流体力学复习资料.
课程流体力学复习资料

课程流体力学复习资料一、是非题1、在连续介质假设的条件下,液体中各种物理量的变化是连续的。
(正确)2、管道突然扩大的局部水头损失系数ζ的公式是在没有任何假设的情况下导出的。
(错误)3、均匀缓流只能在缓坡上发生,均匀急流只能在陡坡上发生。
(错误)4、其他条件相同时,实用堰的流量系数大于宽顶堰的流量系数。
(正确)5、区分实用堰和宽顶堰,只需关注堰壁厚度δ。
(正确)6、流网存在的充分必要条件是恒定渗流。
(错误)7、牛顿内摩擦定律仅适用于管道中层流情况。
(正确)8、在有压长管道中,水头损失被认为是全部消耗在沿程水头损失上。
(正确)9、在串联长管道中,各管段的水头损失可能相等,也可能不相等。
(正确)10、紊流实际上是一种非恒定流现象。
(正确)二、单项选择题1、静止液体中同一点各方向的压强()A.数值相等B.数值不等C.仅水平方向数值相等D.铅直方向数值最大2、亚声速流动,是指 __________时的流动。
()A.等于1 B.等于临界马赫数C.大于1 D.小于13.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为。
A.牛顿流体及非牛顿流体;B.可压缩流体与不可压缩流体;C.均质流体与非均质流体;D.理想流体与实际流体4.混合气体的密度可按照各种气体_____________的百分比数来计算。
()A.总体积 B.总质量C.总比容 D.总压强在一个储水箱的侧面上、下安装有两只水银U形管测压计(如图二),当箱顶部压强$Po_1 1$个大气压时,两测压计水银柱高之差$\Delta h_1=h_1-h_2=760mm$ (Hg)。
如果顶部再压入一部分空气,使$Po_2=2$个大气压时。
则$\Delta h_2$应为多少?解答过程:已知:$Po_1=1$,$h_1-h_2=760$,$Po_2=2$要求:$\Delta h_2$根据理想气体状态方程,$PV=nRT$,其中P为压强,V为体积,n为摩尔数,R为气体常数,T为绝对温度。
《流体力学》复习资料

一、填空题1、液体的动力粘性系数随温度的而减小,牛顿流体是指切应力与成的流体。
2、欧拉法中,流体的加速度包括和两种,如果流场中时变加速度为零,则称流动为,否则,流动称为。
3、雷诺实验揭示了流体流动存在层流和两种流态,并可用来判别流态。
4、一般管路中的损失,是由和两部分构成,在定常紊流中,沿程水头损失与流速的成,所谓的长管是指比小得多,可以忽略不计。
5、已知三维流场的速度分布为:0vtxu,试求t=0时刻,经过=wy,4,2=+=点(1,1)的流线方程;点(1,1)处的加速为。
6、平面流动速度分布为:22y=,byu-ax=,如果流体不可压缩,试-v-xy求a= ;b= 。
7、子弹在15摄氏度的大气中飞行,如果子弹头部的马赫角为45度,已知音波速度为340m/s子弹的飞行速度为。
8、管道截面的变化、及壁面的热交换,都会对一元可压缩流动产生影响。
9、自由面上的压强的任何变化,都会地传递到液体中的任何一点,这就是由斯卡定律。
10、液体在相对静止时,液体在重力、、和压力的联合作用下保持平衡。
11、从海平面到11km处是,该层内温度随高度线性地。
12、平面壁所受到的液体的总压力的大小等于的表压强与面积的乘积。
13、水头损失可分为两种类型:和。
14、在工程实践中,通常认为,当管流的雷诺数超过,流态属于紊流。
15、在工程实际中,如果管道比较长,沿程损失远大于局部损失,局部损失可以忽略,这种管在水力学中称为。
16、紊流区的时均速度分布具有对数函数的形式,比旋转抛物面要均匀得多,这主要是因为脉动速度使流体质点之间发生强烈的,使速度分布趋于均匀。
17、流体在运动中如果遇到因边界发生急剧变化的局部障碍(如阀门,截面积突变),流线会发生变形,并出现许多大小小的,耗散一部分,这种在局部区域被耗散掉的机械能称为局部水头损失。
18、流动相似指的是两个流动系统所有对应点的对应物理量之比相等,具体地说,就是要满足,、和。
19、自由面上的压强的任何变化,都会地传递到液体中的任何一点,这就是由斯卡定律。
流体力学复习内容

1.自然界物质存在的主要形式有:固体、流体(包括液体和气体)。
2.按连续介质的概念,流体质点(流体微团)是指(D)。
A、流体的分子;B、流体内的固体颗粒;C、几何的点;D、几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
3.水的密度常用值:ρ=1000kg/m3。
水银的密度常用值:ρ=13600kg/m3。
4.牛顿内摩擦力公式:5.与牛顿内摩擦定律直接有关的因素是()。
A、切应力和压强;B、切应力和剪切变形速率;C、切应力和剪切变形;D、切应力和流速。
一、选择题1、水力学中,单位质量力是指作用在单位___C__ 液体上的质量力。
A 面积;B 体积;C 质量;D 重量2、不同的液体其粘滞性_______,同一种液体的粘滞性具有随温度____D___而降低的特性。
A 相同降低;B 相同升高;C 不同降低;D 不同升高3、液体粘度随温度的升高而____,气体粘度随温度的升高而____D_。
A 减小,不一定;B 增大,减小;C 减小,不变;D 减小,增大4、动力粘滞系数的单位是:B___A N*s/mB N*s/m^2C m^2/D m/s5、下列说法正确的是:___A_A 液体不能承受拉力,但能承受压力。
B 液体不能承受拉力,也不能承受压力。
C 液体能承受拉力,但不能承受压力。
D 液体能承受拉力,也能承受压力。
6.如图所示,一平板在油面上作水平运动。
已知平板运动速度V=1m/s,平板与固定边界的距离δ=5mm,油的动力粘度μ=0.1Pa·s,则作用在平板单位面积上的粘滞阻力为(C)A.10Pa B.15Pa C.20Pa D.25Pa7.与牛顿内摩擦定律有关的因素是:(B)A、压强、速度和粘度;B、流体的粘度、切应力与角变形率;C、切应力、温度、粘度和速度;D、压强、粘度和角变形。
8.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:(D)A、牛顿流体及非牛顿流体;B、可压缩流体与不可压缩流体;C、均质流体与非均质流体;D、理想流体与实际流体。
流体力学复习资料

流体力学复习资料流体力学是研究流体(包括液体和气体)的平衡和运动规律的学科。
它在工程、物理学、气象学、海洋学等众多领域都有着广泛的应用。
以下是为大家整理的流体力学复习资料,希望能对大家的学习有所帮助。
一、流体的物理性质1、流体的密度和比容密度(ρ)是指单位体积流体的质量,公式为:ρ = m / V 。
比容(ν)则是密度的倒数,即单位质量流体所占的体积,ν = 1/ρ 。
2、流体的压缩性和膨胀性压缩性表示流体在压力作用下体积缩小的性质,通常用体积压缩系数β来衡量,β =(1 / V)×(dV / dp)。
膨胀性是指流体在温度升高时体积增大的特性,用体积膨胀系数α来描述,α =(1 / V)×(dV / dT)。
3、流体的粘性粘性是流体抵抗剪切变形的一种属性。
牛顿内摩擦定律:τ =μ×(du / dy),其中τ为切应力,μ为动力粘度,du / dy 为速度梯度。
二、流体静力学1、静压强的特性静压强的方向总是垂直于作用面,并指向作用面内。
静止流体中任意一点处各个方向的静压强大小相等。
2、静压强的分布规律对于重力作用下的静止液体,其静压强分布公式为:p = p0 +ρgh ,其中 p0 为液面压强,h 为液体中某点的深度。
3、压力的表示方法绝对压力:以绝对真空为基准度量的压力。
相对压力:以大气压为基准度量的压力,包括表压力和真空度。
三、流体动力学基础1、流体运动的描述方法拉格朗日法:跟踪流体质点的运动轨迹来描述流体的运动。
欧拉法:通过研究空间固定点上流体的运动参数随时间的变化来描述流体的运动。
2、流线和迹线流线是在某一瞬时,在流场中所作的一条曲线,在该曲线上各点的速度矢量都与该曲线相切。
迹线是流体质点在一段时间内的运动轨迹。
3、连续性方程对于定常流动,质量守恒定律表现为连续性方程:ρ1v1A1 =ρ2v2A2 。
4、伯努利方程理想流体在重力作用下作定常流动时,沿流线有:p /ρ + gz +(1 / 2)v²=常量。
流体力学复习资料

流体力学重点知识汇总编者:翟冬毅韩冠宇武红李姗姗孙荣耀柯慧宇刘培放高士奇(以编写的章节排序)第一章连续介质假设:连续介质假设的概念认为流体是由流体质点连续的、没有空隙的充满了流体所在的整个空间的连续介质。
质点(流体微团):流体质点,是指微观上充分大、宏观上充分小的分子团。
粘滞性及其影响因素:对于流动着的流体,若流体质点之间因相对运动的存在,而产生内摩擦力以抵抗其相对运动的性质,称为流体的粘滞性,所产生的内摩擦力也称为粘滞力,或粘性力。
切应力和牛顿内摩擦定律:(1-14)、(1-15)动力粘性系数:μ在国际单位制中单位是Pa·s或N·s/m2,单位中由于含有动力学量纲,一般称为动力粘性系数运动粘性系数:运动粘性系数ν是动力粘性系数μ与流体密度ρ的比值。
梯度与变形的关系:牛顿内摩擦定律(1-14)中反映相对运动的流速梯度du/dt,实际上表示了流体微团的剪切变形速度。
作用力分类:按物理性质,分为惯性力、重力、弹性力、粘滞力、表面张力等;按作用方式,分质量力和表面力两种。
质量力是作用于流体的你每一个质点上,并与被作用的流体的质量成比例的力。
表面力是作用于流体的表面上,并与被作用的表面面积成比例的力。
第二章流体静压强特性:1.作用方向垂直并指向作用面。
2.静止流体内任意一点的流体静压强的大小与其作用面的方位无关,任意一点的流体静压强在各个方向上相等。
等压面性质:1.在平衡流体中等压面就是等势面。
2. 在平衡流体中等压面与质量力正交。
Z:位置水头,又代表位置势能,简称位能。
P/ᵨg:压强水头,又代表压强势能,简称压能。
(P/ᵨg+Z):测压管水头,为常数。
绝对压强=相对压强+大气压强:p’=p+p a真空压强(真空度):pv=pa- p’静压强分布图:1.按一定的比例,用线段的长度代表静水压强大小。
2.用箭头表示静水压强的方向。
压力体:1.受液体作用的曲面本身。
2.自由液面或自由液面的延长面。
流体力学复习资料【最新】

流体力学复习资料1.流体的定义;宏观:流体是容易变形的物体,没有固定的形状。
微观:在静力平衡时,不能承受拉力或者剪力的物体就是流体。
2. 流体的压缩性:温度一定时,流体的体积随压强的增加而缩小的特性。
流体的膨胀性:压强一定时,流体的体积随温度的升高而增大的特性。
3. 黏度变化规律:液体温度升高,黏性降低;气体温度升高,黏性增加。
原因:液体黏性是分子间作用力产生;气体黏性是分子间碰撞产生。
4.牛顿内摩擦定律:运动的额流体所产生的内摩擦力F的大小与垂直于流动方向的速度梯度du/dy成正比,与接触面的面积A成正比,并与流体的种类有关,与接触面上的压强无关。
数学表达式:F=μA du/dy流层间单位面积上的内摩擦力称为切向应力τ=F/A=μdu/dy5.静止流体上的作用力:质量力、表面力。
质量力:指与流体微团质量大小有关并且集中作用在微团质量中心上的力。
表面力:指大小与流体表面积有关并且分布作用在流体表面上的力。
6.重力作用下静力学基本方程:dp=-ρgdz 对于均质不可压缩流体:z+p/ρ=c物理意义:几何意义7. .绝对压强:以绝对真空为基准计算的压强。
P相对压强:以大气压强为基准计算的压强。
P e真空度:某点的压强小于大气压强时,该点压强小于大气压强的数值。
P vP=p a+ρgh p e=p-pa p v=p a-p8.压力提的概念:所研究的曲面(淹没在静止液体中的部分)到自由液面或自由液面的延长面间投影所包围的一块空间体积。
液体在曲面上方叫实压力体或正压力体;下方的叫虚压力体或负压力体。
9. 研究流体运动的两种方法:①拉格朗日法②欧拉法10.定常流动:流体质点的运动要素只是坐标的函数而与时间无关。
非定常流动:流体质点的运动要素既是坐标的函数又是时间的函数。
11. 迹线:指流体质点的运动轨迹,它表示了流体质点在一段时间内的运动情况。
流线:在流场中每一点上都与速度矢量相切的曲线称为流线。
流线是同一时刻不同流体质点所组成的曲线,它给出该时刻不同流体质点的速度方向。
流体力学总复习

流体⼒学总复习流体⼒学总复习1.流体连续介质假设,流体的易变形性,粘性,可压缩性2.流体的主要⼒学性质:粘性,压缩性和表⾯张⼒。
3.粘度⼀般不随压⼒变化;对于⽓体温度升⾼则粘度变⼤;对于液体温度升⾼则粘度变⼩。
4.流体的压缩性温度不变时,流体的体积随压强升⾼⽽缩⼩的性质。
5.流体的热膨胀性压⼒不变时,流体的体积随温度升⾼⽽增⼤的性质。
6.不可压缩流体的概念所有的流体均具有可压缩性,只不过液体压缩性很⼩,⽓体的压缩性⼤。
实际⼯程中,对于那些在整个流动过程中压⼒及温度变化不是很⼤,以致流体的密度变化可以忽略不计的问题,不论是液体或是⽓体,假设其密度为常数,并称其为不可压缩流体。
7.⽜顿内摩擦定律,τ=µ*du/dy。
上式说明流体在流动过程中流体层间所产⽣的剪应⼒与法向速度梯度成正⽐,与压⼒⽆关。
流体的这⼀规律与固体表⾯的摩擦⼒规律不同。
符合⽜顿切应⼒公式者为⽜顿流体,如⽔,空⽓;不符合⽜顿切应⼒公式者为⾮⽜顿流体,如油漆,⾼分⼦化合物液体。
8.粘性系数为零的流体称为理想流体,是⼀种假想的流体。
9.⼯程中常⽤运动粘度代替,10.黏性流体与理想流体之分。
⾃然界存在的实际流体都具有黏性,因此实际流体都是黏性流体;若黏性可以忽略不计,则称之为理想流体,即不具有黏性的流体为理想流体。
11.影响黏度的主要因素(1) 温度的影响A. 对于液体,其黏度随温度的升⾼⽽减少。
原因为:液体分⼦的黏性主要来源于分⼦间内聚⼒,温度升⾼时,液体分⼦间距离增⼤,内聚⼒随之下降⽽使黏度下降。
B. 对于⽓体,其黏度随温度的升⾼⽽增⼤。
原因为:⽓体黏性的主要原因是分⼦的热运动,温度升⾼时,⽓体分⼦的热运动加剧,层间分⼦交换频繁,因此⽓体黏度增⼤。
(2) 压强的影响通常压强下,压强对流体黏度的影响很⼩,可以忽略不计。
但在⾼压强下,流体,⽆论是液体还是⽓体,其黏度都随压强的增⼤⽽增⼤。
12.液体的⾃由表⾯存在表⾯张⼒,表⾯张⼒是液体分⼦间吸引⼒的宏观表现。
流体力学复习资料

1.迹线:同一质点在不同时刻所占有的空间位置联成的空间曲线称为迹线。
2.定常流动:液体流动时,若流体中任何一点的压力,速度和密度都不随时间变化,则这种流动就称为定常流动。
3.沿程阻力:流体在均匀流段上产生的流动阻力,称为沿程阻力.4.量纲:量纲是指物理量的性质和类别。
5.体积模量:6.流动相似:两个流动相应点上的同名物理量具有各自固定的比例,则这两个流动就是相似的。
7.纲和谐原理:8.湍流:流体质点的远动轨迹是极不规则的,各部分相互混杂,这种流动状态称为紊流.9.局部阻力:由于流体速度或方向的变化,导致流体剧烈冲击,由于涡流和速度重新分布而产生的阻力。
10.层流:液体层间有规则的流动状态称为层流。
11.渐变流:流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。
12.淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间。
13。
薄壁孔口:出流流股与孔口接触只有一条周线,这种条件的孔口称为薄壁孔口。
14。
动能修正系数:15.流管:在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流线组成的管状流面,称为流管。
简答题1。
什么是等压面?等压面的条件是什么?等压面是指流体中压强相等的各点所组成的面。
只有重力作用下的等压面应满足的条件是:静止、连通、连续均质流体、同一水平面.2.流线的定义性质。
流线的定义:在某一时刻,个点的切线方向与通过该点的流体质点的流速方向重合的空间去曲线。
流线的性质: a、同一时刻的不同流线,不能相交。
b、流线不能是折线,而是一条光滑的曲线或直线。
c、流线越密处,流速越大,流线越稀处,流速越小。
4.试简要回答缓变流的定义及其两个主要特性。
缓变流(渐变流):流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。
特性:5.试简要阐述局部能量损失的定义及大致分类。
6.简述孔口出流的分类情况。
按孔口直径D和孔口形心在液面下深度H分为大孔口和小孔口;按水头随时间变化,分为恒定出流和非恒定出流;按壁厚,分为薄壁孔口和厚壁孔口;按出流空间状况,分为自由出流和淹没出流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 掌握激波的物理过程和产生条件、气流流过激波后 参数变化情况;掌握正激波基本方程组建立及普朗 特激波公式的推导;理解气流经过激波是一个非等 熵过程;掌握激波强度的概念
▪ 掌握等熵管流中速度变化随截面积变化的规律;掌 握拉瓦尔喷管的工作原理及在喷管出口截面获得超 声速气流的条件
的关系(包括极坐标系);已知速度场求流函数、 位函数。 ▪ 了解涡线、涡管、旋涡强度的概念;掌握速度环量 的概念;了解斯托克斯定理、毕奥-萨瓦定理、旋涡 定理。
第3章 不可压无粘流
▪ 了解Euler方程在无旋流、有旋流中的积分 ▪ 掌握伯努力方程的物理意义及其应用 ▪ 掌握驻点概念、定常不可压位流压强系数计算公式 ▪ 掌握拉普拉斯方程的形式,了解流体力学边值问题
Euler/N-S方程的建立过程和基本形式;Euler方程的 应用。 ▪ 掌握定常、非定常的概念 ▪ 掌握迹线、流线概念;熟记流线方程,已知速度场 计算流线方程。
第2章 流体运动基本方程和规律
▪ 了解流体微团运动形式 ▪ 掌握角速度(旋度)、角变形率的概念和计算公式;
已知速度场判断是否有旋 ▪ 掌握流函数、位函数存在的条件;速度分量与两者
流体力学
第1章 流体力学基础知识
▪ 了解流体的连续介质假设、掌握流体介质的物理属 性(压强、密度、温度和速度;压缩性、粘性和传 热性)、理想气体状态方程、流体的模型化
▪ 掌握体轴系、风轴系和几何迎角的概念 ▪ 掌握气动力(升/阻力、法/轴向力、力矩)、气动
力系数、压心的概念,体/风轴系间气动力转换,气 动力-力矩系统的等效,根据分布载荷计算气动力和 力矩以及压心位置
过程;熟悉导致流动过程不可逆的因素 ▪ 掌握Ma、a的定义和物理意义;掌握一维等熵绝热
流能量方程的几种基本形式;了解总参数、静参数 的概念;了解临界参数、速度系数的概念;了解熵 和总压的关系 ▪ 掌握小扰动在空气中的传播规律以及马赫锥的概念 ▪ 掌握膨胀马赫波、压缩马赫波的特点
第4章 高速可压无粘流
第5章 粘流和边界层流动
▪ 熟悉理想和粘流流体微团的受力情况 ▪ 掌握粘流、无粘流物面边界条件的区别 ▪ 掌握粘性摩擦阻力、粘性压差阻力的概念 ▪ 掌握层流、紊流的基本概念;掌握雷诺数的定义及
物理意义;了解层流、紊流速度型的区别 ▪ 掌握边界层的概念;掌握边界层内沿物面法向压强
不变的特点;掌握逆压、顺压梯度的概念;掌握边 界层分离的原因;了解流动状态对分离的影响;能 够分析激波和边界层相互干扰现象
和不可压位流的叠加原理 ▪ 熟悉直匀流、点源(汇)、点涡、偶极子基本解的
流动特征 ▪ 熟悉如何获得绕半无线体绕流、绕圆柱无环量和有
环量流动及流动特征 ▪ 了解达朗贝尔疑题、掌握库塔-儒科夫斯基升力定理
第4章 高速可压无粘流
▪ 熟悉焓、比热、熵的概念 ▪ 了解热力学第一、第二定律 ▪ 掌握等熵关系式;熟悉绝热过程、可逆过程、等熵
第1章 流体力学基础知识
▪ 了解线、面、体积分之间的转换关系 ▪ 掌握梯度、散度、旋度的概念和计算公式 ▪ 掌握控制体、流体微团的概念和分类 ▪ 掌握物质导数的概念,应用于流体微团加速度计算
第Hale Waihona Puke 章 流体运动基本方程和规律▪ 掌握体积流量、质量流量和质量通量的概念 ▪ 掌 握 Euler/N-S 方 程 的 物 理 意 义 和 区 别 、 熟 悉