2018年高考全国卷2理科数学真题(附含答案解析)
2018高考全国2卷理科数学带答案(K12教育文档)

2018高考全国2卷理科数学带答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考全国2卷理科数学带答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考全国2卷理科数学带答案(word版可编辑修改)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y = D .3y = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29D .252018高考全国27.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50- B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国新课标2卷理科数学word版及答案

文档绝密★启用前2018 年一般高等学校招生全国一致考试理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及底稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:此题共12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1 2i1.1 2iA .4 3 iB . 4 3 i C.3 4 i D .3 4 i555555552.已知会合 A x,y x2y2≤3,x Z ,y Z ,则A中元素的个数为A . 9B . 8C.5 D . 43f e x e x.函数x x2的图像大概为4.已知向量a, b 知足 | a | 1 , a b 1 ,则 a (2a b)A . 4B . 3C.2 D . 05x2y21( a0, b 0) 的离心率为3,则其渐近线方程为.双曲线b2a2A . y2xB . y3x C. y2D. y3x x226.在△ABC 中,cos C5,BC1,AC5,则AB 25A.4 2B. 30C. 29D.2 57. 算 S1 1 1 1 1开始13⋯99, 了右 的程序框 ,24100在空白框中 填入N0,T 0A . i i 1i 1B . ii2 是否i100C . ii 31NS N TD . ii4NiT1出 STi 1束8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就.哥德巴赫猜想是“每个大于2 的偶数能够表示 两个素数的和”,如30 7 23 .在不超30 的素数中,随机 取两个不一样的数,其和等于 30 的概率是A .11C .1D .112B .1415189.在 方体 ABCDA 1B 1C 1D 1 中, ABBC 1 , AA 13 , 异面直 AD 1 与 DB 1 所成角的余弦A . 1B .5C .5D .2552610.若 f (x) cos xsin x 在 [ a, a] 是减函数, a 的最大 是ππ3πD .πA .B .C .44211 .已知 f (x) 是定 域 (, ) 的奇函数, 足f (1 x)f (1x) .若 f (1) 2 ,f (1) f (2) f (3) ⋯f (50)A . 50B . 0C .2D .502 212.已知 F 1 , F 2是 C :x2y 2 1( a b 0) 的左,右焦点,A 是 C 的左 点,点 P 在 A 且斜率ab3的直 上, △ PF 1F 2 等腰三角形,F 1F 2 P 120 , C 的离心率6211D .1A .B .C .4323二、填空 :本 共 4 小 ,每小 5 分,共 20 分。
2018年高考真题——理科数学(全国卷II)+Word版含解析(2021年整理)

2018年高考真题——理科数学(全国卷II)+Word版含解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考真题——理科数学(全国卷II)+Word版含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考真题——理科数学(全国卷II)+Word版含解析(word版可编辑修改)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国卷II)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上.写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1。
A. B. C。
D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D。
点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A。
9 B。
8 C。
5 D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解: ,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3。
函数的图像大致为A. AB. BC. C D。
D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像。
详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4。
2018年普通高等学校招生全国统一考试理科数学全国卷2试题及答案

2018年普通高等学校招生全国统一考试理科数学全国卷2试题及答案2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.A .B .C .D .2.已知集合,则中元素的12i12i+=-43i 55--43i 55-+34i 55--34i 55-+(){}223A x y xy x y =+∈∈Z Z,≤,,A个数为A .9B .8C .5D .4 3.函数的图像大致为4.已知向量,满足,,则A .4B .3C .2D .0 5.双曲线,则其渐近线方程为 A .B .C .D .6.在中,,,则()2e e x xf x x --=a b ||1=a 1⋅=-a b (2)⋅-=a a b 22221(0,0)x y a b a b -=>>32y x=3y x=22y x =±3y =ABC△5cos2C 1BC =5AC =AB =机选取两个不同的数,其和等于30的概率是 A . B . C . D .9.在长方体中,,,则异面直线与所成角的余弦值为A .B CD10.若在是减函数,则的最大值是A .B .C .D .11.已知是定义域为的奇函数,满足.若,则A .B .0C .2D .501121141151181111ABCD A B C D -1AB BC ==13AA 1AD 1DB 15552()cos sin f x x x =-[,]a a -a π4π23π4π()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-12.已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分. 13.曲线在点处的切线方程为__________. 14.若满足约束条件 则的最大值为__________.15.已知,,则__________.16.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若1F 2F 22221(0)x y C a b a b+=>>:ACP A312PF F △12120F F P ∠=︒C 231213142ln(1)y x =+(0,0),x y 25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,z x y =+sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=S SA SB 78SA SAB△的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。
2018年全国二卷数学(含详解答案)

2018年全国二卷数学一、选择题:此题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为 A .15BCD10.假设()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.假设(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:此题共4小题,每题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.假设,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,假设SAB △的面积为__________.三、解答题:共70分。
2018年高考数学全国卷试题答案解析(6套)

中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则
2018高考全国新课标2卷理科数学版及答案解析
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y x = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
(完整word版)2018全国高考II卷理科数学试题及答案解析(2),推荐文档
绝密★启用前2018年普通咼等学校招生全国统考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 4-2i1.1 21[4引4 3r 3 4 3 4lA. -------- 1 --- b C. : D.-7 +5 5 5 5 5]>【答案】D【解析】分析:根据复数除法法则化简复数,即得结果详解:'•.选D.1-21 5 5点睛:本题考查复数除法法则,考查学生基本运算能力2. 已知集合厂「..厂•「则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数详解:选入九/冬久E乙"X- - l,0j|,当b = 时,[;:'■ ■」.丨当卜■取时,当 b ■-〕时,f所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别3. 函数心、的图像大致为A B C DA. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像-谑异畑为奇函数,舍去A,详解:x2r (亡"亠亡K)x1-(e x-e K)2X (x-2)e x + (x + 2)e_li r,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,卜满足用i,则且“『通-心;:TA. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果详解:因为 a -(坯 & - - b -加'-(-】) 2+1-3.所以选B.点睛:向量加减乘:.-'■: I、m. ■ I -i ;•- :■■ ;;. I:2 25. 双曲线的离心率为|门|,则其渐近线方程为A. \qB.” ■ 土占羞c.\一r\y 三土—x D.2y = i —x£【解析】分析:根据离心率得 a,c 关系,进而得 a,b 关系,再根据双曲线方程求渐近线方程,得结果详解:b" c"-a"r b jr- c -1 ■ 3 - 1 ■ 2 " - ■ J2,2口口M,所以渐近线方程为.,选A.【答案】A【解析】分析:先根据二倍角余弦公式求 cosC,再根据余弦定理求 AB.详解:因为 所以? -- 1 亠 25-2 1 ■ ?,选 A.点睛:解三角形问题,多为边和角的求值问题, 这就需要根据正、余弦定理结合已知条件灵活转化边和角 之间的关系,,设计了下面的程序框图,则在空白框中应填入因为渐近线方程为ya 2b 32 2Kv b 0 刊■ ± -x . ? a A.卜同 B. .. C.D.I 11 1A. B.【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减 •因此累加量为隔项•详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减•因此在空白框2 3 499 100中应填入厂帀,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查•先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明 确流程图研究的数学问题,是求和还是求项8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果. 哥德巴赫猜想是“每个大于 2的偶数可以表示为两个素数的和”,如 卜迓;(•在不超过30的素数中,随机选取两个不同的数,其和 等于30的概率是 1 1 1 1A.B.C. D.12】41518【答案】C【解析】分析:先确定不超过 30的素数,再确定两个不同的数的和等于 30的取法,最后根据古典概型概率公式求概率•详解:不超过30的素数有2, 3, 5, 7, 11, 13, 17, 19, 23, 29,共10个,随机选取两个不同的数,共 有减 f 种方法,因为773 ■ I 「旧 戸丄17-30,所以随机选取两个不同的数,其和等于30的有3种3 r方法,故概率为R-,选C.禎 15点睛:古典概型中基本事件数的探求方法:(1)列举法• (2)树状图法:适合于较为复杂的问题中的基本事件的探求•对于基本事件有“有序”与“无序”区别的题目,常采用树状图法 • (3)列表法:适用于多元素 基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化 • (4)排列组合法:适用于限制条件较多且元素数目较多的题目9.在长方体卩•,飞•匸|中,卜庶■段打■ :.|,啟卸「.讯 则异面直线 与所成角的余弦值为5| |6【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与 线线角相等或互补关系求结果详解:以D 为坐标原点,DA,DC,DD 为x,y,z 轴建立空间直角坐标系,贝U ',所以血1麻Db 广(1丄间,A.B. C. D.因为. . 土,所以异面直线与 所成角的余弦值为IADJIDBJ 2 忻 5,选C.点睛:禾U 用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标 第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第一一 + 2k7r < tax + (p < - 4 2kx(k € 乙',求增区间;咒、由-+ 2kjt < oix + Q < — ■+ 2kx(k € 乙i 求减区间. 已知 是定义域为琬的奇函数,满足和⑴若 ,贝则订;*『:二A.B. 0C. 2D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果 详解:因为◎提定义域为卜迪亠训的奇函数,且肾四, 破“应用公式关”.10. 若险:■・:.叙朮工在一 是减函数,则的最大值是3皐 A B.-C.D.累4| 2A【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值 详解:因为Rx) CUSX SII1X y2ix )s(x + -;,4所以由 0 + 2匕兰乳 + -上;r + 2kn,(k € Z )得一 I :< x< — + 21uL(k E4 4 4.,,, 3兀.―,, 兀 兀 3 耳 冗,.. ”、, 因此[乩创u [—,—]片-洁电生---< 一 /- 0 < a < ,从而的最大值为4 4 4 4 4点睛:函数的性质:,选A.X1求对称轴,(4)由系;11. A. ⑴、吹nd A B所以|;: •I -,因此n;一二三:n巴诃m⑺因为;■■::ii... H--::■■:■/,所以-型'、亢:了■- h_- J : ■ ■■::,从而战"需篇严宀■-洽谕■即;:■专选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知眉,是椭圆的左,右焦点,是的左顶点,点卜在过且斜率为的直线a- tr 16|上,卜卩珥耳为等腰三角形,四几卩・1划,则匚的离心率为2 1 ]| [A. B. - C. D.3| 2 3| |4【答案】DPH=2c,再利用正弦定理得a,c关系,即得离心率详解:因为卷W为等腰三角形,门TQ 一‘:,所以PF2=F I F2=2C,PFr sinziPAI';由正弦定理得AF, siniAPF,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于沁韵的方程或不等式,再根据k*::;的关系消掉得到的关系式,而建立关于”爲■詞的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。
2018年高中高考全国2卷理科数学及答案
绝密★启用前2018年一般高等学校招生全国一致考试理科数学本试卷共 23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考据号码填写清楚,将条形码正确粘贴在条形码地区内。
2.选择题一定使用 2B 铅笔填涂;非选择题一定使用 0.5毫米黑色笔迹的署名笔书写, 笔迹清楚。
字体工整、3.请依据题号次序在各题目的答题地区内作答,高出答题地区书写的答案无效;在底稿纸、试题卷上答题无效。
4.作图可先使用铅笔划出,确立后一定用黑色笔迹的署名笔描黑。
5.保持卡面洁净,不要折叠、不要弄破、弄皱,禁止使用涂改液、修正带、刮纸刀。
一、选择题:此题共 12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.12i 1 2iA .4 3B .4 3 C .3 4 D .3 4 5i5 i5 i5 i55552.已知会合A {(x,y)|x 2y 23,xZ,y Z},则A 中元素的个数为A .9B .8C .5D .43.函数f(x) e xe x2的图象大概为x4.已知向量 a ,b 知足|a|1,ab1,则a(2a b)A .4 x 2y 2B .3C .2D .05.双曲线1(a 0,b 0)的离心率为3,则其渐近线方程为22ab23 开始A .y2xB .y3x C .yD .yxxC5,BC22N0,T0.在△ABC 中,1,AC5,则AB6cos5i12A .42 B . 30 C .29D .25是否i1007.为计算S111 1L11,设计了右边的123 499 100NSNTN程序框图,则在空白框中应填入iA .i i 1T1输出STB .i i 2i1C .i i 3 结束D .ii 4理科数学试题 第1页(共9页)8.我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723.在不超出30的素数中,随机选用两个不一样的数,其和等于30的概率是1B.111A.C.D.121415189.在长方体ABCD A1B1C1D1中,AB BC1,AA13,则异面直线AD1与DB1所成角的余弦值为A.1B.5526C.D.55210.若f(x)cosx sinx在[a,a]是减函数,则a的最大值是A.πB.πC.3πD.π42411.已知f(x)是定义域为(,)的奇函数,知足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)L f(50)A.50B.0C.2D.50x2y21(a b0)的左,右焦点,A是C 3的12.已知F1,F2是椭圆C:22的左极点,点P在过A且斜率为a b6直线上,△PF1F2为等腰三角形,F1F2P120,则C的离心率为A.2B.1C.1D.1 3234二、填空题:此题共4小题,每题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
13.曲线y=2ln(x+1)在点(0,0)处的切线方程为________。
14.若x,y满足约束条件则z=x+y的最大值为_________。
15.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=________。
16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为,则该圆锥的侧面积为________。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S1=-15。
(1)求{a n}的通项公式;(2)求S n,并求S n的最小值。
18.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型。
根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t。
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由。
(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程。
20.(12分)如图,在三棱锥P-ABC 中,AB=BC=2,PA=PB=PC=AC=4,O 为AC 的中点。
(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值。
21、(12分)已经函数f (x )=e x-ax 2。
(1)若a=1,证明:当x ≥ 0时,f (x )≥ 1; (2)若f (x )在(0,+∞)只有一个零点,求a 。
(二)选考题:共10分,请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22、[选修4-4:坐标系与参数方程](10分) 在直角坐标系中xOy 中,曲线C 的参数方程为( θ 为参数),直线l 的参数方程为,(t 为参数)。
(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率。
23:[选修4-5:不等式选讲](10分) 设函数f (x )=5-| x+a|-| x-2|。
(1)当a=1时,求不等式f (x )≥ 0的解集; (2)若f (x )≤ 1时,求a 的取值范围。
参考答案: 一、选择题1.D2.A3.B4.B5.A6.A7.B 8.C 9.C 10.A 11.C 12.D 二、填空题13.2y x = 14.915.12-16.三、解答题 17. (12分)解:(1)设{}n a 的公差为d ,由题意得13315a d +=-. 由17a =-得d =2.所以{}n a 的通项公式为29n a n =-. (2)由(1)得228(4)16n S n n n =-=--. 所以当n =4时,n S 取得最小值,最小值为−16.18.(12分) 解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆ30.413.519226.1y=-+⨯=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆ9917.59256.5y=+⨯=(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ9917.5yt =+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.学.科网(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(12分)解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.20.(12分)解:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,12OB AC ==.由222OP OB PB +=知PO OB ⊥.由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=u u u r取平面PAC 的法向量(2,0,0)OB =u u u r.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-u u u r. 设平面PAM 的法向量为(,,)x y z =n . 由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn .由已知得|cos ,|OB =uu u r n ..解得4a =-(舍去),43a =.所以4()3=-n .又(0,2,PC =-u u u r,所以cos ,PC =uu u r n . 所以PC 与平面PAM所成角的正弦值为4.21.(12分)【解析】(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--. 当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点. (i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故24(2)1eah =-是()h x 在[0,)+∞的最小值.学&科网①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当0x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点. 综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.22.[选修4-4:坐标系与参数方程](10分)【解析】(1)曲线C 的直角坐标方程为221416x y +=.当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-,当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 的斜率tan 2k α==-. 23.[选修4-5:不等式选讲](10分)【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 的取值范围是(,6][2,)-∞-+∞U .。