴∥(已知),EF AB ∥(已作),∴______∥______(______.21.(10分)已知:如图,点E 、C 、D 三点共线,40DCM ∠=︒,80B ∠=︒,CN 平分BCE ∠,CM CN ⊥,问:AB 与CD 有什么位置关系?请写出推理过程.22.(10分)如图,已知钝角AOB ∠,射线OD 是AOC ∠的平分线,按要求解答下面问题.(1)画出图中BOC ∠的平分线OE ,于是COE ∠=∠________;根据图形,写出DOE ∠与AOB ∠的数量关系,即________________________;(2)在图中画出射线OA OF ;设BOF α∠=,用含α的代数式表示DOE ∠的大小,即DOE ∠=__________.作直线②如图3,当PN 保持PN //EF 并向左平移,在平移的过程中猜想EFD ∠、PNM ∠与MHN ∠的数量关系,请直接写出结论.参考答案:1.B【分析】有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,根据概念判断即可.解:根据对顶角的定义可知,1∠和2∠是对顶角,故选:B.【点拨】本题考查了对顶角的概念,邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对于两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.2.B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.解:A.∠1和∠3是对顶角,故不符合题意;B.∠2和∠5是同位角,故符合题意;C.∠3和∠4是内错角,故不符合题意;D.∠3和∠5是同旁内角,故不符合题意;故选B【点拨】本题考查了同位角、内错角、同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.C【分析】利用同位角相等两直线平行,即可做出判断.解:如图,∵∠1=∠2=60°,∴a∥b,∵∠3+∠4=180°,∠3=120°,∴∠4=∠2=60°,∴m∥n.故选:C.【点拨】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.4.A【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.解:∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点拨】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.5.C【分析】如果两个角的两边分别平行,那么这两个角相等或互补.设一个角为x度.则另一个角为(4 x-30)度.依据上面的性质得出方程,求出方程的解即可.解:设一个角为x度,则另一个角为(4x-30)度,如果两个角的两边分别平行,那么这两个角相等或互补∴4x-30=x或4x-30+x=180,解得:x=10或x=42,当x=10时,4x-30=10,当x=42时,4x-30=138,即这两个角是10°、10°或42°、138°,故选C .【点拨】本题考查了平行线的性质的应用,能根据题意得出两个方程是解此题的关键,注意:如果两个角的两边分别平行,那么这两个角相等或互补.6.C【分析】本题主要考查了余角和补角以及相关计算,根据题意一一判断即可.解:A .根据题意得1801902︒-∠=︒-∠,化简得1290∠-∠=︒,由于角大于零,则1∠是钝角,故本选项不符合题意;B .根据2∠有余角,可以推断出2∠是锐角,不是钝角,故本选项不符合题意;C .根据1∠的补角:1801︒-∠,2∠的余角:902︒-∠,根据题意得:1801902︒-∠=︒-∠,化简得1290∠-∠=︒,故本选项符合题意;D .无法判断12180∠+∠=︒,故本选项不符合题意;故选:C .7.D【分析】根据平行线的判定、角的换算、对顶角与邻补角、垂直的定义解决此题.解:A .由图得,∠2与∠1互为邻补角,则∠2+∠1=180°.由∠1=111°54',得∠2=68°6′=68.1°,故选项正确,不符合题意;B .根据对顶角的定义,∠1与∠3互为对顶角,则∠1=∠3.由∠1=111.9°,得∠3=111.9°,故选项正确,不符合题意;C .根据垂直的定义,由若l 2⊥l 3,则∠1=∠2=90°;若∠1=90°,则l 2⊥l 3,故选项正确,不符合题意;D .由题得,∠1与∠3是对顶角,那么∠1=∠3.由∠3+∠4=180°,得∠1+∠4=180°,那么l 1∥l 2.根据同旁内角互补两直线平行,由∠4+∠6=180°,那么l 3∥l 2,故选项错误,符合题意;故选:D .【点拨】本题主要考查平行线的判定、角的换算、对顶角与邻补角、垂线,熟练掌握平行线的判定、角的换算、对顶角与邻补角、垂直的定义是解决本题的关键.8.C【分析】根据题意得出290ADE ∠+∠=︒,根据平行线的性质得出1ADE ∠=∠,等量代换即可得解.解:∵AD 是ABC 的高,∴AD BC ⊥,∴290ADC ADE ∠=∠+∠=︒,∵DE AB ∥,∴1ADE ∠=∠,∴1290∠+∠=︒,故选:C .【点拨】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.9.A【分析】根据平行线的性质得到180160BEF ∠=︒-∠=︒,230FEC ∠=∠=︒,进而求解即可.解:如图所示,∵AB EF ∥,1120∠=︒∴180160BEF ∠=︒-∠=︒∵EF CD ,230∠=︒∴230FEC ∠=∠=︒∴90BEC BEF FEC ∠=∠+=︒.故选:A .【点拨】此题考查了平行线的性质,解题的关键是熟练掌握平行线的性质.10.C【分析】过点P 作PE CD ∥,根据AB CD ∥得AB CD PE ∥∥,易知APC BAP DCP αβ∠=∠+∠=+,根据CP ,AP 分别平分ACD ∠,BAC ∠,180ACD BAC ∠+∠=︒,则90BAP DCP ∠+∠=︒,90APC ∠=︒,选项A 和选项B 均正确,若点P 是直线CD 上方的点,则APC APE CPE BAP DCP αβ∠=∠-∠=∠-∠=-,选项C 错误,若点P 是直线AB 下方的点,则正确,综上,即可得.∵AB CD ∥,∴AB CD PE ∥∥,∴APE BAP α∠=∠=,APC BAP DCP ∠=∠+∠∵AB CD ∥,∴AB CD PE ∥∥,∴APE BAP α∠=∠=,∠∴APC APE CPE ∠=∠-∠∵AB CD ∥,∴AB CD PE ∥∥,∴CPE DCP β∠=∠=,APE ∠正确,由图形痕迹可得∠BDE=∠CEF,则根据同位角相等,两直线平行可判断经过点故答案为:同位角相等,两直线平行.【点拨】本题考查了作图一复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的判定.13.23°OD OE⊥90DOC COE ∴∠+∠=︒,90COE β+∠=︒DOC AOBβ∴=∠=∠90360AOB AOD DOE β∠+∠+∠++︒=︒29090360βαβ∴++︒++︒=︒即22180αβ+=︒23αβ=32180ββ∴+=︒36β∴=︒故答案为:36︒.17.24【分析】本题主要考查了解一元一次方程,邻补角的性质,角平分线等知识,根据邻补角的性质列出一元一次方程解之即可求解.解:第一次平分:1802010t t -=,即()16s t =;最后一次平分:()10180220540t t -=-,()230s t =;()2130624s t t ∴-=-=;故答案为:24.18.12∠=∠(答案不唯一)【分析】本题考查了平行线的性质,由两直线平行,同位角相等,即可得出答案,熟练掌握平行线的性质是解此题的关键.解:a b ,12∴∠=∠,故答案为:12∠=∠(答案不唯一).19.(1)36EOB ∠=︒;(2)OF 平分COB ∠,理由见分析【分析】本题考查的是角平分线的定义,垂直的定义,对顶角的性质,熟练的利用角的和差运算进行计算是解本题的关键.(1)根据对顶角相等得到BOD AOC ∠=∠,然后利用角平分线的定义解题即可;的度数,进而得到结论.∠的角平分线, OE是BOCBOFα∠=,180AOBα∴∠=︒-,由(1)知12∠=∠DOE∴∠AMP+∠MPN-∠PND=∠AMP+∠MPT+∠TPN-∠PND=180°,故答案为:∠AMP+∠MPN-∠PND=180°;(2)①∠EFD=∠PNM,理由如下:∵MH∥EF,∴∠EFD=∠MHN,∵AB∥CD,∴∠MHN=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠EFD=∠HMN,∵MH∥PN,∴∠HMN=∠PNM,∴∠EFD=∠PNM,故答案为∠EFD=∠PNM;②如图,当点P在MN的右侧时,∵AB∥CD,∴∠MHD=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠MHD=∠HMN,∵PN∥EF,∴∠EFD=∠PND,∵∠MHN+∠HMN=∠PND+∠PNM,当点P在MN的左侧时,∵AB∥CD,∴∠MHD=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠MHD=∠HMN,∵PN∥EF,∴∠EFD=∠PND,∵∠MHN+∠HMN=∠PND-∠PNM,∴2∠MHN+∠PNM=∠EFD.【点拨】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。

(完整)初一数学《相交线与平行线》测考试试题.docx

(完整)初一数学《相交线与平行线》测考试试题.docx

初一数学《相交线与平行线》测考试试题相交线与平行线测试题(2012.3.21 )(满分 100 分 ,时间 45 分钟)姓名班级一、相信你的选择1 、在同一平面内,两条直线的位置关系可能是 ()。

A 、相交或平行B 、相交或垂直C 、平行或垂直D 、不能确定2 、如图,下列说法错误的是 ()。

A 、∠ A 与∠ C 是同旁内角B 、∠ 1 与∠ 3 是同位角C 、∠ 2 与∠ 3 是内错角D、∠ 3 与∠ B 是同旁内角第 2 题图第 3 题图第 4 题图3、如图,∠ 1= 20°, AO ⊥ CO ,点 B 、 O 、 D 在同一直线上,则∠2 的度数为()。

A 、 70°B 、20°C、 110°D 、 160°4、在方格纸中将图①中的图形 N 平移后的位置如图②所示, 那么下面平移中正确的是 ()。

A. 先向下移动 1 格,再向左移动 1 格 ;B. 先向下移动 1 格,再向左移动 2 格C. 先向下移动 2 格,再向左移动1 格 ;D.先向下移动 2 格,再向左移动2 格5、下列图形中,由 AB ∥ CD ,能得到 12 的是()ABA1BAB A B1121 2C2DCDCD2CDA .C .D .B .6、如图, AB ∥ DE ,∠ 1=∠ 2,则 AE 与 DC 的位置关系是()。

A 、相交B 、平行C 、垂直D、不能确定L 1B110 0A500EL 2αCD第 6 题图第 7 题图第 8 题图7、如图,直线 L 1∥L 2 , 则∠α为 ().A.150 0B.140 0C.1300D.120 08、如图, AB ∥ CD ,那么∠ BAE+∠AEC+∠ECD =( )1 / 4A.1800B.2700C.3600D.5400二、填空9、如,若 m∥ n,∠ 1=105o,∠ 2=10、如,直 AB、 CD 相交于点 E ,DF ∥ AB,若∠ AEC=100,∠ D 的度数等于.CA B D2CED FA 1B第 9 题图第 10题图第 11 题图11、如, AB∥CD , AC 平分∠ DAB,∠ 2=25°,∠ D=。

人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

第五章《相交线与平行线》单元检测题题号一二三总分192021222324分数1.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补2.如图,将△ABC沿BC方向平移得到△DEF,若△ABC的周长为12cm,四边形ABFD的周长为18cm,则平移的距离为()A.2cm B.3cm C.4cm D.6cm3.如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角4.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1 个B.2个C.3 个D.4个10.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°二、填空题(每题3分,共24分)11.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式是.12.如图所示,DE∥BF,∠D=53°,∠B=30°,DC平分∠BCE,则∠DCE的度数为.13.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,则∠CED=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.20.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.24.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一、选择题:题号12345678910答案D B B C C D A D B B二、填空题:11.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.12.解:∵DE∥BF,∠D=53°,∴∠F AC=∠D=53°,∵∠B=30°,∴∠ACB=23°,∵DC平分∠BCE,∴∠DCE=23°.故答案为:23°.13.解:∵a∥b∥c,∴∠1=∠3,∠2=∠4,∵∠1=35°,∴∠3=30°,∵∠4+∠3=90°,∴∠4=55°,∴∠2=55°,故答案为:55°.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.解:∵∠1+∠2=180°,∠1+∠BDC=180°∴∠2=∠BDC∴EF∥AB∴∠3=∠BDE∵∠3=∠A∴∠A=∠BDE∴AC∥DE∴∠ACB+∠CED=180°∵CD平分∠ACB,∠4=35°∴∠ACB=2∠4=2×35°=70°∴∠CED=180°﹣∠ACB=180°﹣70°=110°故答案为:110°.三.解答题:19.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.20.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.24.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。

人教版七年级数学第五章相交线平行线综合试题及答案

人教版七年级数学第五章相交线平行线综合试题及答案

第五章《相交线与平行线》综合测试题答题时间:90分钟 满分:120分一、选择题:(每小题3分,共30分)1.若三条直线交于一点,则共有对顶角(平角除外)( ) A.6对 B.5对 C.4对 D.3对2.如图1所示,∠1的邻补角是( )A.∠BOCB.∠BOE 和∠AOFC.∠AOFD.∠BOC 和∠AOF3. 如图2,点E 在BC 的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( ) A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°4. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 5. 如图3,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( ) A.∠A+∠P+∠C=90° B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A6. 一个人从点A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( )A.75°B.105°C.45°D.135°7.如图4所示,内错角共有( )A.4对B.6对C.8对D.10对CBAD1CBA324DO FE DCBA8.如图5所示,已知∠3=∠4,若要使∠1=∠2,则需( ) A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB ∥CD 9.下列说法正确的个数是( )①同位角相等; ②过一点有且只有一条直线与已知直线垂直; ③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a ∥b ,b ∥c ,则a ∥c.A.1个B.2个C.3个D.4个10. 如图6,O 是正六边形ABCDEF 的中心,下列图形:△OCD ,△ODE ,△OEF ,•△OAF ,•△图1F EO 1C BA D 图4 图5图6图3DAPCBOAB ,其中可由△OBC 平移得到的有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共30分)11.•命题“垂直于同一直线的两直线平行”的题设是•____________,•结论是__________. 12.三条直线两两相交,最少有_____个交点,最多有______个交点.13.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.54321 4321ACDB 火车站李庄图7 图8 图914.如图8,已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=_______.15.如图9所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________________. 16.如图10所示,直线AB 与直线CD 相交于点O ,EO ⊥AB ,∠EOD=25°,则∠BOD=______,∠AOC=_______,∠BOC=________.AECDOB21ACDB图10 图1117.如图11所示,四边形ABCD 中,∠1=∠2,∠D=72°,则∠BCD=_______.18.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿铁轨方向_________”.19. 根据图12中数据求阴影部分的面积和为_______.20. 如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是_________.图12三、解答题(每小题8分,共40分)21. 已知a 、b 、c 是同一平面内的3条直线,给出下面6个命题:a ∥b , b ∥c ,a ∥c ,a ⊥b ,b ⊥c ,a ⊥c ,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。

北师大版初1数学7年级下册 第2章(相交线与平行线)综合测评卷一(含答案)

北师大版初1数学7年级下册 第2章(相交线与平行线)综合测评卷一(含答案)

第二章相交线与平行线综合测评一、选择题(本大题共10小题,每小题3分,共30分)1.如图1,直线AB,CD相交于点O,若∠AOD=150°,则∠BOC的度数为( )A. 30°B. 60°C. 70°D. 150°图1 图2 图3 图42.如图2,因为直线AB⊥l于点B,BC⊥l于点B,所以直线AB与BC重合,其中蕴含的数学道理是()A.平面内,过一点有且只有一条直线与已知直线垂直B.垂线段最短C.过一点只能作一条垂线D.两点确定一条直线3.如图3,直线a,b被c,d所截,下列结论中正确的是( )A. ∠1与∠2是同位角B. ∠3与∠4是同位角C. ∠2与∠4同旁内角D. ∠2与∠3是内错角4.如图4,已知AB∥CD,BE⊥BC,若∠C=70°,则∠ABE的度数为( )A. 20°B. 30°C. 35°D. 60°5.给出下列判断:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的余角,那么这两个角相等;④锐角和钝角一定互补.其中正确的有( )A. 1 个B. 2 个C. 3 个D. 4 个6.在下面的四个图形中,一直∠1=∠2,那么能判定AB∥CD的是( )A B C D7.将一个直角三角尺按如图5所示的方式摆放在一组平行线上,若∠1=55°,则∠2的度数是( )A. 50°B. 45°C. 40°D. 35°图5 图6 图7 图88.如图6,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A. 70°B. 50°C. 30°D. 20°9.如图7,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF的度数为( )A.130°B.120°C.110°D.100°10.如图8,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为( )A.65°B.70°C.75°D.80°6318BOC= °.图9 图1013. 图10是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB与PQ,MN分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺另一边过点B画直线,若所画直线与BA重合,则这块木板的对边MN与PQ是平行的,其理论依据是 .14.将一个长方形纸条折成图11所示的形状,若∠2=55°,则∠1= .图11 图1215.如图12,直线AB,CD相交于点O,EO⊥AB,垂足为O,DM∥AB,若∠COE=35°,则∠ODM= .三、解答题(本大题共6小题,共52分)17.(6分)如图13,∠AOB内有一点P.(1)过点P画射线PC∥OB,交OA于点C,画射线PD∥OA交OB于点D;(2)(1)题所画的图中与∠O互补的角有几个?与∠O相等的角有几个?图13 图14 图15 图16 图1718.(6分)如图14,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.19.(8分)如图15,是大众汽车的标志图案,已知AD∥BC,∠A=∠B.(1)试说明:AF∥BE;(2)若∠BOD=3∠B,求∠A的度数.20.(10分)如图16,已知∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=140°,求∠AFG的度数.21.(10分)如图17,已知直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数(用含α的式子表示);(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何数量关系?22.(12分)如图18-①,已知直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补.(1)试判断直线AB与CD的位置关系,并说明理由;(2)如图18-②,∠BEF与∠EFD的平分线交于点P,EP与CD交于点G,点H是MN上的一点且GH⊥EG.求证:PF∥GH.①②图18附加题(20分,不计入总分)已知点F,G分别在直线AB,CD上,且AB∥CD.(1)如图1,①若∠BFE=40°,∠CGE=130°,则∠GEF的度数是 ;②∠GEF,∠BFE,∠CGE之间有怎样的数量关系?写出结论并说明理由.(2)如图2,∠BFE的平分线FQ所在的直线与∠CGE的平分线相交于点P,探究∠GPQ与∠GEF之间的数量关系,并说明理由.图1 图2参考答案一、1. D 2. A 3. B 4. A 5. B 6. A 7. D 8. D 9. B 10.B二、 11. 10 12.140 13. 内错角相等,两直线平行14. 110° 15. 125° 16. a 1⊥a 2018三、17.解:(1)如图所示.(2)与∠O 互补的角有4个,与∠O 相等的角有5个.18.解:因为直线AB ,CD 相交于点O ,所以∠3=180°-∠FOC-∠1=180°-90°-40°=50°.因为∠3与∠AOD 互为补角,所以∠AOD=180°-∠3=180°-50°=130°.因为OE 平分∠AOD ,∠2=21∠AOD=21×130°=65°. 19.解:(1)因为AD ∥BC ,所以∠B=∠DOE.因为∠A=∠B ,所以∠A=∠DOE.所以AF ∥BE.(2)解:因为AD ∥BC ,所以∠B+∠BOD=180°.因为∠BOD=3∠B ,所以∠B+3∠B=180°,所以∠B=45°,所以∠A=∠B=45°.20.解:(1)BF ∥DE.理由如下:因为∠AGF=∠ABC ,所以GF ∥BC ,所以∠1=∠3.因为∠1+∠2=180°,所以∠3+∠2=180°,所以BF ∥DE.(2)因为BF ∥DE ,BF ⊥AC ,所以DE ⊥AC ,所以∠AFB=90°.因为∠1+∠2=180°,∠2=140°,所以∠1=40°.所以∠AFG=∠AFB-∠1=90°-40°=50°.21. 解:(1)因为∠AOE与∠AOF互为补角,所以∠AOF=180°-∠AOE=180°-40°=140°.又OC平分∠AOF,所以∠A OC=21∠AOF=21×140°=70°.又OA⊥OB,所以∠AOB=90°,所以∠BOD =180°-∠AOB-∠AOC =180°-90°-70°=20°.(2)因为∠AOE与∠AOF互为补角,所以∠AOF=180°-α.又OC平分∠AOF,所以∠A OC=21∠AOF=21×(180°-α)=90°-21α.又OA⊥OB,所以∠AOB=90°,所以∠BOD =180°-∠AOB-∠AOC =180°-90°-(90°-21α)=21α.(3)从(1)(2)的结果中能看出∠BOD =21∠AOE .22.解:(1)AB ∥CD.理由:因为∠1与∠2互补,所以∠1+∠2=180°.因为∠1与∠AEF ,∠2与∠CFE 分别互为对顶角,所以∠1=∠AEF ,∠2=∠CFE.所以∠AEF+∠CFE=180°,所以AB ∥CD.(2)由(1)知,AB ∥CD ,所以∠BEF+∠EFD=180°.因为∠BEF 与∠EFD 的平分线交于点P ,所以∠FEP+∠EFP=21(∠BEF+∠EFD )=21×180°=90°.所以∠EPF=90°,即PF ⊥EG .因为GH ⊥EG ,所以PF ∥GH .附加题23.解:(1)①90°②∠GEF-∠BFE+∠CGE=180°.理由如下:过点E 作EH ∥AB ,所以AB ∥CD ∥EH ,所以∠HEF=∠BFE ,∠HEG+∠CGE=180°.所以∠HEF+∠HEG=∠BFE+180°-∠CGE ,即∠GEF-∠BFE+∠CGE=180°.(2)∠GPQ+21∠GEF=90°.理由如下:因为FQ 平分∠BFE ,GP 平分∠CGE ,所以∠BFQ=21∠BFE ,∠CGP=21∠CGE.因为∠GPQ+∠PMF+∠PFM=180°,∠PMF+∠GMF=180°,所以∠GPQ=∠GMF-∠PFM.因为AB ∥CD ,所以∠GMF=∠CGP.因为∠PFM 与∠BFQ 互为对顶角,所以∠PFM=∠BFQ ,所以∠GPQ=∠CGP-∠BFQ.所以∠GPQ+21∠GEF=21∠CGE-21∠BFE+21∠GEF=21(∠GEF-∠BFE+∠CGE )=21×180°=90°.。

相交线与平行线》单元测试题及答案

相交线与平行线》单元测试题及答案

相交线与平行线》单元测试题及答案初一下学期数学相交线与平行线单元质量检测姓名。

学号:本次考试为90分钟,共100分。

一、填空题:(每小题3分,共30分)1、空间内两条直线的位置关系可能是相交或平行。

2、“两直线平行,同位角相等”的题设是前提条件,结论是同位角相等。

3、已知∠A和∠B是邻补角,且∠A比∠B大20,则∠A=110度,∠B=70度。

4、如图1,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=40,则∠BOD=70度。

5、如图2,如果AB∥CD,那么∠B+∠F+∠E+∠D=360度。

6、如图3,图中ABCD-A B C D是一个正方体,则图中与BC所在的直线平行的直线有3条,与A B所在的直线成异面直线的直线有2条。

7、如图4,直线a∥b,且∠1=28度,∠2=50度,则∠ACB=102度。

8、如图5,若A是直线DE上一点,且BC∥DE,则∠2+∠4+∠5=180度。

9、在同一平面内,如果直线l1∥l2,l2∥l3,则l1与l3的位置关系是平行。

10、如图6,∠ABC=120度,∠BCD=85度,AB∥ED,则∠CDE=15度。

二、选择题:(每小题3分,共30分)11、已知:如图7,∠1=60度,∠2=120度,∠3=70度,则∠4的度数是(B)A、70 B、60 C、50 D、4012、已知:如图8,下列条件中,不能判断直线l1∥l2的是(E)A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=180 E、无法判断13、如图9,已知AB∥CD,HI∥FG,EF⊥CD于F,∠1=40度,那么∠EHI=(D)A、40 B、45 C、50 D、5514、一个角的两边分别平行于另一个角的两边,则这两个角(B)A、相等 B、相等或互补 C、互补 D、不能确定15、在正方体的六个面中,和其中一条棱平行的面有(B)A、5个B、4个C、3个D、2个16、两条直线被第三条直线所截,则(B)A、同位角相等 B、内错角相等 C、同旁内角互补 D、以上结论都不对17、如图10,AB∥CD,则∠ACD=∠BDC。

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

初中数学相交线与平行线专题训练50题含答案

初中数学相交线与平行线专题训练50题含答案

初中数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52° 2.如图,在直线l 外一点P 与直线上各点的连线中,P A =5,PO =4,PB =4.3,OC =3,则点P 到直线l 的距离为( )A .3B .4C .4.3D .5 3.如图网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( )A .2 个B .4个C .5个D .6个 4.如图,直线a ,b 穿过正五边形ABCDE ,且//a b ,则αβ∠-∠=( )A .95°B .84°C .72°D .60° 5.如图,某沿湖公路有三次拐弯,如果第一次的拐角120A ∠=︒,第二次的拐角155B ∠=︒,第三次的拐角为C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠的度数是( )A .130︒B .140︒C .145︒D .150︒ 6.如图,下列条件:①①C =①CAF ,①①C =①EDB ,①①BAC +①C =180°,①①GDE +①B =180°,①①CDG =①B .其中能判断AB //CD 的是( )A .①①①①B .①①①C .①①①D .①①① 7.如图,与①α构成同旁内角的角有( )A .1个B .2个C .5个D .4个 8.如图,下列说法中错误的是( )A .①1与①A 是同旁内角B .①3与①A 是同位角C .①2与①3是同位角D .①3与①B 是内错角9.如图,为判断一段纸带的两边a ,b 是否平行,小明在纸带两边a ,b 上分别取点A ,B ,并连接AB .下列条件中,能得到a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=︒D .13180∠+∠=︒ 10.如图,//DE BC BE ,平分ABC ∠,若170=︒∠,则AEB ∠的度数为( )A .20︒B .35︒C .55︒D .70︒ 11.用“垂线段最短”来解释的现象是( )A .B .C .D .12.如图,直线AB ,CD 相交于点O ,OE 平分①AOC ,若①BOD =70°,则①DOE 的度数是( )A .70°B .35°C .120°D .145° 13.下列说法错误的是( )A .同旁内角相等,两直线平行B .旋转不改变图形的形状和大小C .对角线相等的平行四边形是矩形D .菱形的对角线互相垂直14.(1)如果直线a b ,b c ,那么a c ;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)在同一平面内如果直线a b ⊥,c b ,那么a c ; (5)两条直线平行,同旁内角相等;(6)两条直线相交,所成的四个角中,一定有一个是锐角.其中真命题有( )A .1个B .2个C .3个D .4个 15.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个.A .1B .2C .3D .416.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;①若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有①C .①①都正确D .①①都不正确 17.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,6BC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点,过这两点作直线与AB 相交于点D ,则AD 的长是( )A .3B .1.5CD .18.如图,直线AB 与直线CD 相交于点O.若①AOD =50°,则①BOC 的度数是( )A .40°B .50°C .90°D .130° 19.将一块直角三角板ABC 按如图方式放置,其中①ABC =30°,A 、B 两点分别落在直线m 、n 上,①1=20°,添加下列哪一个条件可使直线m①n( )A .①2=20°B .①2=30°C .①2=45°D .①2=50° 20.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD ,DP ,BD 与CF 相交于点H .给出下列结论:①~BDE DPE ,①35FP PH =,①2DP PH PB =⋅,①tan 2DBE ∠=序号是( )A .①①B .①①①C .①①①D .①①二、填空题21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,直线,则的度数为=______.23.如图所示,A ,B 之间有一座山,一条笔直的铁路要通过A ,B 两地,在A 地测得铁路的走向是北偏东68°20',如果A ,B 两地同时开工,那么在B 地按____方向施工才能使铁路在山中准确接通.24.如图,直线AB ,CD 相交于点O ,若①AOC =20°,则①BOD 的大小为___________(度).25.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).26.如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知①100AOD =︒,那么EOB ∠=__度.27.如图,直线AB 与CD 相交于点O ,OE AB ⊥于O ,140∠=︒,则2∠=______.28.如图,已知平行线AB ,CD 被直线AE 所截,AE 交CD 于点F ,连接CE ,若20E ∠=︒,CF EF =,则A ∠的度数为______.29.如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.30.如图,六边形ABCDEF 是正六边形,若l 1①l 2,则①1﹣①2=_____.31.如图,直线a ①b ,在Rt①ABC 中,点C 在直线a 上,若①1=56°,①2=29°,则①A 的度数为______度.32.如图,梯形ABCD 中,AB CD ∥,对角线AC 、BD 相交于点O ,如果ABD △的面积是BCD △面积的2倍,那么DOC △与BOC 的面积之比是______.33.如图,在Rt①ABC 中,AC =6,BC =8,点P 是AC 边的中点,点D 和E 分别是边BC 和AB 上的任意一点,则PD+DE 的最小值为_____.34.如图,AC BC ⊥,90CDA ∠=︒,4,3,5AC BC AB ===,点C 到AB 的距离是______.与ACD ∠相等的角是_________.35.如图,直线a ,b ,c 两两相交于A ,B ,C 三点,则图中有________对对顶角;有________对同位角;有________对内错角;有________对同旁内角.36.如图,在长方形ABCD 中,点E 、F 分别在AD 、BC 边上,沿直线EF 折叠后,C 、D 两点分别落在平面内的C '和D 处,若①1=70°,则①2=______.37.如图,将一张长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在点A ',B '的位置.若155∠=︒,则2∠的度数是__________.38.如图,在①ABC 中,①ABC 与①ACB 的平分线交于点D ,EF 经过点D ,分别交AB ,AC 于点E ,F ,BE =DE ,DF =5,点D 到BC 的距离为4,则①DFC 的面积为_____39.如图,已知AB①CD ,垂足为点O ,直线EF 经过O 点,若①1=55°,则①COE 的度数为______度.40.如图,在ABCD 中,105ABC ∠=︒,对角线,AC BD 交于点,30,4O DAC AC ∠=︒=,点P 从点B 出发,沿着边BC CD 、运动到点D 停止,在点P运动过程中,若OPC 是直角三角形,则CP 的长是___________.三、解答题41.如图,点B ,F ,C ,E 在同一条直线上,BF EC =,AB DE =,DE AB ∥.求证:A D ∠=∠.42.如图,已知AM ①CN ,且①1=①2,那么AB ①CD 吗?为什么? 解:因为AM ①CN ( 已知 )所以①EAM =①ECN又因为①1=①2所以①EAM +①1=①ECN +①2即① =①所以 .43.如图,在ABC 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若80A ∠=︒,40C ∠=︒,求BDE ∠的度数.44.按要求画图:已知点P 、Q 分别在AOB ∠的边OA ,OB 上(如图所示):(1)①画线段PQ ;①过点P 作OB 的垂线PE ,垂足为E ;①过点Q 作OA 的平行线MN (M 在上,N 在下).(2)在(1)的情况下,若40MQB ∠=︒,求OPE ∠.(不使用三角形的内角和为180°) 45.如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF①AB ,DG①BC ,试判断①1与①2的大小关系,并说明理由.46.(1)如图1,在①ABC 中,BD 是①ABC 的角平分线,点D 在AC 上,DE①BC ,交AB 于点E ,①A =50°,①ADB =110°,求①BDE 各内角的度数;(2)完成下列推理过程.已知:如图2,AD ①BC ,EF ①BC ,①1=①2,求证:DG ①AB .推理过程:因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(________).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (________).因为①1=①2(已知),所以________=________(等量代换).所以DG①AB (内错角相等,两直线平行).47.如图,点A 为直线外一点,点B 是直线l 上一定点,点P 是直线l 上一动点,连接AB ,AP ,若要使2PA PB 1+的值最小,确定点P 的位置,并说明理由.48.如图,在三角形ABC 中,点D ,F 在边BC 上,点E 在边AB 上,点G 在边AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)判断EH 与AD 的位置关系,并说明理由(2)若58DGC ∠=°,且410H ∠=∠+︒,求H ∠的度数.49.已知:直线AB 与直线PQ 交于点E ,直线CD 与直线PQ 交于点F ,∠PEB +∠QFD =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点G 为直线PQ 上一点,过点G 作射线GH ∥AB ,在∠EFD 内过点F 作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.50.如图,四边形ABCD与四边形CEFH均为正方形,点B、C、E在同一直线上,连接BD,DF,BF.(1)观察图形,直接写出与线段CH平行的线段.(2)图中与线段CH垂直的线段共有_______条.(3)点B到点F的最短距离为线段____的长,点B到线段EF的的最短距离为线段____的长.(4)若正方形ABCD的边长为a, 正方形CEFH的边长为2,则线段HD=___,线段BE=___,此时请你求出三角形DBF的面积,你有什么发现?参考答案:1.A【分析】先根据已知条件求出①AOC 的度数,再根据OM 平分①AOC ,即可得到①MOC 的值【详解】解:①104AOD ∠=︒①①AOC =180°−104°=76°①OM 平分①AOC ①①MOC=12AOC ∠ 1762=⨯︒ =38°故选:A【点睛】本题主要考查了领补角及角平分线的定义,熟练掌握定义是解题的关键 2.B【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【详解】解:由于OP ①直线l ,根据题意知:点P 到直线l 的距离等于PO 的长,即点P 到直线l 的距离PO =4,故选:B .【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.3.D【分析】利用格点的性质和三角形的面积公式即可得.【详解】由格点的性质和三角形的面积公式得,总共有6个满足条件的格点C ,如图所示:(格点C 均在平行于AB 的直线上)其中,由点12345,,,,C C C C C 与点,A B 分别构成的5个三角形的面积显然是36ABC 的面积为3663AC C BDC ABDC S S S --直角梯形1114633(36)1222=⨯⨯-⨯⨯-⨯+⨯ 991222=--故选:D .【点睛】本题考查了平行线的实际应用,理解题意,结合格点的性质是解题关键. 4.C【分析】延长EA 与直线b 交于点F ,由平行线的性质得①AFG =∠β,再由多边形的内角和定理求出108EAB ∠=︒,进一步得出72GAF ∠=︒,最后由三角形的外角关系可得结论.【详解】解:延长EA 与直线b 交于点F ,如图,①//a b①AFG β∠=∠①五边形ABCDE 是正五边形, ①(52)1801085EAB -⨯︒∠==︒ ①180********GAF EAB ∠=︒-∠=︒-︒=︒又=72AFG GAF αβ∠∠+∠=∠+︒①72αβ∠-∠=︒故选:C【点睛】本题考查的是多边形内角与外角,正五边形的性质,三角形外角的性质,利用数形结合求解是解答此题的关键.【分析】过点B作BH①AM,则BH①CD,利用平行线的性质求解即可.【详解】解:如图,过点B作BH①AM,①AM①CD,①BH①CD,①①ABH=①A=120°,①HBC+①C=180°,①①HBC=①ABC-①ABH=35°,①①C=180°-①HBC=145°,故选:C.【点睛】本题考查平行线的判定与性质,添加平行线是解答的关键.6.A【分析】根据平行线的判定定理逐一排除得出即可.【详解】解:①①C=①CAF,①AB//CD;故①符合题意;∠=∠C EDB//∴AC BD故①不符合题意;①①BAC+①C=180°,①AB//CD;故①符合题意;①①GDE+①B=180°,①GDE+①EDB=180°,①①EDB=①B,①AB//CD;故①符合题意;①①CDG=①B,①AB//CD,故①符合题意;符合题意的有:①①①①故选:A .【点睛】本题考查了平行线的判定,掌握平行线的判定是解题的关键.7.C【详解】试题分析:根据题意可知与①α构成同旁内角的角有如图5个.考点:三线八角点评:本题难度较低,主要考查学生对三线八角的掌握.分析这类题型是,主要抓住已知角两边与第三边相交的构成三线基础,为解题关键.8.B【分析】根据同位角、内错角、同旁内角的定义,可得答案.【详解】A. ①1与①A 是同旁内角,故A 正确;B. ①3与①A 不是同位角,故B 错误;C. ①2与①3是同位角,故C 正确;D. ①3与①B 是内错角,故D 正确;故选B.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其性质9.D【分析】根据平行线的判定定理进行判断即可.【详解】解:A 、12∠=∠,1∠和2∠邻补角,不能证明a b ∥;B 、13∠=∠,1∠和3∠是同旁内角,同旁内角相等不能证明a b ∥;C 、14180∠+∠=︒,1∠和4∠属于内错角,内错角互补不能证明a b ∥;D 、①13180∠+∠=︒,①a b ∥(同旁内角互补两直线平行);故选:D .【点睛】本题考查了平行线的判定定理,熟知:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;是解本题的关键.10.B【分析】先根据平行线的性质求得①ABC=70°,①CBE=①AEB,再运用角平分线即可求得①AEB的度数.【详解】解:①//DE BC,①170ABC∠=∠=︒,CBE AEB∠=∠,①BE平分①ABC,①1352CBE AEB ABC∠=∠=∠=︒.故选:B.【点睛】本题考查了平行线的性质和角平分线,灵活应用相关性质定理是解答本题的关键.11.A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选:A.【点睛】本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.12.D【分析】根据对顶角相等求出①AOC,根据角平分线的定义计算,得到答案.【详解】解:①①BOD=70°,①①AOC=①BOD=70°,①OE平分①AOC,①①COE=12①AOC=12×70°=35°,①DOE=①COD-①COE=145°故选:D.【点睛】本题考查的是对顶角、角平分线的定义、平角定义,掌握对顶角相等、角平分线的定义是解题的关键.13.A【分析】依次分析各选项即可得出说法错误的选项.【详解】解:因为同旁内角互补,两直线平行,因此A选项错误;根据旋转的性质,旋转不改变图形的形状和大小,因此B选项内容正确;根据矩形的判定,C选项内容正确;根据菱形的性质,D选项内容正确.故选:A.【点睛】本题综合考查了平行线的判定、旋转的性质、矩形的判定、菱形的性质等内容,解决本题的关键是理解并能灵活运用相关概念,本题考查的是概念基础题,因此侧重考查学生对教材基础知识的理解与掌握等.14.A【分析】分别利用平行线的性质,以及对顶角的定义等分析得出答案.【详解】解:(1)如果直线a b,b c,那么a c,正确,是真命题,(2)相等的角是对顶角,错误,不是真命题;(3)两条直线被第三条直线所截,同位角不一定相等,错误,不是真命题;(4)在同一平面内如果直线a①b,c b,那么a c,错误,不是真命题;(5)两条直线平行,同旁内角互补,错误,不是真命题;(6)两条直线相交,所成的四个角中,一定有一个是锐角,错误,不是真命题;故选:A.【点睛】此题主要考查了命题与定理,正确把握平行线的性质是解题关键.15.C【详解】试题分析:根据基本的数学概念依次分析各小题即可作出判断.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,①如果三条直线a、b、c 满足:a①b,b①c,那么直线a与直线c必定平行,①对顶角相等,均正确;①若,则,错误;故选C.考点:真假命题点评:本题属于基础应用题,只需学生熟练掌握基本的数学概念,即可完成.16.A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得①错误.【详解】解:①若a①b,b①c,则a①c,说法正确;①若a①b,b①c,则a①c,说法错误,应为同一平面内,若a①b,b①c,则a①c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.17.C【分析】利用勾股定理求出AB,证明BD=AD即可解决问题.【详解】解:在Rt①ABC中,AC=3,BC=6,①AB=由作图可知,直线DE垂直平分线段BC,①①BED=①C=90°,①DE①AC,①BE=EC,DE①AC,①BD=AD,故选:C.【点睛】本题考查作图−基本作图,勾股定理,平行线等分线段定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.B【分析】根据对顶角相等,可得答案.【详解】解;①①BOC与①AOD是对顶角,①①BOC=①AOD=50°,故选B.【点睛】本题考查了对顶角与邻补角,对顶角相等是解题关键.19.D【分析】根据平行线的性质即可得到①2=①ABC+①1,即可得出结论.【详解】①直线EF①GH ,①①2=①ABC+①1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.C【分析】根据等边三角形的性质和正方形的性质,得到30PCD ∠=︒,于是得到75CPD CDP ∠=∠=︒,证得15EDP PBD ∠=∠=︒,于是得到BDE DPE ∆∆,故①正确;由于FDP PBD ∠=∠,60DFP BPC ∠=∠=︒,推出DFP BPH ∆∆,得到PF DF DF PH PB CD ===①错误;由于30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,推出DPH CPD ∆∆,得到PD PH CD PD=,PB CD =,等量代换得到2PD PH PB =⋅,故①正确;过P 作PM CD ⊥,PN BC ⊥,求得30PCD ∠=︒,根据三角函数的定义得到CM PN ==2PM =,由平行线的性质得到EDP DPM ∠=∠,等量代换得到DBE DPM ∠=∠,于是求得tan 2DBE ∠=①正确.【详解】解:①BPC ∆是等边三角形,BP PC BC ∴==,60PBC PCB BPC ∠=∠=∠=︒,在正方形ABCD 中,①AB BC CD ==,A ADC BCD 90∠=∠=∠=︒30ABE DCF ∴∠=∠=︒,75CPD CDP ∴∠=∠=︒,15PDE ∴∠=︒,①604515PBD PBC HBC ∠=∠-∠=︒-=︒︒,EBD EDP ∴∠=∠,①DEP DEB ∠=∠,BDE DPE ∴∆∆;故①正确;①=PC CD ,=30PCD ∠︒=75PDC ∴∠︒15FDP ∴∠=︒①45DBA ∠=︒60PBD BPC ∴∠=∠=︒①DFP BPH ∆∆PF DF DF PH PB CD ∴===①错误; ①30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,①DPHCPD ∆∆, ∴PD PH CD PD=, 2PD PH CD ∴=•,①PB CD =,2PD PH PB =∴⋅,故①正确;如图,过P 作PM CD ⊥,PN BC ⊥,设正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ︒∴∠=∠=,4PB PC BC CD ====,30PCD ∴∠=︒sin 604CM PN PB ︒∴==⋅==,sin302PM PC =︒⋅=, ①//DE PM ,EDP DPM ∴∠=∠,DBE DPM ∴∠=∠,tan tan 2DM DBE DPM PM ∴∠=∠===①正确;故选:C.【点睛】本题考查的正方形的性质,相似三角形的判定和性质,平行线的性质,三角函数定义,等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PM及PN的长.21.40︒∠的度数,根据对顶角相等可得解.【分析】由余角的定义可得BOD⊥【详解】解:EO AB90∴∠=BOE︒∴∠=∠-∠=-=905040BOD BOE EOD︒︒︒∴∠=∠=AOC BOD︒40故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.22.120°.【详解】试题分析:①①①1=50°①①=70°+①1=120°.考点: 1.平等线的性质;2.对顶角.23.南偏西68°20'【分析】根据平行线的性质:两条直线平行,内错角相等进行解答.【详解】如图所示:由于是相向开工.故角度相等,方向相反.而①1与①2为内错角,所以对B来说是南偏西68°20′.故答案是:68°20′.【点睛】考查了平行线的性质和方向角,注意此类题的结论:角度不变,方向相反.24.20【分析】直接利用“对顶角相等”即可解答.【详解】解:①①AOC 和①BOD 是对顶角①①BOD=①AOC=20°.故答案为20.【点睛】本题考查了对顶角的定义和性质,正确识别对顶角是解答本题的关键. 25.①.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图①利用两点之间线段最短;图①利用两点确定一条直线;故答案为:①.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.26.140【分析】根据角平分线的定义和对顶角的性质解答即可.【详解】解:①100AOD ∠=︒,①18010080AOC ∠=︒-︒=︒,①OE 平分AOC ∠, ①1402COE AOC ∠=∠=︒, ①100BOC AOD ∠=∠=︒,①10040140EOB BOC COE ∠=∠+∠=︒+︒=︒.故答案为:140.【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握相关的定义和性质是解答本题的关键.27.50°【分析】先根据垂直的定义、角的和差求出BOD ∠的度数,再根据对顶角相等即可得.【详解】OE AB ⊥90BOE1904050BOE BOD ∠∠=∴=∠-︒-︒=︒由对顶角相等得:520BOD ∠=∠=︒故答案为:50︒.【点睛】本题考查了垂直的定义、对顶角相等等知识点,熟记对顶角的性质是解题关键. 28.40°【分析】根据等腰三角形性质,得到20C E ∠=∠=︒,再根据三角形外交定理求得40DFE C E ∠=∠+∠=︒,最后根据平行线的性质求出①A 的度数.【详解】:CF EF =,20E ∠=︒,20C E ∴∠=∠=︒,40DFE C E ∴∠=∠+∠=︒.//AB CD ,40A DFE ∴∠=∠=︒.故答案为40°.【点睛】本题主要考查了平行线的性质、等腰三角形和三角形外角等有关知识,属于常考基础题型.29.20【分析】因为两直线平行,所以①2与①1的补角互为内错角,通过两直线平行内错角相等,建立一个关于x 的方程,解方程即可.【详解】①直线a①直线①21801∠=︒-∠即210180(370)x x +=-+解得20x故答案为20【点睛】本题主要考查平行线的性质,掌握平行线的性质并利用方程的思想列出方程是解题的关键.30.60°【分析】首先根据多边形内角和180°•(n -2)可以计算出①F AB =120°,再过A 作l ①l 1,进而得到l ①l 2,再根据平行线的性质可得①4=①2,①1+①3=180°,进而可以得出结果.【详解】解:如图,过A 作l ①l 1,则①4=①2,①六边形ABCDEF是正六边形,①①F AB=120°,即①4+①3=120°,①①2+①3=120°,即①3=120°﹣①2,①l1①l2,①l①l2,①①1+①3=180°,①①1+120°﹣①2=180°,①①1﹣①2=180°﹣120°=60°,故答案为60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.31.27【分析】如图,①3=①1,由①3=①2+①A计算求解即可.【详解】解:如图①a①b,①1=56°①①3=①1=56°①①3=①2+①A,①2=29°①①A=①3﹣①2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.32.1:2【分析】先根据∥DC BA 得到BN DM =,根据=2ABD BCD S S 得到1=2DO BO ,再根据12DOC S DO CH =,12BOC S BO CH =可得到1==2DOCBOC S DO BO S . 【详解】解:过点D 作DM AB ⊥,垂足为M ,过点B 作BN DC ⊥,交DC 的延长线于点N ,过点C 作CH DB ⊥与点H ,①∥DC BA ,①BN DM =,①=2ABD BCD SS , ①11=222AC DM DC BN ⨯⨯⨯, ①2AB DC =,①∥DC BA ,①==CDO OBA DCO OAB ∠∠∠∠,, ①DCO AOB ∽,①1==2DC DO AB BO , ①12DOC SDO CH =,12BOC S BO CH =, ①1==2DOCBOC SDO BO S , 故答案为:1:2.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.33.365【分析】作点P 关于BC 的对称点F ,过F 作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,求得AF =9,根据勾股定理得到AB =10,根据相似三角形的性质得到EF =365,于是得到结论. 【详解】解:作点P 关于BC 的对称点F ,过F作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,①CF =CP ,①点P 是AC 边的中点,①AP =PC =3,①AF =9,①在Rt △ABC 中,AC =6,BC =8,①AB =10,①①AEF =①ACB =90°,①①A+①B =①A+①F ,①①B =①F ,①①ABC①①AFE , ①AF AB =EF BC , ①910=8EF , ①EF =365, ①PD+DE 的最小值为365, 答案为:365.【点睛】本题考查了轴对称-最短路线问题,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.34. 125B ∠ 【分析】根据等面积法求得线段CD 的长度,即可求得点C 到AB 的距离,再根据三角形内角和定理即可求得与ACD ∠相等的角.【详解】解:①90CDA ∠=︒,①CD AB ⊥.点C 到AB 的距离为线段CD 的长度. 由题意可得:1122ABC SAC BC AB CD =⨯=⨯ ①125AC BC CD AB ⨯==, ①AC BC ⊥,①90ACB ∠=︒,①90180DCB B CDB DCB B ∠+∠+∠=∠+∠+︒=︒,①90ACD DCB DCB B ∠+∠=︒=∠+∠,①ACD B ∠=∠. 故答案为:125,B ∠. 【点睛】此题考查了点到直线的距离,三角形内角和的性质,以及等面积法求三角形的高,解题的关键是掌握相关基础知识.35.6;12;6;6【详解】每两条直线的交点处有两对对顶角,共有对顶角有6对.①两条直线被第三条直线所截,可得到4对同位角,2对内错角,2对同旁内角, ①三条直线两两相交于三点,可分解成三个“三线八角”的基本图形,则同位角共有12对,内错角有6对,同旁内角有6对.36.125︒【分析】根据矩形的性质可得AD ①BC ,再利用平行线的性质可得①BFC ′=70°,从而利用平角定义求出①CFC ′=110°,然后根据折叠的性质可求出①CFE 的度数,最后利用平行线的性质,即可解答.【详解】解:①由题意可知:AD ①BC ,①①1=①BFC ′=70°,①①CFC ′=180°-①BFC ′=110°,由折叠得:①CFE =①C ′FE =12①CFC ′=55°,①AD ①BC ,①①2=180°-①CFE =125°,故答案为:125°【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.37.70°【分析】首先根据折叠可得①1=①EF B'=55°,再求出①B'FC的度数,然后根据平行线的性质可得①2=①B'FC=70°.【详解】解:根据折叠可得①1=①EF B',①①1=55°,①①EF B'=55°,①①B'FC=180°-55°-55°=70°,①AD//BC,①①2=①B'FC=70°,故答案为:70°.【点睛】本题主要考查了平行线的性质以及折叠的性质,关键是掌握两直线平行,同位角相等.38.10【分析】过点D作DG①BC于G,DH①AC于H,根据等腰三角形的性质得到①EBD=①EDB,根据角平分线的定义得到①EBD=①DBC,进而得到①DBC=①EDB,证明EF BC,求出DF=FC,根据角平分线的性质求出DH,根据三角形的面积公式计算,即可求出结果.【详解】解:如图,过点D作DG①BC于G,DH①AC于H,①BE=DE,①①EBD=①EDB,①BD平分①ABC,①①EBD=①DBC,①①DBC=①EDB,①EF BC,①①FDC=①DCB,①CD平分①ACB,①①FCD=①DCB,①①FDC=①FCD,①FC=DF=5,①CD平分①ACB,DG①BC,DH①AC,①DH=DG=4,①①DFC的面积=12FC·DH=12×5×4=10.故答案为:10.【点睛】本题考查的是角平分线的性质、平行线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.39.125【分析】根据邻补角的和是180°,结合已知条件可求①COE的度数.【详解】①①1=55°,①①COE=180°-55°=125°.故答案为125.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.40【分析】在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,P点一共有三种情况,①当①OP1C=90°时,①当①OP2C=90°时,①当①P3OC=90°时,根据三角函数的值即可求得CP的长度.【详解】解:如图所示,P点可以有以下三种情况,在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,①当①OP 1C=90°时,①ACB=30°,OC=2,①1P C=OC cos30=2⋅︒①当①OP 2C=90°时,①ACD=45°,OC=2,①2P C=OC cos45=2⋅︒①当①P 3OC=90°时,①ACB=30°,OC=2,①3OC P C==2cos30︒【点睛】本题主要考查了平行四边形的动点问题、平行线的性质、三角形内角和为180°、三角函数,解题的关键在于进行分类讨论,并用三角函数求出最后的答案.41.见解析【分析】先根据平行线的性质证得E B ∠=∠,再根据线段和求得EF BC =,然后SAS 证明EDF BAC △△≌,即可由全等三角形的性质得出结论.【详解】证明:①DE AB ∥,①E B ∠=∠①BF EC =,①BF CF EC CF +=+①EF BC =在EDF 与BAC 中,ED BA E B EF BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EDF BAC ≌①A D ∠=∠【点睛】本题考查三角形全等的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.42.两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB ①CD .【分析】利用两直线平行,同位角相等即可得到一对同位角相等,利用等式的性质得到另一对同位角相等,最后利用同位角相等,两直线平行即可得证.【详解】解:因为AM //CN (已知),所以①EAM =①ECN (两直线平行,同位角相等),又因为①1=①2(已知),所以①EAM +①1=①ECN +①2(等式性质),即①BAE =①DCE ,所以AB //CD .故答案为:两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB //CD .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.30°##30度【分析】由三角形内角和可得60ABC ∠=︒,然后根据角平分线的定义可得1302ABD CBD ABC ∠=∠=∠=︒,进而根据平行线的性质可求解. 【详解】解:①80A ∠=︒,40C ∠=︒,①60ABC ∠=︒,①ABC ∠的角平分线交AC 于点D , ①1302ABD CBD ABC ∠=∠=∠=︒, ①DE BC ∥,①30EDB CBD ∠=∠=︒,故BDE ∠的度数为30°. 【点睛】本题主要考查角平分线的定义、三角形内角和及平行线的性质,熟练掌握三角形内角和是解题的关键.44.(1)①见解析;①见解析;①见解析(2)50°【分析】(1)①连接PQ即可;①利用直角三角板画垂线即可;①利用直尺和直角三角板画OA的平行线MN即可;∥,根据平行线的性质求出①APF=①AOE=①MQB=40°,(2)过点P作PF OB①FPE=①PEO=90°,然后根据平角定义即可求解.(1)解:①连接PQ,如图,线段PQ即为所求.①如图,直线段PE即为所求.①如图,直线MN即为所求.(2)∥解:①MN OA①①AOE=①MQB,又①MQB=40°,①①AOE=40°,∥,如图,过点P作PF OB①①APF=①AOE=40°,①FPE=①PEO,又PE①OB,①①PEO=①FPE=90°,①①OPE=180°-①APF-①FPE=180°-40°-90°=50°.【点睛】本题考查了基本作图,平行线的性质等,添加辅助线PF是解第2问的关键.45.见解析【分析】由DG①BC,根据“两直线平行,内错角相等”得到①1=①DCE,由CD是高,EF①AB,得到①CDB=①EFB=90°,根据平行线的判定得到CD①EF,由平行线的性质:两直线平行,同位角相等,得到①DCE=①2,即可得到①1=①2.【详解】解:相等,理由如下:①CD 是高,①CD ①AB ,①①CDB=90°① EF①AB, ①①EFB=90°①①CDB=①EFB ,①EF①CD①①2= ①DCB① DG①BC ①①1= ①DCB①①1=①2【点睛】本题考查了平行线的判定与性质以及垂直的定义,熟练掌握相关的定理和定义是解题的关键.46.(1)①ABD =20︒,BDE ∠=20º,BED ∠=140º;(2)垂直的定义;两直线平行,同位角相等;BAD ∠,2∠【分析】(1)由①BDC-①A 求出①ABD 的度数,由BD 为角平分线得到①DBC 的度数,再由DE 与BC 平行,利用两直线平行内错角相等求出①BDE 的度数,利用三角形的内角和定理即可求出①BED 的度数;(2)由AD 垂直于BC ,EF 垂直于BC ,利用垂直的定义得到一对直角相等,利用同位角相等两直线平行得到EF 与AD 平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,利用等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】(1)因为50A ∠=︒,70BDC ∠=︒,所以20ABD BDC A ∠=∠-∠=︒,因为BD 是ABC ∆的角平分线,所以20DBC ABD ∠=∠=︒.因为//DE BC ,所以20BDE DBC ∠=∠=︒(两直线平行,内错角相等),所以180140BED EBD EDB ∠=︒-∠-∠=︒(三角形内角和定理);(2)因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(垂直的定义).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (两直线平行,同位角相等).因为①1=①2(已知),所以BAD ∠=2∠(等量代换).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:第5章相交线与平行线综合检测题(人教新课标七年
级下)
前进实验小学史爱东
一、选择题:(每小题3分,共30分)
1、下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为().
A.4 B.3 C.2 D.1
在同一平面内,两条直线的位置关系可能是()。

A、相交或平行
B、相交或垂直
C、平行或垂直
D、
不能确定
2、如图1,下列说法错误的是()。

A、∠A与∠C是同旁内角
B、∠1与∠3是同位角
C、∠2与∠3是内错角
D、∠3与∠B是同旁内角
3、三条直线相交于一点,构成的对顶角共有()。

A、3对
B、4对
C、5对
D、6对
4、如图2,∠1=20°,AO⊥CO,点B、O、D在同一
直线上,则∠2的度数为()。

A、70°
B、20°
C、110°
D、160°
5、在5×5方格纸中将图3-(1)中的图形N平移后
的位置如图3-(2)所示,那么下面平移中正确的是
()。

A. 先向下移动1格,再向左移动1格;
B. 先向下移动1格,再向左移动2格
C. 先向下移动2格,再向左移动1格;
D. 先向下移动2格,再向左移动2格
6、两条直线被第三条直线所截,那么内错角之间的大小关系是(). (A)相等(B)互补(C)不相等(D)无法确定
7、如图4,AB∥DE,∠1=∠2,则AE与DC的位置关系是()。

A、相交
B、平行
C、垂直
D、不能确定
8、如图5,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角有()。

A、2个
B、4个
C、5个
D、6个
9、如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC =18,则△AMN的周长为()。

A、30
B、36
C、4
D、18
10、如图7,(2008呼和浩特)如图,AB∥DE,∠E=65 º,则∠B+∠C=()A. 135ºB.115ºC. 36ºD.65º
二、填空题:(每小题3分,共24分)
11.在同一平面内,不重合的两直线的位置关系有______种.
12.如图8,已知AB∥CD,EF分别交AB,CD于点E,F,∠1=70°,则∠2的度数为______.
13.如图9,如果∠1=0°,∠2=100°,那么∠3的同位角等于______,∠3的内错角等于______,∠3的同旁内角等于______.
14.如图10,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC 平行,另一组对边分别在BC上或与BC平行. 若各矩形在AC上的边长相等,矩形a的一边长是72 cm则这样的矩形a、b、c…的个数是______.
15.如图11,线段CD是线段AB经过向右平移______格,并向平移______格得到的线段.
16.如图12,AB∥CD,AD,BC相交于点O,∠BAD=35°,
∠BOD=76°,则∠C的度数是______.
17.如果两个角的两条边分别平行,而其中一个角比另一
个角的4倍少30°,则这两个角的度数为______.
18.于同一平面内的三条直a、b、c,给出下列五个论断:①a∥b;②b c;
③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:__________________.
三、解答题:(共66分)
19、(本题10分)如图13,已知∠AED=60°,∠2=30°,EF
平分∠AED,可以判断EF∥BD吗?为什么?
20、(本题10分)如图14,A、B之间是一座山,一条高速公路要通过A、B两点,在A地测得公路走向是北偏西111°32′。

如果A、B两地
同时开工,那么在B地按北偏东多少度施工,才能使公路
在山腹中准确接通?为什么?
21、(本题10分)如图15,经过平移,△ABC 的边AB 移到了EF ,作出平移后的三角形,你能给出两种作法吗?请表述出来。

22、 (本题10分)如图16,AB ∥CD ,需增加什么条件才能使∠1=∠2成立?(至少举出两种)
23、(本题12分)如图17,三角形ABC 中,DE ∥AC ,DF ∥AB ,试问∠A +∠B +∠C =180°这个结论成立吗?若成立,试写出推理过程;若不成立,请说明理由。

OD 平分∠COB 。

(1)求∠DOC 的度数;
(2)判断AB 与OC 的位置关系。


16
四、拓广探索
24、(本题14分)如图18,(1)已知AB∥CD,EF∥MN,∠1=115°,求∠2和∠4的度数;
(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来;
(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小。

第5章相交线与平行线综合检测题C
参考答案与提示
一、
1、C;
2、B;
3、D;
4、C;
5、C;
6、D;
7、C;
8、B;
9、A; 10、D。

二、11.两12.7013.80,80,10014.9 15.2,2 16.41
17.42,138,或10,1018.答案不唯一,合理、正确即可;
三、
19、可以判断EF∥BD。

因为∠AED=60°, EF平分∠AED,所以∠1=30°,又知∠2=30°,所以∠1=∠2。

利用内错角相等两直线平行得出EF∥BD。

20、在B地按北偏东68°28′施工,就能使公路在山腹中准确接通。

因为A、B两地公路走向要形成一条直线,构成一个平角。

21、给出以下两种作法:
(1)依据平移后的的图形与原来的图形的对应线段平行,那么应有ED∥AC,FD∥BC。

(2)还可根据平移后对应点所连接的线段平行且相等,那么连接AE,作CD ∥AE,且CD=AE。

22、条件1:AF DE
∠的平分
∥;条件2:AF,DE分别是BAD
∠和ADC
线.
23、成立。

因为DE∥AC,所以∠C=∠EDB,∠EDF=∠DFC;又因为DF∥AB,所以∠B=∠FDC,∠A=∠DFC=∠EDF;即∠A+∠B+∠C=∠EDF+∠FDC+∠EDB,而∠EDF+∠FDC+∠EDB=180°,故∠A+∠B+∠C=180°。

24、(1)∠2=115°,∠4=∠3=65°;
(2)如果一个角的两边分别平行于另一个角的两边,那么,这两个角相等或互补;
(3)根据(2),设其中一个角为x,则另一个角为2x,x+2x=180°,x=60°,故这两个角的大小为60°,120。

【素材积累】
1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。

上帝认为他太能说了,会打扰天堂的幽静,于是旧把他打入了地狱。

刚过了一个星期,阎王旧满头大汗找上门来说:上帝呀,赶紧把他弄走吧!上帝问:怎么回事?阎王说:地狱的小。

2、机会往往伪装成困难美国名校芝加哥大学的一位教授到访北大时曾提到:芝加哥大学对学生的基本要求是做困难的事。

因为一个人要想有所成旧,旧必须做那些困难的事。

只有做困难的事,才能推动社会发展进步。

相关文档
最新文档